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Abstract. There are many application queries on windows defined over
a stream of tuples that must be processed within specified deadlines
which are after the window end. Stream processing is usually done either
on a tuple-by-tuple basis or in micro-batches. Processing queries over
large windows using stream processing engines can be very inefficient
since there is often a significant overhead per tuple or micro-batch. Con-
versely, processing all tuples at the end of the window may result in
missed deadlines, and idling of system resources before the window end.
We present scheduling schemes for queries on large windows, using large
batches, and using priority schemes based on query deadlines and slack
time. Our scheduling scheme handles multiple concurrent queries with-
out any prior knowledge of the future query requirements. The proposed
scheduling algorithms have been implemented as a custom scheduler,
on top of Apache Spark. Our performance study with TPC-H queries
shows that our approach of processing can achieve significant computa-
tion time reduction compared to naively using Spark Streaming and can
also handle stringent deadline cases efficiently.
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1 Introduction

Many applications carry out analysis on data streams and require results within
a specified deadline, i.e. in real time. Stream Processing Engines (SPEs) are
widely used for doing such real time analytics. These systems are characterized
by high input data rates and usually run a large number of concurrent queries.
Stream Processing Engines usually do tuple-by-tuple processing or processing
in micro batches. However, doing computation eagerly is not needed for many
applications, which perform aggregation on large windows.

Our work was motivated by a leading E-Commerce site in India where anal-
ysis was performed on data collected over the day and the results must be made
available at some time in the morning of the following day; they wished to move
the analysis window from daily to every few hours to support faster responses.
The same queries were run on successive windows, i.e. they are recurring queries;
as per Zhang et al. [17] 60% of queries in Microsoft SCOPE are recurring in
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nature. Also, Wang et al. [13] describe Grosbeak, a data warehouse implemented
at Alibaba, to handle similar requirements where daily analysis queries must be
processed within certain deadlines.

Stream processing engines such as Apache Spark and Apache Flink, update
the aggregate as and when a new tuple arrives or when a micro batch of tuples
arrives. This method of processing eagerly can lead to significant overheads. Since
the results of queries are needed only at the deadline, tuples can be processed
in larger batches. In the example considered, if the deadline of the query is say
2h after the end of the day, one option is to start computation after the end of
the window. However, in general, there may not be sufficient time to process the
entire data in the gap between the end of the window and the query deadline.
In such cases, tuples may be collected for a duration of say one hour, and then
processed, and partial aggregates can be finally aggregated at the end. Such
batched computation helps in not only reducing the overall computation cost
but also in meeting the deadline.

The problem addressed in this paper is that of finding an appropriate batch
execution schedule that meets the required query deadlines while minimizing
the cost. Here, cost refers to the total time required to process the query. Tang
et al. [8] introduce the concept of intermittent query processing, where parts of
the query are executed on parts of the input at intermediate points, and the
intermediate results are combined at the end to get the final result. Shang et
al. [7], Tang et al.[10] propose query optimization by utilizing the query slack-
ness. However, [7,8,10] do not consider query deadlines. Wang et al.[13] propose
incremental computation over the available data. Though Wang et al. [13] discuss
scheduling, they do not provide further details on how the schedule is generated.

We consider the problem of batching and scheduling of multiple queries,
each with its deadline, which runs in a time-shared manner. The system may be
dynamic and queries may be added at any time. Our contributions are:

1. We first address the problems of finding batch sizes that keep the computation
cost within a predefined multiple of the minimum possible cost (when run as
a single batch).

2. We then consider the problem of scheduling the batches of each query based

on its input availability and deadlines.

We consider both fixed and varying input rates for tuple arrival.

4. We have implemented the scheduling schemes on a custom query scheduler
module, built on top of Apache Spark.

5. Our performance study carried out under different scenarios on TPC-H
data/queries demonstrate that our optimizations provide significant benefits
in terms of reducing cost while meeting the query deadlines.

