
Recovering from Main-Memory LapsesH.V. Jagadish Avi Silberschatz S. SudarshanAT&T Bell Labs.600 Mountain Ave., Murray Hill, NJ 07974fjag,silber,sudarshag@allegra.att.comAbstractRecovery activities, like logging, checkpointing andrestart, are used to restore a database to a consistentstate after a system crash has occurred. Recovery re-lated overhead is particularly troublesome in a main-memory database where I/O activities are performedfor the sole purpose of ensuring data durability. In thispaper we present a recovery technique for main-memorydatabases, whose bene�ts are as follows. First, disk I/Ois reduced by logging to disk only redo records duringnormal execution. The undo log is normally residentonly in main memory, and is garbage collected aftertransaction commit. Second, our technique reduces lockcontention on account of the checkpointer by allowingaction consistent checkpointing | to do so, the check-pointer writes to disk relevant parts of the undo log.Third, the recovery algorithm makes only a single passover the log. Fourth, our technique does not require theavailability of any special hardware such as non-volatileRAM. Thus our recovery technique combines the ben-e�ts of several techniques proposed in the past. Theideas behind our technique can be used to advantage indisk-resident databases as well.1 IntroductionCurrent computer systems are able to accommodate avery large physical main memory. In such an environ-ment, it is possible, for certain type of applications, tokeep the entire database in mainmemory rather than onsecondary storage. Such a database system is referredto as a main-memory database (MMDB). The potentialfor substantial performance improvement in an MMDBenvironment is promising, since I/O activity is kept at

minimum. Because of the volatility of main memory,updates must be noted in stable storage on disk in orderto survive system failure. Recovery related processingis the only component in a MMDB that must deal withI/O, and hence it must be designed with care so that itdoes not impede the overall performance.The task of a recovery manager in a transaction pro-cessing system is to ensure that, despite system andtransaction failures, the consistency of the data is main-tained. To perform this task, book-keeping activities(e.g., checkpointing and logging) are performed duringthe normal operation of the system and restoration ac-tivities take place following a failure. Logging noteson stable storage all updates done to the database, andcheckpointing periodically creates a consistent snapshotof the database on disk. When a system is restartedafter a system crash, recovery activities have to be per-formed �rst, and transaction processing can proceedonly after necessary recovery activities are performed.To minimize the interference to transaction processingcaused by recovery related activities, it is essential toderive schemes where the length of time it takes to doa checkpoint, as well as the time to recover from sys-tem failure are very short. It is the aim of this paperto present one such scheme, tailored to main-memorydatabases.For simplicity we assume that the entire databaseis kept in main memory, while a backup copy is kepton disk and is only modi�ed when a checkpoint takesplace. However, the ideas behind our technique canbe used pro�tably in disk resident databases as well,where parts of the database may need to be ushed todisk more often in order to make space for other data.A checkpoint dumps some fraction of the database re-siding in main memory onto the disk. A write-aheadlog is also maintained to restore the database to a con-1

sistent state after a system crash. The key features ofour scheme are as follows:� The write-ahead log on disk contains only theredo records of committed transactions; this mini-mizes recovery I/O. We maintain in main memorythe redo and undo records of active transactions(i.e., transactions that have neither committed noraborted). Undo records of a transaction are dis-carded once the transaction has committed. Undoas well as redo records of a transaction are dis-carded once it has has aborted. The undo recordsof a transaction are written to disk only when acheckpoint takes place while the transaction is ac-tive. By writing out undo records thus, we are ableto perform checkpointing in a state that is actionconsistent but not transaction consistent.1� The recovery actions after a system crash makeonly a single pass over the log. The usual back-wards pass on the log to �nd `winners' and `losers'and undo the actions of losers is avoided by keepingthe undo log separate from the redo log. Recoveryis speeded up signi�cantly by reducing I/O in casethe redo log does not �t in main-memory. (Al-though the redo and undo records of transactionsthat are active at any given point of time can beexpected to �t in memory, we do not assume thatthe entire redo log �ts in memory.)� Our technique can be used with physical as well aslogical logging.� A checkpoint can take place at almost any point(namely, in any action consistent state) and thedatabase can be partitioned into small segmentsthat can be checkpointed separately. Interferencewith normal transaction processing is thereby keptvery small.� No assumptions are made regarding the availabilityof special hardware such as non-volatile RAM or anadjunct processor for checkpointing. Consequently,the scheme proposed here can be used with anystandard machine con�guration.The area of recovery for main-memory databases hasreceived much attention in the past. We present the1The issue of action consistency is important if logical opera-tion logging is used.

connections of the present work to earlier work in thearea, in Section 8.The remainder of this paper is organized as follows.In Section 2 we present our system model. In Section 3the basic checkpoint and recovery scheme is presented.The correctness of this scheme is established in Sec-tion 4. Various extensions to the basic scheme, includ-ing the segmentation of the database and logical log-ging, are presented in Sections 5, 6 and 7. Related workis described in Section 8, and in Section 9 we discussmiscellaneous aspects of our technique. Concluding re-marks are o�ered in Section 10.2 System StructureIn this section we present the system model used inthis paper, and describe how transaction processing ishandled.2.1 System ModelThe entire database is kept in main memory, while abackup copy, possibly out of date and not transactionconsistent, is kept on disk. We assume that disk storageis stable and will never lose its content. For instance,disk mirroring or RAID architectures may be used toensure this, but the speci�c disk replication strategy isorthogonal to our discussion here. The system main-tains a redo log on the disk, with the tail of the login main memory. Information about actions that up-date the database, such as writes, is written to the redolog, so that the actions can be redone if required whenrestarting the system after a crash. At various pointsin time the tail is appended to the log on the disk. Werefer to the portion of the redo log on the disk as thepersistent redo log (or as the persistent log) and the por-tion of the redo log in main memory as the volatile redolog. The entire redo log is referred to as the global redolog (or as the global log).The global log consists of all the redo records of thecommitted transactions, and the redo records of a com-mitted transaction appear consecutively in the globallog. This is in contrast to traditional logs where the logrecords of di�erent transactions are intermingled. Toachieve this, the redo records of an active transactionare kept initially in a private redo log in main-memory,and these redo records are appended to the global logonly when the transaction begins its commit processing.(This aspect of the model is not central to our algo-rithms, and later we discuss extensions that allow redo