@

The special case of batching for the single query case is described in the full ver-
sion of this paper [1]. The rest of this paper is organized as follows. Section 2 gives
the problem description and explains the factors that affect query scheduling.
Techniques for batching and scheduling are described in Sect. 3. Section 4 gives
an overview of the related work. Implementation aspects are described in Sect. 5.
Experimental results are presented in Sect. 6. Section 7 summarizes the conclu-
sions and future work.
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2 Problem Description

In this section, we describe the problem specifications and the factors that impact
the scheduling of queries with intermittent query processing.

Input data arrives as a stream, and queries analyze the data over a cer-
tain time duration and the output is expected within a deadline. The system
is assumed to be a soft real time system, where missing the deadline reduces
the utility of the results. Our techniques endeavor to complete query execution
within the deadline, provided it is feasible.

Query scheduling depends on the ability to model the query execution time.
Since the queries are recurring in nature, the time cost model can be derived
from historical data. We model the input data rate for computing when batches
will be ready for processing, but in Sect. 3.3 we also consider situations where
arrival rates may vary from the predicted rate.

Stream processing systems usually allow multiple queries to be processed
simultaneously. In this paper, we assume that queries are independent of each
other. We assume that queries compute aggregates on windows, and that queries
can be computed in an incremental fashion: more specifically, we assume that
partial aggregates can be computed on parts (batches) of a stream, and the
partial results can be combined later to get the final result. For example, the
query to determine the total purchases of each item can be computed by comput-
ing partial aggregates for each batch, and later combining the partial aggregates
to get the final aggregate values. While aggregation of partial aggregates can
also be done intermittently to reduce the final aggregation cost, in this paper,
we restrict ourselves to strategies where partial aggregates are combined only in
a single final aggregation step.

We assume that each query runs on one input stream and can join the stream
with multiple stored or static relations. Extensions to handle some cases of joins
between multiple streams are discussed in Sect.5. We also assume that only
tuples that are available at the start of the execution of a given batch are pro-
cessed in that batch.

We assume that queries run on a time-shared system, where only one query
runs at a time. The algorithm proposed in this paper can also be used for a
cluster environment, where the same query will be executed in all the cluster
nodes, but extensions to allow dividing of resources between queries are part of
future work.

The parameters of a query that affect scheduling decisions and relevant nota-
tions are given in Table 1. The tuple input rate is assumed to be constant ini-
tially, but extended later to handle variable input rates.

The computation cost depends on the batch size and number of batches. A
simple linear cost model combines a per tuple processing cost, and a per-batch
overhead cost, as follows:

Cost = (NumTuples * TupleProcCost) + (NumBatches x OverheadCost)

Since actual computation costs may be non-linear, we use a piecewise linear
model as an approximation. The model is learnt from actual query execution.
Details of cost modelling as applied to TPC-H queries are explained in Sect. 5.
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Table 1. Query Parameters

Notation Description

querylD Unique Identifier for the query

windStartTime|Time at which tuple arrival starts

windEndTime |Time at which tuple arrival stops

deadlineg Time by which the query processing must be completed

inputStream |Denotes the query input stream

inputRate Rate at which tuples arrive for inputStream

numTupleTotal Total number of tuples to be processed

minCompCost Time required for processing all the tuples as a single batch

slackTime The maximum time beyond which the processing cannot be
delayed without missing the deadline

3 Scheduling in Dynamic Scenario

In a data analytics system, there may be multiple queries running with the same
or different deadlines. Queries may or may not use the same input data stream,
and queries may be added or removed from the system arbitrarily. The input
rates for each stream and the total number of tuples in the window may also
vary.

In this section, we consider such a dynamic scenario. The methodology for
determining the batch size is explained in Sect.3.1. Section 3.2 explains the
scheduling scheme with a fixed arrival rate, while Sect. 3.3 extends the scheduling
scheme to handle variable input rates.

3.1 Determining Batch Size

The Minimum Computation Cost, minCompCost, which is the time required to
process all the tuples as a single batch, can be computed from the cost model
for the query. The slack time for the query if computed as a single batch after
the window end can be computed as:

slackTime = deadlineg — windEndTime — minCompCost

If the slack time is positive, the query can be scheduled after window end
but no later than:

schStartTime = deadlineg — minCompCost

If the slack time is negative, the query processing cannot be delayed until the
end of the window. Instead, the query has to be processed in multiple batches,
starting before the window end time.