Length Trans. ID Start Addr. DataFigure 1: Structure of a Physical Log Recordrecords to be written directly to the global log tail.) Wesay that a transaction commits when its commit recordhits the persistent log. When this occurs, the systemcan notify the user who initiated the transaction thatthe transaction has committed.Initially, we assume that the only actions that modifythe database are writes to the database, and writes arelogged to the redo log. The structure of a typical phys-ical log record is shown in Figure 1. The transactionid �eld identi�es the transaction, the start address andlength specify the start and length of a range of bytesthat have been modi�ed, and the value �eld stores thenew byte values of the range of bytes. Later, we con-sider actions that are encapsulated and treated as a unitfor the purpose of logging.For ease of exposition, we initially require that thefollowing condition hold:Condition LA1: Actions logged are idempotent andare atomic; that is, repetition of the actions in a statewhere the e�ect of the actions is already reected isharmless, and any stable image of the database is ina state after an action �nished execution or in a statebefore the action started execution.In Section 6 we shall relax this restriction.Some recovery techniques proposed in the past todo away with undo logging assume deferred updates[4]. Deferred updates require a mechanism to note up-dates done on an object by an uncommitted transac-tion without executing them, and redirecting further ac-cesses on the object to the updated copy instead of theoriginal. A mechanism to install the deferred updatesafter commit is also required. In an object-orienteddatabase, the redirecting of accesses may be particu-larly troublesome.2 Our recovery technique does notassume the use of deferred updates (i.e., allows in-placeupdates), and is thus more general.The backup copy of the database on disk is updatedonly when a checkpoint is taken. We allow a check-point to be taken at any time, which implies that thebackup copy may contain dirty pages | pages that2Shadow paging can remove the look-up overhead by makinguse of virtual memory address mapping, but carries with it aspace cost.

Redo Log
Undo Log

T i

Redo Log
Undo Log

Redo Log
Undo Log

T j

T k

Volatile Store

Persistent Store

MM − DB

Redo Log Tail

Pers.
Redo
Log

Chkpts
 on
 Disk Figure 2: System Modelcontain data produced by transactions that have notcommitted yet. The possibility of having dirty pageson the backup copy implies that that we need to beable to undo the e�ect of those transactions that wereactive when the checkpoint took place, and that havesince aborted. We do so by keeping in memory, foreach active transaction, a private log consisting of allthe undo records of that transaction. The private undolog of a transaction is discarded after the transactioneither commits or aborts. The undo logs of all the ac-tive transactions are ushed to disk when a checkpointtakes place (see Section 3.1). An overview of our systemmodel is presented in Figure 2.Access to the MMDB is via transactions. Each trans-action is atomic and the concurrent execution of thesetransactions must be serializable. In this paper we as-sume that serializability is achieved through the use ofa rigorous two phase locking (R2PL) protocol, where alllocks are released only after a transaction either com-mits or aborts. The use of the R2PL protocol also en-sures that the commit order of transactions is consistentwith their serialization order. The granularity of lock-ing is irrelevant to our algorithm; it can be at the levelof objects, pages, extents or even the entire database(e.g., if transactions are run serially). Further, our re-covery technique permits extended locking and loggingmodes (such as increment/decrement locks, with cor-responding redo/undo log records), provided the sched-ules satisfy some simple recoverability conditions (whichwe describe later).

Trans.
Execute

Precommit

Release
Locks

Tell User
and leave
 active
 list

Delete
 Undo
 Log

Time

Commit
Record
 Hits
 Stable
 Log

Group
Commit −
Redo Log
Written to
DiskFigure 3: Steps in Transaction Processing2.2 Commit ProcessingWhen a transaction Ti starts its execution, it is added tothe list of active transactions, and the record hstart Tiiis added to the private redo log of Ti. While the trans-action is executing, its redo and undo records are main-tained in the private logs. When Ti �nishes executing,it pre-commits, which involves the following steps:Pre-commit Processing:1. Transaction Ti is assigned a commit sequence num-ber, denoted by csn(Ti), which is a unique spot inthe commit order.2. Transaction Ti releases all the locks that it holds.3. Transaction Ti is marked as `committing' and itscommit sequence number is noted in the activetransaction list.4. The record hcommit Ti; csn(Ti)i is added to theprivate redo log, and the private redo log is ap-pended to the global log. (The commit record isthe last log record of a transaction to be appendedto the global log.)Transaction Ti actually commits when its commitrecord hits the disk. After this has occurred, the systemexecutes the following post-commit processing steps.Post-commit Processing:1. Notify the user that transaction Ti committed (andpass back any return values).2. Remove Ti from the list of active transactions.3. Delete the volatile undo log created for Ti.As with other log-based recovery schemes, the persis-tent log can be considered the master database.Figure 3 outlines the main steps in redo logging andcommit processing.

We are in a position to state several key propertiesof our scheme. Before doing so, however, we need tode�ne the following.De�nition 1: We say that two database states areequivalent if they cannot be distinguished by any trans-actions. The de�nition accounts for abstract data typesthat may have di�erent internal structures but that can-not be distinguished by any operations on the abstractdata types. 2The following condition ensures that redo logging isdone correctly for each transaction:Condition RP1: Consider the set of objects accessedby a transaction Ti that is executing alone in the sys-tem. Suppose that transaction Ti �nds this set of ob-jects in state s when �rst accessed, and its executiontakes the set to state s0. Then replaying the redo logof transaction Ti starting from state s takes the set ofobjects to a state equivalent to s0.Since the R2PL protocol ensures that the commit or-der is the same as the serialization order, and since wewrite out redo records in commit order, the followingtwo key properties hold:Property CO1: The order of transactions in the per-sistent log is the same as their serialization order.Property CO2: The commit order of transactions isthe same as the precommit order of transactions. Fur-ther, a transaction commits only if all transactions thatprecede it in the precommit order also commit.Condition RP1 and Properties CO1 and CO2 ensurethat replaying the redo log starting from the emptydatabase (and executing only redo actions of commit-ted transactions) is equivalent to a serial execution ofthe committed transactions in an order consistent withtheir serialization order (i.e., the two bring the databaseto equivalent states). After presenting the checkpoint-ing algorithm, we will discuss ways to recover from asystem crash without replaying the entire log.2.2.1 DiscussionThe use of private redo logs reduces contention on theglobal log tail, as noted in [11]. The log tail is ac-cessed only when a transaction has pre-committed, andrepeated acquisitions of short-term locks on the log tailis eliminated. Although writing out private redo recordsat the end of the transaction can slow down the commitprocess for transactions that write many log records,it speeds up processing of transactions that write only

a few (small) log records. It is not hard to extendthe technique to allow redo records (but not commitrecords) to be written ahead for large transactions (e.g.,whenever there is a pageful of redo records), and ignoredon restart if the transaction does not commit.The release of locks on pre-commit allows a transac-tion Ti to access data written by an earlier transactionTj that has pre-committed but not committed. How-ever, Ti has to wait for Tj to commit before it can com-mit. This is not a problem for updaters (since theyhave to wait to write out a commit record in any case).However, for read-only transactions that have read onlycommitted data, such a wait is unnecessary. Read-only transactions may fare better under an alternativescheme that holds all locks until commit, since read-only transactions as above can commit without beingassigned a spot in the commit sequence order.The bene�ts of the two schemes can be combined bymarking data as uncommitted when a pre-commit re-leases a lock, and removing the mark when the data hasbeen committed. Then, read-only transactions that donot read uncommitted data do not have to wait for ear-lier updaters to commit. Re�ning the scheme further,uncommitted data can be marked with the commit se-quence number of the transaction that last updated thedata. A read-only transaction can commit after thecommit of the transaction whose csn is the highest csnof uncommitted data read by the read-only transaction.2.3 Abort ProcessingAn undo log record (see, e.g. [9]) contains informationthat can be used to undo the e�ects of an action. Forexample, a physical undo log record stores the old valueof updated data.Undo logging is implemented as follows. The undorecords are written to the volatile undo log ahead ofany modi�cation to memory. The undo log records arenot written to disk except when a checkpoint is taken.The undo log records of each transaction are chained sothat they can be read backwards. After a transactioncommits, the volatile undo log of the transaction maybe deleted. (Similarly, the undo log may be deletedafter a transaction aborts | see the description of abortprocessing below.)We require the following condition on undo logs:Condition UL1: The e�ect of a transaction that hasnot pre-committed can be undone by executing (in re-verse order) its undo log records.

Abort processing is done as follows.Abort Processing: When a transaction Ti aborts, itsundo log is traversed backwards, performing all its undooperations. Each undo action is performed and its undorecord is removed from the undo log in a single atomicaction. After all the undo operations have been com-pleted, the record habort Tii is added to the global log.The transaction is said to have aborted at this point.After a transaction has aborted, it releases all the locksthat it held.We do not require the global log to be ushed to diskbefore declaring the transaction aborted. Also, since weassumed R2PL, there is no need to reacquire any locksduring abort processing. The use of the abort recordin the persistent log will be made clear once we discussthe checkpoint scheme.3 Checkpointing and RecoveryIn this section we describe the main details of ourcheckpointing and recovery scheme. For ease of exposi-tion, we describe �rst an algorithm for an unsegmenteddatabase. This algorithm, however, could cause trans-actions to wait for an inordinately long time. In Sec-tion 5, we address the problem by extending this basicscheme to a segmented database where each segment ischeckpointed separately. In such an environment, thelength of time for which transactions are delayed is re-duced correspondingly.3.1 CheckpointingCheckpointing is done in an action consistent manner(i.e., no update actions are in progress at the time ofthe checkpointing). Action consistency implies that thedatabase and the undo log are frozen in an action con-sistent state during the course of the checkpoint. Wediscuss alternative ways of implementing freezing afterpresenting the basic algorithm.Checkpoint Processing:1. Freeze all accesses to the database and to the undolog in an action consistent state.2. Write the following out to a new checkpoint image(a) A pointer to the end of the persistent log.(b) The undo logs of all active transactions,(c) The main-memory database.

(d) The transaction IDs and status information ofall transactions that are active at the end ofthe checkpoint.3(e) The last assigned commit sequence number.3. Write out the location of the new checkpoint to thecheckpoint location pointer on stable store. Afterthis, the old checkpoint may be deleted.We assume that there is a pointer in stable store tothe latest checkpoint. The last action performed dur-ing a checkpoint is the update of this pointer. Thus, wefollow a ping-pong scheme (see [17]), keeping up to twocopies of the database. Partially written checkpointsare ignored in the event of a crash, and the previous(complete) checkpoint is used instead, so the writing ofthe checkpoint is atomic (i.e., it either happens com-pletely or appears to have not happened at all). Theset of active transactions and their status is not changedduring the checkpoint.It is not hard to see that our protocol ensures thefollowing two conditions:1. The undo log record is on stable store beforethe corresponding update is propagated to thedatabase copy on disk, so that the update can beundone if necessary.2. Every redo log record associated with a transactionis on stable store before a transaction is allowedto commit, so that its updates can be redone ifnecessary.3.1.1 DiscussionAlthough in the above description the main-memorydatabase is written out to disk, it is simple enough toapply standard optimizations such as spooling out acopy to another region of mainmemory, and writing thecopy to disk later, and further optimizing the schemeby spooling using copy on write [16]. These techniquestogether with the segmented database scheme describedlater, reduce the time for which the database activities(or accesses to parts of the database, in case segmentingis used) is frozen.In contrast to most other checkpoint schemes, we donot require the redo log to be ushed at checkpoint3Although we assume here that access to the database isfrozen, we relax the assumption later.

time (although we do require the undo log to be check-pointed). As a result the (backup) database on diskmay be updated before the redo log records for the cor-responding updates are written out.However, the checkpoint processing algorithm makesthe following guarantee: any redo records that occurin the persistent log before the pointer obtained abovehave their e�ects already reected in the database.4Thus, they need not be replayed (and are not replayed).But commit records do not have this consistency guar-antee, since the status of active transactions may stillneed to be changed. There may be redo operations re-ected in the database, but that appear after the per-sistent log pointer in the checkpoint. We describe laterhow to handle both cases in the recovery algorithm.Some checkpointing schemes such as that of Lehmanand Carey [11] require checkpoints to be taken in atransaction consistent state, and the redo log to beushed to disk at checkpoint time. However, trans-action consistent checkpoints can lead to lower concur-rency and a longer checkpoint interval, especially if longtransactions are executed.To implement freezing of access in an action consis-tent manner, we can use a latch that covers the databaseand the undo log. Any action has to acquire the latchin shared mode at the start of the action, and releaseit after the action is complete. The checkpointer hasto acquire the latch in exclusive mode before startingthe checkpoint, and can release it after checkpointing iscomplete.Action consistency is not really required in the caseof physical logging, since the undo/redo action can beperformed even if a checkpoint was made at a stagewhen the action was not complete. However, we requirethe following:Condition UL2: Insertion of records into the undo logdoes not occur during checkpointing.The above condition ensures that the undo log writ-ten at checkpoint time is in a consistent state.3.2 RecoveryUnlike most other recovery algorithms, our recovery al-gorithm is essentially one pass, going forward in the per-sistent log. The recovery scheme is executed on restart4In case the algorithm is modi�ed to write out redo records tothe global log before pre-commit, care must be taken to ensurethis condition.