Analytical queries perform aggregations of data in each window. Processing
tuples of one window in multiple batches results in partial aggregation being done
on each batch. Hence once all the batches have been processed, the intermediate
aggregation results need to be aggregated to get the final aggregation results;
we call this step the final aggregation step.
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In the static case where the arrival rates are fixed, it is possible to break
up the input into different batch sizes, and schedule batch execution and final
aggregation in such a way that costs are minimized while deadlines are met;
details are in the full version of this paper [1]. However, such an approach may
delay computation even if the system is idle.

In the dynamic scenario, the scheduler does not have a priori knowledge
about future queries. Delaying query execution for the appropriate batch size
may result in avoidable missing of deadlines, since new queries may be added
to the system at any time. To handle the dynamic scenario, our approach is to
process queries intermittently, i.e. whenever the number of tuples available for
processing exceeds some minimum batch size. The scheduling of batches is done
keeping query deadlines in mind.

The minimum batch size referred to as MinBatchSize, is determined based
on the Resource Slack Factor dggr. The goal is to pick a minimum batch size
such that the overall computation cost is not increased by more than a factor
drsr. Let N denote the total number of tuples, and minCompCost atehSize—z
denote the computation cost for processing with a batch size of x tuples. Note
that the lowest cost is obtained with x = N, i.e. processing all the tuples in a
single batch. Then MinBatchSize is set to the smallest batch size x such that:

mincompCOStBatchSize:m < 5RSF *mincompCOStBatchSize:N~

The parameter dzspr can be set based on the system utilization. If the system
is lightly loaded then a larger drgr can be used, allowing for smaller batches.
Extensions to automatically adjust dpgr based on the system load are part of
future work.

3.2 Scheduling Using Minimum Batch Size

Once the MinBatchSize is determined, queries can be processed using scheduling
techniques such as Least Laxity First (LLF), Earliest Deadline First (EDF),
Shortest Job First (SJF), or Round Robin (RR). We assume the system is non-
preemptive while processing a single batch of tuples.

For any new queries added to the system, the MinBatchSize is determined as
explained earlier, with an additional requirement that the time for processing a
batch must be at most some value, denoted as C,,, 4. Since the scheduler is non-
preemptive, Cy,q, ensures that the system can start processing any new query
with a delay of not more than C),,, in case the query has very low slack time. The
value of C), 4, has to be decided based on the application latency requirements.

We now consider scheduling with LLF. A query batch can be scheduled at a
point in time if the number of tuples available at that time is greater than or equal
to MinBatchSize. For each schedulable query i in the list of current queries, qList,
with batch size x, its SlackTime or laxity at the current point in time is determined
as deadlineq, — currentTime —CompCostQ, . psi.c—n - Lhe query with the least
laxity is given the highest priority and its batch is scheduled for execution.

Once a batch has been processed both CPU and memory are released. The
intermediate results of the batch are stored on disk. This is unlike streaming
data systems which typically retain intermediate results in memory. If all tuples
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of a query have been processed, then the final aggregation is done and the query
is removed from q;s¢.

EDF, SJF, and RR based scheduling can be implemented with small varia-
tions of the LLF implementation. A discussion on the schedulability of a given
set of jobs, i.e. feasibility of execution of the jobs within the specified deadlines,
may be found in the full version of our paper [1] but is omitted here for lack of
space.

3.3 Handling Variable Input Rate

So far we have assumed that the input data rate and the total number of tuples
in the window are both predictable, i.e., known ahead of time. In practice these
can vary, and handling these uncertainties is explained in this section. Scheduling
using LLF is explained below. Scheduling using EDF, SJF and RR approaches
can be done similarly.

Consider the scenario where the total number of tuples is fixed, but the input
rate varies. Here, after MinBatchSize determination, the expected time point at
which MinBatchSize will be ready as per the input rate is also estimated. A query
batch is considered schedulable if either the input has reached MinBatchSize or
the time point has crossed the estimated time for availability of MinBatchSize
tuples; in the latter case, a query batch is schedulable even if there are fewer
tuples than MinBatchSize. Schedulable queries are sorted based on their slack
time, and the query with the least slack time is scheduled for processing. If the
actual input rate is faster than or equal to the predicted model then processing
will be triggered as and when the required batch size is ready. If the actual
input rate is slower, then processing gets triggered based on the estimated input
available time, thereby trying to meet the deadline by processing the available
tuples instead of waiting for the MinBatchSize readiness. Processing using the
available tuples reduces the risk of missing the query deadline.