after a system crash, before the start of transaction pro-cessing, and it consists of the following:Recovery Processing:1. Find the last checkpoint.2. From the checkpoint read into main memory:(a) The entire database.(b) The pointer to the end of the persistent log at check-point time.(c) The transaction IDs and status information of alltransactions that were active at checkpoint time.(d) The undo logs of all transactions active at check-point time.(e) The last assigned commit sequence sequence num-ber at checkpoint time.3. Go backward in the persistent log from the end until the�rst commit/abort record is found. Mark the spot as theend of the persistent log.4. Starting from the persistent log end noted in the check-point, go forward in the log, doing the following:A.If a redo operation is encountered, ThenIf the operation is a physical redo operation,Then Perform the redo operationElse /* Steps to handle logical redooperations are discussed later */B.If an abort record is encountered, ThenIf the transaction was not active at the timeof checkpointThen ignore the abort record.Else �nd checkpoint copy of (volatile) undo logfor the transaction, andperform the undo operations as above.C.If a commit record is encountered,Then read its commit sequence number andupdate the last commit sequence number.5. Perform undo operations (using the checkpointed undolog) for all those transactions that were active at the timethe checkpoint took place, and whose commit recordswere not found in the redo log, and that are not markedcommitting. After performing the undo operations for atransaction, add an abort record for the transaction to theglobal log.6. Perform undo operations (using the checkpointed undolog), in reverse commit sequence number order, for alltransactions that were active at the time of checkpointsuch that (i) their commit records were not found in theredo log, and (ii) they are marked committing and theircommit sequence number is greater than the commit se-quence number of the last commit record in the log. After

performing the undo operations for a transaction, add anabort record for the transaction to the global log.We need to skip any redo records at the end of thepersistent log that do not have a corresponding commitrecord. In our implementation, instead of traversing theredo log backwards to skip them, we only go forwardin the log, but we read all the records for a transaction(these are consecutive in the log) before performing anyaction. If the commit or abort record for the transactionis not found, we ignore the log records of the transactionthat were read in earlier. Thereby, we avoid the need foratomic writes of individual log records (i.e., log recordscan cross page boundaries), and the need to keep backpointers in the log. The checkpointed undo log can beexpected to �t in main-memory since it only containsundo information for transactions that are active at thetime of checkpoint.Our scheme executes undo operations of a transac-tion only if the transaction did not commit. A some-what simpler alternative is to perform undo actions forall the undo log records in the checkpoint �rst and thenperform the redo actions for the committed transac-tions in the log. With such a scheme there is no longerthe need to log abort records for aborted transactions.However, we su�er the penalty of �rst undoing andthen redoing the actions for most transactions activeat the time of the checkpoint (which eventually com-mit). Since this undo followed by redo may be largeand expensive, we have used the slightly more complexscheme above where the undos are performed only whendetermined to be necessary.By the use of commit sequence numbering, our re-covery algorithm can �nd the transactions that havecommitted without looking at the commit records inthe persistent log preceding the pointer. Alternativeschemes, such as using the address of the record inthe persistent log instead of the commit sequence num-ber can also be used to similar e�ect. There may beredo records after the persistent log pointer stored inthe checkpoint, whose e�ect is already expressed in thecheckpointed database. Replaying, on restart, of suchlog records is not a problem for physical log records dueto idempotence. When we discuss logical logging we de-scribe how to avoid replaying logical log records whosee�ect is already expressed in the checkpoint.This completes the description of the basic versionof our recovery scheme. In following sections we willextend the functionality of the recovery scheme to al-

low segmentation of the database and logical logging.First, however, we establish the correctness of the basicrecovery scheme.4 CorrectnessThe following theorem is the main result that shows thecorrectness of our recovery scheme.Theorem 4.1 If rigorous two-phase locking is fol-lowed, recovery processing brings the database to a stateequivalent to that after the serial execution, in the com-mit order, of all committed transactions. 2Proof: The redo log notes the points at which trans-actions committed or aborted. Actual undo operationsare stored in the checkpoint image. We �rst show thatundo actions are carried out correctly during recovery.We do this via the following claims: (a) we correctlyundo the actions of every transaction that did not com-mit before system crash, AND (b) we do not undo theactions of any transaction that did commit before sys-tem crash.To show (a), we need to show that we undo the e�ectsof every transaction whose updates are reected in thecheckpoint, and further we perform the undo actions inthe correct order. Consider any action that has dirtiedthe checkpoint and did not commit. There are fourcases.Abort Finished Before Checkpoint:Such transactions may still be present in the activetransaction list. However, since the abort �nished,the e�ects of the transaction have been undone, andthe undo log of the transaction must be empty. Henceno further undo actions are carried out.Abort Finished After Checkpoint But BeforeCrash: If the transaction started after the checkpoint,it could not have a�ected the checkpoint, and no undolog for it can be present. Otherwise it must �gure inthe checkpointed active transaction list. We will �ndits abort record, and undo its e�ects starting from thecheckpoint state. (If the transaction aborted due to anearlier crash, and its e�ects were undone on an earlierrecovery, an abort record would have been introducedinto the global log at the time of the earlier recovery.If any transaction committed afterwards, the abortlog would also have been ushed to disk, so we willreexecute the abort before reexecuting actions of anytransaction that started after the previous restart.) It

is safe to perform the undo operations at the pointwhere the abort record is found since the transactionmust have held locks up to that point (again, logi-cally a transaction that aborted due to a crash canbe viewed as having aborted at recovery time withoutreleasing any locks).Did Not Precommit: The transaction did not pre-commit and did not abort. Hence it must have heldall locks to crash time. The e�ects of all such transac-tions are undone at the end of recovery. But no twoof them can conict since all held locks till the crash.(Recall that we assume rigorous two-phase locking).Precommitted But Did not Commit: This meansthat not all redo records were written out, so the trans-action must be rolled back at recovery. We detect suchtransactions, since they are marked `committing' buthave larger sequence numbers than the last committedtransaction. These must have been serialized after thelast committed/aborted transaction, and we roll theseback in the reverse of the commit sequence number or-der, after those that did not precommit. Hence theire�ects are undone in the correct order.This completes the proof of claim (a).To prove claim (b) we need to show that if a trans-action commit record hit stable store before crash, it isnot rolled back. There are again several cases:Commit Happened Before Checkpoint: Itmay still be the case that the transaction is in theactive transaction list. But then it must be marked`committing', and its commit sequence number is lessthan or equal to that of the last one that committed.We will then not roll it back.Commit Happened After Checkpoint: Evenif the transaction is in the active transaction list, we�nd the commit record while processing the redo log,and hence we will not roll back the transaction.This completes claim (b).We have shown that all required undo operations areexecuted and no others. No undo action is executedmore than once, since there is no repetition during re-covery, and any undo operation carried out earlier aspart of abort processing is deleted from the undo logatomically with the undo action. It then follows fromUL1 that undo operations are replayed correctly.