For dynamic systems where both the input rate and the total number of
tuples can vary, we can estimate the expected total number of tuples in the
window using any appropriate estimator, which can take into account the actual
input rate. Laxity is then computed based on the updated estimates for the total
number of tuples in the window. Then the query with the least estimated slack
time is processed.

4 Related Work

Many stream processing engines run on the YARN infrastructure. Vavilapalli
et al. [11] describe scheduling schemes supported by YARN such as FIFO, Capac-
ity, and Fair, but none of these schemes considers deadlines. Stream processing
engines such as Apache Spark and Flink process tuples eagerly with some fixed
minimum batch size. However, they too do not consider deadlines. Tuning of
batch size is done by some stream processing systems to achieve a balance
between throughput and latency, but not in a deadline aware manner, unlike
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our work. Ye et al. [15] propose an optimization technique for Spark Streaming
configurations without considering deadlines.

Tang et al.[8], Shang et al. [7] point out that the slack period available in
queries can be utilized to reduce resource consumption. Tang et al. [8] propose
intermittent processing of queries which is triggered at some time interval or
based on the number of tuples accumulated. Shang et al. [7] have built a database
system namely CrocodileDB which processes queries intermittently based on user
inputted frequency. Tang et al. [9] define a new metric, Incrementability, to
denote the amount by which a query supports incremental operations. However,
none of these papers considers query deadlines.

Grosbeak [13] schedules analysis jobs in non peak hours based on the his-
tory of resource utilization. The job is processed in batches which is similar to
our approach, but details on scheduling are not discussed. Wang et al. [14] dis-
cuss optimization of intermittent query processing, but unlike our case, they do
not consider absolute deadlines or scheduling. Zhang et al. [16] show that join
queries processed in a lazy manner can perform better than eager processing,
but deadlines are not considered.

In hard real time systems where the incoming tuple has to be processed within
a certain time to make critical decisions, each tuple is modeled with a deadline.
This is different from our problem statement where all tuples in a query have to
be processed within a common deadline. Ou et al. [6] propose Tick scheduling
where a tick denotes a set of tuples that have the same deadline, but they do
not consider the minimization of computation cost by batching.

Scheduling in real time systems has been widely explored and some of the
prominent algorithms are EDF, LLF, etc. While EDF and LLF scheduling only
aim at completing the query within its deadline, our approach reduces the over-
all computational cost of each query by processing queries in batches. Other
deadline aware scheduling algorithms (see for example the survey [4]) do not
consider batching.

In a cluster environment, choosing the optimal resources (e.g. nodes) to
minimize cost while meeting deadlines, is considered in [2,3,5,12]. In all these
approaches, once the resources are allocated, either Tuple-by-tuple processing or
micro batch processing is used.

To the best of our knowledge, our work is the first of its kind which combines
batching and scheduling to honor deadlines while minimizing the cost.

5 Implementation Details

The scheduling schemes proposed in this paper have been implemented by build-
ing a Custom Scheduler over the Apache Spark architecture. Our scheduling
algorithms are agnostic to the underlying stream processing engine. The Cus-
tom Scheduler consists of a Query Repository, Schedule Optimizer and Query
Scheduler components.

The Query scheduler runs periodically, whenever a query batch completes
execution, or if the system is idle, it rechecks query batch readiness periodically.
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Since batch sizes are chosen to ensure that no batch takes more than C,,,, time
for execution, the scheduler will be invoked within a maximum interval of C, 4.
from the previous invocation. The scheduler first checks if any new query has
been submitted, and if so it invokes the Schedule Optimizer to compute the
MinBatchSize for the query, which does so using the cost model for the query,
along with the chosen drsy, and Cj,q.. The scheduler then selects the queries
whose batches are ready for processing and determines the query to be processed
based on the chosen scheduling strategy.

When the Query scheduler schedules a query for execution, the Schedule
Optimizer invokes the appropriate query operations. Query Repository contains
the actual query operations which are to be carried out for each query. As the
current implementation uses Spark, it consists of the spark operations which are
executed for each batch and the ones which are executed as part of the final
aggregation. If any other stream processing framework is used then its corre-
sponding query operations can be implemented in the Query Repository com-
ponent of our Custom Scheduler. As each batch is processed the intermediate
results are stored in a file.

The Schedule Optimizer also keeps track of the batches processed and invokes
the final aggregation once all batches of a query have been processed.

For handling queries with joins the following strategy is adopted. For the
stream to static join, as the static data does not change, each batch is joined
against the static data to get the join results. Typically join conditions in queries
ensure that matching tuples from different streams will have timestamp values
that are the same or within some bound. For simplicity, our implementation
assumes that the corresponding tuples from two streams are available in the
same batch. For example, with the TPC-H schema, Orders and their associated
Lineitem tuples are assumed to be in the same batch. This assumption can be
relaxed, but implementation details depend on the stream-processing application
used.

To derive the time cost model, each query is executed individually to measure
the execution time at different input batch sizes. Based on observed execution
times, a piece-wise linear cost model was arrived at. Similarly, a piece-wise linear
model varying on the number of batches was designed to fit the final aggregation
cost. As described in [17], most production environments run the same set of
queries repeatedly and hence we can build the cost model for queries when they
are first executed on the system, and use the cost model when the same query
is executed again.

Though file-based input is widely used in many applications as it enables easy
information exchange, streaming data platforms such as Kafka are a commonly
used alternative. We explored input from a Kafka system by creating two Kafka
topics namely Orders and Lineitem with 36 partitions to support parallel pro-
cessing. We read from Kafka using both the stream and batch approaches. It was
observed that the cost incurred using Kafka is at least 3 times more than using
file-based inputs. Also, we observed that between Kakfa streaming and batch-
ing, streaming incurs considerably more cost. However, processing in batch mode
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significantly reduces the cost incurred compared to stream processing, whether
we use files as input or the Kafka platform. For our performance studies in
Sect. 6, we used file-based inputs to avoid the overheads encountered in reading
data from Kafka.

The Custom scheduler does not add any significant time overhead to the
overall query processing as the time taken is in the order of milliseconds. Deter-
mination of MinBatchSize is done only once for each query.

6 Performance Evaluation

In this section, we present the performance evaluation for our scheduling strate-
gies. Queries were run on a Spark cluster deployed in a standalone mode having
2 Intel Xeon Silver 4116 Processors (2.10 GHz) with 250 GB of RAM. Spark
context was configured with 48 cores and 20 GB of memory.

As explained in Sect. 4, there is no prior work that does both batching and
scheduling. Hence, in this section, we compare our methods against the standard
Spark Streaming and the traditional scheduling algorithms to assess the effect of
batching and scheduling respectively. We also further evaluate our method with
stringent deadline cases along with variable input rates.

We use a modified version of the TPC-H Dataset of 25 GB. To simulate the
input data stream, a timestamp has been added to each record in the relations
Orders and Lineitem which are considered as streaming relations. The other
relations are considered as static relations. The input stream consists of 4500
files inputted at the rate of 1 file of Orders and 1 file of Lineitem per second.
Our study considers a subset of 9 of the TPC-H queries (including queries with
stream-to-stream joins, i.e. between Orders and Lineitem, and stream-to-static-
relation joins), along with 4 custom queries shown in Table 2.

6.1 Comparison of Custom Scheduler Against Spark Streaming

We first consider the cost reduction obtained due to batching with our approach
as well as using Spark Streaming. The cost of execution of a query refers to the

Table 2. Custom Queries

QueryID|Query

CcQ1 SELECT count(*) as totalOrders FROM orders
CcQ2 SELECT count(*) as totalOrders, orderPriority
FROM orders GROUP BY orderPriority

CcQ3 SELECT count(*) as totalltems, suppKey
FROM lineltems GROUP BY suppKey

CQ4 SELECT count(*) as totalltems, partKey
FROM lineltems GROUP BY partKey
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Fig. 1. Cost versus Number of Batches

sum of the query execution time of all the batches and the final aggregation
cost. We study the effect of the increase in computation cost as the number of
batches increases. The batch size of z in our experiments refers to the number
of files processed as part of a single batch. Since there are 4500 files, the number
of batches is 4500/x. All 13 queries were evaluated for different batch sizes. For
each of the queries, the minimum cost required for processing it in a single batch
is taken as the baseline. The cost incurred when processed with different batch
sizes has been normalized w.r.t. this baseline and shown in Fig.1. It can be
observed that the more the number of batches, the more the overall computation
cost.