Redo records are written out to disk in the commit or-der, and are replayed in the commit order, which is alsothe serialization order since we assumed rigorous 2PL.Hence they are replayed in the correct order. Every redooperation that is not reected in the checkpointed seg-ment is replayed, since the redo log of each transactionis ushed to persistent log after transaction precommit,while we noted the end of the redo log as of the startof checkpointing. (Some operations already reected inthe checkpoint may be redone.) Every redo operationthat hit the persistent redo log before the checkpoint isreected in the checkpoint, since the transaction musthave precommitted. Hence the action can be consideredto have been replayed already. Thus we have shownthat we, in e�ect, replay all necessary redo actions inthe correct order. Since physical actions logged are allidempotent, this guarantees that the desired databasestate is reached.This completes the proof. 25 Segmenting the DatabaseUntil now we had assumed that the entire databaseis checkpointed at one time, while all transactions arefrozen. Clearly, this could cause transactions to waitfor an inordinately large amount of time. To avoid suchdelay, we divide the database into units that we callsegments, and checkpoint each segment independentlyin an action consistent state.A segment can be a page, or a set of pages. Withsmall segments, checkpointing a segment will probablyhave overhead comparable to page ushing in a disk-resident database. For our scheme to work, we requirethe following condition to hold:Condition AS1: Each database action that is logged,as well as the actions to redo or undo it, access dataresident in only one segment.The above condition is required so that di�erent seg-ments may be checkpointed independently. Otherwise,during restart if a single redo or undo action accessesdi�erent segments checkpointed separately, it could seean inconsistent database state.The various logging, checkpointing, and recoverytechniques described earlier can be used with the fol-lowing changes:� The undo log of each transaction is split into aset of undo logs, one for each segment it accesses.Since each action a�ects only one segment, it is

straightforward to do so. The undo log records of atransaction are chained together as before, allowingthem to be scanned backwards. Redo logging isdone as before.� Checkpointing is done one segment at a time.(There is no requirement that segments are check-pointed in any particular order, although some per-formance bene�ts of ordering are discussed later.)To checkpoint a segment, all accesses to the seg-ment are frozen in an action consistent state. Forall active transactions, the undo logs correspondingto the segment are written out, instead of the en-tire undo logs. Instead of a pointer to the databasecheckpoint in stable store, a table of pointers, oneper segment is maintained in stable store, and theseare updated when the checkpoint of a segment (orof a set of segments) is completed.� We use a latch that covers the segment and its undolog to implement action consistent checkpointingof a segment. Any action on the segment has toacquire the latch in shared mode at the start of theaction, and release it after the action is complete.As before, we do not need to ush the redo log whencheckpointing a segment, although we do checkpoint theundo log. Thereby, we reduce the time for which accessto the segment must be frozen.We note that the list of active transactions that haveupdated the segment but have not committed must notchange during checkpointing. This is ensured since aper-segment per-transaction undo log has to be createdbefore a transaction updates a segment, and has to bedeleted before a transaction aborts.Recovery can be done as before, but for each segmentwe ignore the persistent log records before the persistentlog pointer in its last checkpoint. If we split the redo logper segment, we can recover some segments early andpermit new transactions to begin operating on thosesegments while recovering other segments. The idea isdiscussed further in Section 7, where we also discuss howto relax further the requirement that the checkpoint bemade in an action consistent state.The smaller the segment, the less the time for whichaccess to the segment will be restricted during check-pointing. But logged operations must be kept smallenough, or segment sizes should be made large enoughto ensure that Condition AS1 is satis�ed. If a segment

is large, we can use techniques like the black/white copyon update scheme of [15] to minimize the time for whichthe segment is inaccessible for transaction processing.We do not specify the size of segments used for check-pointing, except that the segments must contain an in-tegral number of pages (the unit of I/O to persistentstorage). The choice may be made by the databaseadministrator. Also, segments need not be prede�ned,and could possibly be extended dynamically to ensureCondition AS1.A bene�t of segmenting the database, noted in [11],is that segments containing hot spots (i.e., regions thatare accessed frequently) can be checkpointed more oftenthan other segments. Recovery for such segments wouldbe speeded up greatly, since otherwise a large numberof redo operations would have to be replayed for thesegment.6 Logical LoggingLogging of higher level `logical' actions as opposed tolower level or physical actions such as read/write, isimportant for at least two reasons (see [9]). First, itcan signi�cantly reduce the amount of information inthe log. For example, an insert operation may changea signi�cant part of the index, but the a logical logrecord that says `insert speci�ed object in index' wouldbe quite small. (In some cases, there could be a tradeo�between recomputation at the time of recovery and ex-tra storage for physical log records.) Second, with mostextended concurrency control schemes, such as [18, 2],physical undo logging cannot be used to rollback trans-actions | an object may have been modi�ed by morethan one uncommitted transaction, and a compensat-ing logical operation has to be executed to undo thee�ect of an operation. For instance, such is the casewith space allocation tables, which we cannot a�ord tohave locked till end of transaction.Conceptually, we view a logical operation as an op-eration on an abstract data-type (ADT). For example,an index, or an allocation table can be considered anADT, and operations such as \insert a tuple" or \allo-cate an object" can be considered as logical operations.We make the following assumption:LO1: Each logical operation a�ects exactly one dataitem (although the data item may be large, for exam-ple, an index).Typically, the ADT performs its own concurrency con-trol scheme internally, which may not be R2PL (and