To compare our approach against Spark Streaming, the queries were pro-
cessed using a Streaming job in Apache Spark with the default i.e. immediate
and different batch intervals of 5, 10, 30 and 40 min, with the window aggrega-
tion duration of 4500 s. In addition, experiments were done in a one-shot mode
where all files were processed in one go. Figure2 shows the cost incurred for
each query, for each batch interval, normalized to the cost of computation in
a single batch. It can be observed that the computation cost decreases as the
batch interval increases. The least computation cost incurred by Spark Stream-
ing is with the one shot mode of processing. Among all the queries, TPC-Q14
(data labels marked in the figure) has the least normalized computation cost
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Fig. 2. Normalized Cost (log scale) of Batch processing versus Spark Streaming
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with Spark Streaming, which is 1.76 times more than the cost incurred when all
tuples are processed in a single batch using our approach.

With Spark Streaming, TPC-Q3, TPC-Q4, TPC-Q9, TPC-Q10 and TPC-
Q12 failed for one shot computation and for runs with batch intervals of 30
and 40min. All these failed queries have join on Orders and Lineitem. Spark
Streaming keeps the data in memory for doing the join operations. Thus, as the
batch interval increases in Spark Streaming, the amount of data to be stored
in memory increases. These cases failed even with the increased memory of
45GB. In contrast with our approach all queries executed successfully with Spark
context of 20 GB memory.

Since big data systems need to run multiple queries, the following experiment
was carried out where all the TPC-H and the Custom queries were run simulta-
neously. In our approach, concurrent queries use time-sharing, with one batch of
one query executing at a time. Spark Streaming could not support concurrent
execution since it ran out of memory. Hence, multiple runs were used, where
each run streamed the data to a subset of the queries. The cost incurred in each
of the runs was summed up to get the total computation cost. Spark Streaming
experiments were done using the default and 10-min batch intervals; for larger
intervals, queries TPC-Q3, TPC-Q4, TPC-Q9, TPC-Q12 failed.

Spark streaming costs are compared against the total computation cost
incurred using our dynamic mode of scheduling with 50% drsp factor using
LLF. The cost incurred by Spark Streaming for default and 10-min batch inter-
vals were, respectively, 60 and 12 times the cost using our approach. Thus our
approach of batching performs much better than running Spark Streaming for
large window operations for multiple queries simultaneously.

6.2 Evaluation of Custom Scheduler for Different Deadlines

Next, we ran experiments to evaluate the performance of the Custom Scheduler
with respect to meeting deadlines. For the dynamic scenario, all the TPC-H and
the custom queries were considered simultaneously with dggr factor of 50% and
Cinaz of 30 s. All queries were set with the same window start time and window
end time. We chose an arbitrary sequence of queries and set their deadlines such
that each query ran as a single batch. The deadline of the first query is set as
Cinaz Plus the time required for processing all tuples in a single batch starting
at the window end. Deadlines of other queries are set as the time required for
processing all tuples in a single batch starting at the previous query’s deadline.
We refer to this set of deadlines as 1D. Further, cases with reduced deadlines
were generated, where the deadline was set to window end time plus 0.8, 0.6, 0.4,
0.2, and 0.1 times the assigned gap from the window end time to the deadline
for 1D case.

Experiments were carried out for all the above cases using EDF, LLF, SJF
and RR. SJF failed for 0.2D and 0.1D and RR failed for 0.4D, 0.2D and 0.1D as
some of the queries could not meet their deadlines. EDF and LLF passed all cases
except for 0.1D as there is no feasible solution for 0.1D with drgr = 50%. The
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fact that SJF and RR failed on multiple cases shows that scheduling strategies
based on deadline or slack time are essential to meet query deadlines.