may not even be 2PL). Some form of higher level lock-ing is used to ensure serializability of transactions.On system restart, our recovery algorithm performsredo and undo operations in serialization order, andomits operations that were rolled back before the check-point. We discuss later how to `repeat history' by per-forming redo and undo operations in the exact orderin which they occurred originally, but in this sectionwe assume redo and undo operations are performed inserialization order. The design of an ADT that useslogical logging must ensure that when performing redoand undo operations as above, (i) each redone operationhas the same result as when it originally executed, and(ii) the ADT is brought to a `consistent' state at theend of restart; that is, a state that is equivalent (in anapplication speci�c sense) to one where the operationscorresponding to committed transactions are executedin serialization order. Also, the ADT must be able toundo any operation until transaction commit.We formalize these notions in the full version of thepaper, but for an intuitive idea of what these require-ments signify, consider the case of a space allocator.The redo log should contain not only data stating thatan allocate request was made, but should also containdata that says what the location of the allocated spacewas (the location is the return value of the allocationoperation). When performing a redo, the allocatormustensure that the same location is allocated. Further, thespace allocator must be able to undo both allocate anddeallocate requests. To undo a deallocate request, thedeallocated space should be reallocated, and its valuerestored, which means the space should not be allocatedto any other transaction until the transaction that per-forms the deallocate commits. At the end of recovery,the state of the allocation information should be suchthat all space that was allocated as of the end of recov-ery is noted as allocated, and all that was free is notedas free. The state may not be exactly the same as ifonly actions corresponding to committed transactionswere executed since the exact layout of the tables maybe di�erent. But any di�erence in the layout is seman-tically irrelevant, assuming that an allocation request(not a redo of an allocation request) may return anyspace that was free.6.1 Logical Logging and RollbackA logical operation may take a good deal of time tocomplete. To accommodate such logical operations, we

relax assumption LA1 further here, by allowing check-pointing in the middle of a logical operation. To under-stand how this can be done, logical operations are bestunderstood as multi-level nested transactions (e.g. [9]or [3]).In order to roll back partially completed logical ac-tions, we create undo logs for the nested transaction.We create redo log records for logical actions and hencedo not need to create redo log records for the nestedtransaction.The undo log for the nested transaction, with an iden-ti�er i, is embedded in the undo log of the main trans-action as follows:1. A \h begin operation i i" is written to the undolog.2. The undo operations of the nested transaction arewritten to the undo log.3. An \h end operation i i" record, with any infor-mation necessary for logical undo, is written to theundo log. The nested transaction is said to commitas soon as the \hend operation i i" record enters theundo log. The insertion of the log record is donein an atomic fashion.On system restart, logical redo operations should notbe executed repeatedly since they may not be idempo-tent, and the \h end operation i i" records are used toensure non-repetition, as described later. We requirethe following properties of the undo log:Condition NT1: The e�ects of the nested transactionthat has not committed can be undone by executing(in reverse order) the undo log records of the nestedtransaction.Condition NT2: At any point after the commit of anested transaction, but before the commit of the maintransaction, the e�ects of logical operation i can be un-done by executing the logical undo operation speci�edin the \h end operation i i" record.Redo logging in the case of logical actions is the sameas with physical actions. We now present versions ofthe abort processing and recovery processing algorithmsthat work correctly even with logical logging.Abort Processing-2: When a transaction aborts, itsundo log is traversed backwards, performing all its undooperations. If an \h end operation i i" record is en-countered, the logical undo operation is performed, and

undo actions of the corresponding nested transactionare ignored. Otherwise the undo actions of the nestedtransaction are executed. In any case, an undo actionis performed and its undo record is removed from theundo log in a single atomic action.After all the undo operations have been completed,the transaction logs an abort record in the shared (redo)log. The transaction is said to have aborted at thispoint. (Note, in particular, that it is not necessary towait for the abort record to reach the persistent log).After a transaction has aborted, it can release all itslocks.The requirement that logical undo actions are per-formed and the undo record removed from the log in oneatomic action essentially says that checkpointing shouldnot take place while these actions are in progress.It is important that the designer of the ADT ensurethat logical undo operations will never run into a dead-lock when acquiring (lower level) locks that they need.If such a situation were to arise, another abort may beneed to break the deadlock, which can lead to a cyclethat leaves the system hung for ever.
6.2 Checkpointing and RecoveryWe now present a modi�cation to the checkpoint pro-cessing and recovery processing technique given in Sec-tion 3.Checkpoint Processing-2: Checkpoint processing isdone as before, except that if a logical action is im-plemented as a nested transaction, with its own undolog, checkpointing can be done in a state that is actionconsistent with respect to the nested transaction's ac-tions. Thus, checkpointing need not be suspended forthe entire duration of the logical action.Recovery processing with logical logging di�ers fromrecovery processing with physical logging only in theway logical log records are handled. We describe belowthe relevant steps of the recovery processing algorithm.

Recovery Processing-2:1. Find the last checkpoint. /* As before */2. : : : as before, read in checkpoint data.3. : : : as before, �nd end of persistent log.4. Starting from the persistent log pointer noted in thecheckpoint, go forward in the log:A.If a redo operation (numbered, say, i)is encountered, ThenIf the operation is a physical redo operation,Then Perform the redo operationElse /* it is a logical action */If there is an \end operation i" recordin the checkpointed undo log,Then ignore the redo operation./* the e�ect of the operation has beenreected in the checkpointed segment,and it should not be reexecuted. */ElseIf there are undo log records from a nestedtransaction for the logical actionThen execute the undo operations.Execute the redo operation./* Executing the redo operation createsundo log records as described earlier */B.: : : handle abort records as before.C.: : : handle commit records as before.5. : : : perform undo operations, as before.6. : : : perform undo operations, as before.The correctness arguments of the scheme with logi-cal logging are similar to the correctness arguments forthe scheme with physical logging. The primary addi-tional concern is that we have to prove that at recoverytime we do not redo any action whose e�ect is alreadyreected in the checkpoint, and that is not idempotent.Either a record \h end operation i i" is present in thecheckpointed undo log, or it is not. In the �rst case,we do not replay the logical operation, and its e�ect isalready reected in the checkpointed segment. In thesecond case, one of two things is possible. Either theoperation had not �nished at the time of the checkpoint,and by condition NT1, it is safe to use the undo log ofthe nested transaction corresponding to the logical ac-tion to undo any partial e�ects of the transaction. Therecovery algorithm does the undo, and at this stage thestate is equivalent to the state (in a serial replay) justafter when the action was initially performed. The re-covery algorithm then replays the redo action. Hence,

at this stage, the redo operation has been correctly re-played, and the database state reects the execution ofthe action. The other case is that the operation had�nished at the time of the checkpoint. But the ab-sence of the \end operation" record then implies thatthe transaction must have committed or aborted beforethe checkpoint, and in either case we could not havefound a redo operation in the persistent log after thepersistent log pointed in the checkpoint. In any case,the return values of the redone operations are exactlythe same as that of the original operations, and theADT is in a consistent state at the end of recovery.7 ExtensionsIn this section we consider several extensions of the al-gorithms described so far.7.1 Repeating HistoryOur algorithm collects redo records for a transactiontogether, and outputs the redo records in serializationorder to the global log. This reduces the contention onthe persistent log tail. On the other hand, if logicaloperations are implemented using non-R2PL locking atlower levels, care has to be taken in implementing thelogical operations to ensure that they have the samee�ect when redone as when they were done originally,although they have been reordered. The idea of repeat-ing history [14] sidesteps this problem by presenting theADT, at recovery time, with exactly the same sequenceof operations as originally occurred.Our algorithm can be modi�ed to repeat history bylogging redo operations to the global log in the orderin which the occur, and logging undo operations to theglobal log only when a physical undo actually occurs(also in the order in which the operations take place).Further, if the undo operation cannot be deduced fromthe redo operation and the database state when it isre-executed, the undo operation has to be logged alongwith the redo operation. Typically undo operations oc-cur only rarely, so undo records will be written out onlyrarely, unlike with other recovery schemes. The recov-ery algorithm works with minor modi�cations, and stillmakes only one pass on the persistent log.7.2 Database Bigger Than MemoryWe assumed earlier that the database �ts into main-memory. We can relax this assumption by using virtualmemory. Alternatively, we could use the checkpointerto ush some dirty segments, in order to make space for

other segments. Doing so may be preferable to writingdirty pages to swap space since we get the bene�t ofcheckpointing with roughly the same amount of I/O.In fact, our algorithm can be used for disk residentdatabases as well, and will be e�cient provided mostof the data in use at any point of time �ts into mainmemory. The idea of writing undo logs only when ush-ing segments that are not transaction consistent can beused in disk-resident databases as well, and our basicalgorithm can be used with some minor modi�cationseven in cases where data does not �t into main memory.7.3 Partitioning The Redo LogWe can partition the redo log across segments (assum-ing that every log operation is local to a segment). Par-titioning the redo log permits segments to be recoveredindependently, transactions can start executing beforeall segments have been recovered, and segments can berecovered on demand. To commit a transaction, wewrite a `prepared to commit' record to each segmentredo log, then ush each segment redo log. After allsegment redo logs have been ushed, we can write acommit record to a separate global transaction log; thetransaction commits when this record hits stable stor-age. Abort records are written to each segment redolog and to the global transaction log. During recoverythe global transaction log is used to �nd what transac-tions committed and what transactions did not commit.To recover a segment, we bring the segment into mainmemory and use recovery processing as before on it butusing its local redo log, and doing either redoing or un-doing the actions of the transaction at the point wherethe `prepared to commit' or abort log record is found,depending on whether the commit record is in the globaltransaction log or not.Lehman and Carey [11] present a redo log partition-ing technique where the log tail is written unpartitionedinto a stable region of main memory, and later a sep-arate processor partitions the log tail. However, thetechnique appears to depend on the availability of sta-ble main memory for the log tail.7.4 MiscellaneousIf a physical operation has already generated an undolog, we can allow it to proceed even during checkpoint-ing. The undo log can be used to undo the data fromwhatever intermediate state it is in when the segmentis written out.

If checkpointing is done cyclically on the segments(i.e., in a round-robin fashion), we can use a bubblepropagation scheme to keep segment checkpoints (al-most) contiguous on disk. The idea is to all have seg-ment checkpoints contiguous, except for a single bubble.The bubble is used to create a new checkpoint imagefor the segment whose old checkpoint is just after thebubble. Once the checkpoint is complete, the bubble ismoved forward, replacing the old checkpoint of the seg-ment. The bubble can be used to checkpoint the nextsegment. Since the undo log that is written out witheach segment is not of a predetermined size, some �xedamount of space can be allocated for the undo log, andif the log is too big, any excess can be written in anoverow area.8 Related WorkFor a detailed description of the issues related to main-memory databases, and how they di�er from disk-resident databases, see [8]. In this section we con-centrate on issues related to checkpointing and recov-ery. There has been a considerable amount of work oncheckpointing and recovery schemes for main-memorydatabases. Salem and Garcia-Molina [16] and Eich [7]provide surveys of main-memory recovery techniques.Main-memory recovery di�ers from recovery in disk-oriented database systems in several ways. The mostimportant di�erences that we exploit in the present pa-per are (a) dirty segments are not ushed to disk asoften as dirty pages in a disk based system, and (b)the redo and undo logs of uncommitted transactionscan be kept in memory and modi�ed without incurringany disk I/O. As a result of (b) we are able to modifythe logs and write out to disk only what is absolutelyneeded to be written to disk, and thus reduce log I/Oand recovery time. The bene�t of (a) is that undo logsof most transactions never need be written to disk, ifthe transaction runs to completion without any of itsdirty pages being written out.Some of the details of our recovery scheme are similarto those of Lehman and Carey [11]. Both schemes prop-agate only redo information of committed transactionto the stable log, and both schemes keep the redo logrecords of a transaction consecutive in the log. Lehmanand Carey also support segmented databases with in-dependent checkpointing for each segment, and logicallogging.The most important contribution of our technique is

that it permits the use of redo-only logging while per-mitting action consistent checkpointing. The bene�ts ofredo-only logging are clear | recovery time is speededup by eliminating an analysis pass on the log, and undooperations do not have to be replayed. Li and Eich[13] present an analysis that underscores the bene�ts ofnot having undo logging. However, previous techniquespaid a high price for this bene�t, since checkpointinghad to be transaction consistent if undo logging wasnot done. For example, in the algorithm of Lehman andCarey [11], in order to checkpoint a segment, the check-pointer has to obtain a read lock on the segment. Thiscan adversely a�ect performance in the case of databasehot spots, since the checkpointer will cause contentionwith update transactions. Levy and Silberschatz [12]also require transaction consistent checkpointing, as dothe redo/no-undo techniques described in [4], and theEOS storage manager [5].To avoid the transaction consistency assumption forcheckpointing, we allow dirty pages to be written out.Our idea of writing out undo records when checkpoint-ing dirty pages is, as far as we know, novel. Our tech-nique is thereby able to avoid full undo logging, and atthe same time not require transaction consistent check-pointing, thus getting bene�ts of both worlds.An alternative, proposed by Eich [6], is not to check-point the primary copy of the database, but instead toreplay redo logs of committed transactions continuallyon a secondary stable copy of the database, and havetransactions execute on the primary copy only. Thiswould double the storage and processing requirements.Moreover, replaying could become a bottleneck, since itis in e�ect replaying the committed actions of the main-memory database on the disk database, in serializationorder, and could require a considerable amount of I/O.The black/white checkpointing technique of Pu [15],also described in [17], allows action consistent check-pointing, but either requires deferred updates (shadowpaging) or undo logging on disk. The disadvantages ofrequiring deferred updates were discussed in Section 1.Hagmann [10] allows fuzzy checkpointing, that is, doesnot even require action consistency. However, logicaloperation logging cannot be supported by his technique,and undo logging is required, which can slow recoverydown.If the database does not �t entirely into main mem-ory, our technique can checkpoint a dirty segment andswap it, in contrast to other techniques, such as that of