6.3 Comparison with EDF and LLF Without Minimum Batch Size

To demonstrate the importance of having a minimum batch size, we ran experi-
ments using EDF and LLF approaches without a minimum batch size, queries are
considered schedulable with all available tuples. Since tuples are input in units
of files, which in our experiments consist of around 9300 tuples, 1 file could also
be viewed as the minimum batch size. With this approach, EDF and LLF failed
to meet deadlines for the 0.4D case, while with our approach of computing min-
imum batch size with drgr = 50%, deadlines were met down to 0.2D, with both
EDF and LLF. Also, even for runs where deadlines were met since the queries
with the earliest deadline/least laxity were scheduled more frequently with the
small batch sizes, the costs incurred by EDF and LLF were 10 and 7 times more
compared to the case where minimum batch size was set with dgsr = 50%. Thus
our methodology minimizes cost while meeting the deadlines.

6.4 Evaluation of Custom Scheduler With Variable Input Rates

Next, we carried out experiments to assess the impact of variable input rates
on the scheduling, where the scheduler cannot predict the arrival rate. Figure 3
shows the data (in units of number of files) that are received at different points in
time. FR denotes the fixed rate of arrival case while VR1 to VR4 shows variable
rates of input. While both VR1 and VR2 are faster compared to FR, VR2
contains bursty input. Both VR3 and VR4 are slower than FR, and some tuples
arrive after the window end of FR.

Results for the case of 0.1D deadlines, with dggr = 100% are shown in
Fig.4a. With both EDF and LLF the scheduler could complete all queries
within their deadlines for all cases as in Fig.4a. SJF and RR completed all
queries for VR1 and VR2 but failed for FR, VR3 and VR4 as some queries
missed their deadlines. Similarly, experiments were carried out with variable
input rates for 0.2D, drsr = 50% and the results are shown in Fig.4b. EDF,
LLF and SJF passed all cases while RR failed for VR3 and VRA4.

= - FixedRate(FR) = VariableRate1(VR1) = VariableRate2(VR2) = = VariableRate3(VR3)
- VariableRate4(VR4)
5000
4000
13
9 3000
'E 2000
3
2 1000
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time(secs)

Fig. 3. Variable Input Rate For Multi Query Scenario
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Fig. 4. TPC-H, Custom Queries in Dynamic Scenario with Variable Input Rates

When drsp is increased from 50% to 100%, the overall computation cost
increases due to a reduction in the MinBatchSize. This can be observed in the
Figs.4a and 4b where the normalized computation cost is around 1.5 and 2.0
for dpsr of 50% and 100% respectively. Also for slower input profiles(VR3 and
VRA4), as the total number of batches is more the normalized computation cost is
more compared to the cost incurred for the other input profile cases.

Thus, processing on very small batches may not lead to benefits. Further,
it may be noted that partial aggregation within a batch is beneficial only if
the aggregation result is significantly smaller than the input batch size, which
requires the batch to contain on average multiple tuples for each group.

The results show that our scheduling algorithms complete the benchmark
queries within their deadlines while keeping the overall computation cost not
more than drgp fraction compared to the computation cost of processing all
tuples in a single batch. The results confirm that EDF and LLF perform better in
meeting the deadlines compared to SJF and RR for both fixed and variable input
rates. Also, our approach handles stringent deadlines better than just using EDF
and LLF with a default batch size that is set without considering drsp.

7 Conclusion and Future Work

We have presented techniques for determining appropriate batch sizes and
scheduling of multiple queries under a dynamic environment, while handling
the uncertainties in the input rate. The results presented in the performance
section show that our methods perform better in terms of reducing the overall
computation cost while meeting deadlines compared to Spark streaming as well
as EDF and LLF with a default small batch size.

There are several directions for future work. Our scheduling techniques can
be extended for a cluster setup where resources can be added dynamically to
complete queries within the deadline. The cost model proposed in this paper
can be correlated to the monetary value that would be required for resource
allocation. Our current scheduling model runs one batch of one query at a time
across all available resources. This can be extended to support the simultaneous
execution of different queries on different subsets of nodes in the cluster.
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