Lehman and Carey, that require transaction consistentcheckpoints.The algorithms of [11] and [6] require stable main-memory. Our algorithms are not dependent on theavailability of stable main-memory. This will enable ouralgorithms to be used on standard workstations withouthardware modi�cations, which is very bene�cial. How-ever, if stable main-memory is available, we can use itfor storing the log tail, and thereby achieve better per-formance in a manner similar to [11] and [6].Unlike other algorithms that we are aware of, we donot require the redo log to be ushed on every check-point. This reduces the per-checkpoint overhead andthe time taken per checkpoint, which is important whensegments are checkpointed individually.Unlike many other recovery techniques that supportlogical operations (such as Aries [14]) our techniquedoes not use Log Sequence Numbers (LSNs). Instead,we log h end operation i i records in the undo log, andlook it up to �nd whether a logical action has been car-ried out already or not. An undo of a logical operationalso removes the `end operation' (atomically) from theundo log, so repeated undo operations are also avoided.These operations are feasible in our environment (un-like in a disk-resident database) since the undo log willmost probably reside in main-memory.The removal of undo records from the undo log, andthe removal of redo records of aborted transactions canbe viewed as a form of garbage collection of the log [4].The garbage collection can theoretically be done in adisk-resident database as well, but is ine�cient since itinvolves disk reads and is typically not used.9 DiscussionRecent TPC benchmark numbers from Oracle indicatethe bene�ts of not writing undo records to disk [1]. Inthe Oracle database system, pages are locked into mem-ory and thereby prevented from being ushed, for theentire duration of certain kinds of transactions (`dis-crete transactions'). This forces a bound on the num-ber of such transactions that can be executed concur-rently. We noted earlier that our scheme can be usedfor disk-resident databases as well. By allowing pagesto be ushed when required, our scheme can provide thebene�ts of reduced undo logging while allowing ush-ing of pages to disk whenever required. We would nothave to bound the number of such transactions execut-ing concurrently. We therefore expect our technique to

provide signi�cant performance bene�ts.There are other techniques that can be used to avoidundo logging [4]. However, all such techniques that weare aware of require transaction consistent checkpoint-ing. We believe that our technique will be signi�cantlybetter than the others in environments where manytransactions access some `hot' pages/segments, acquirewrite locks on di�erent objects in the page/segment,and hold the locks for some non-trivial amount of time(for instance, waiting for messages from remote sites asin two-phase commit, or waiting for disk reads). In suchan environment, transaction consistent checkpointingof the hot pages/segments would interfere greatly withregular processing since transaction consistent check-pointing would have to acquire a read lock on the entirepage/segment. In other environments, we believe, ourtechniques will be at least comparable to other tech-niques that do not perform undo logging.We have completed a prototype implementation ofthe recovery technique, and will present a performanceanalysis in the full version of the paper. We expectour recovery scheme to form the core of a main-memorydatabase system currently being implemented at AT&TBell Labs.10 ConclusionWith the general availability of dozens to hundreds ofmegabytes of main memory on relatively inexpensiveand widely used systems, it is rapidly becoming thecase that many useful database applications today �tentirely (or largely) within the available main mem-ory. A major factor in performance, and almost thesole cause of disk I/O, is the recovery sub-system of thedatabase, responsible for maintaining the durability ofthe transactions. In this paper we have presented a re-covery scheme for main-memory databases that placesno special demands on the hardware, and imposes littleoverhead at run-time, yet promises the ability to per-form a fast recovery.AcknowledgementsWe would like to thank Mike Franklin for taking timeo� writing his thesis to give us feedback on the paper,pointing us to related work, and for very useful discus-sions. We would also like to thank Alex Biliris, NarainGehani and Dan Lieuwen for their comments on the pa-per, and Ken Salem for providing us information aboutSystem M.

References[1] J. Anderson. Data management: Benchmarking factsof life and why Oracle now comes up a winner. OpenSystems Today, Apr. 1993.[2] B. R. Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond commutativity.ACM Transactions on Database Systems, 17(1):163{199, Mar. 1992.[3] C. Beeri, H.-J. Schek, and G. Weikum. Multi-leveltransaction management, theoretical art or practicalneed? In International Conference on ExtendingDatabase Technology, Lecture Notes on Computer Sci-ence, volume 303. Springer Verlag, 1988.[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-currency Control and Recovery in Database Systems.Addison-Wesley, 1987.[5] A. Biliris and E. Panagos. Eos user's guide, re-lease 2.0.0. Technical report, AT&T Bell Labs, 1993.BL011356-930505-25M.[6] M. Eich. Main memory database recovery. In 1986 Pro-ceedings ACM-IEEE Fall Joint Computer Conference,Dallas, pages 1226{1232, 1986.[7] M. Eich. A classi�cation and comparison of main mem-ory database recovery techniques. In Proceedings of theThird International Conference on Data Engineering,Los Angeles, pages 332{339, 1987.[8] H. Garcia-Molina and K. Salem. Main memorydatabase systems: An overview. IEEE Transactions onKnowledge and Data Engineering, 4(6):509{516, Dec.1992.[9] J. Gray and A. Reuter. Transaction Processing: Con-cepts and Techniques. Morgan Kaufmann, San Mateo,California, 1993.[10] R. B. Hagmann. A crash recovery scheme for memory-resident database system. IEEE Transactions on Com-puters, C-35(9):839{843, Sept. 1986.[11] T. J. Lehman and M. J. Carey. A recovery algorithmfor a high-performance memory-resident database sys-tem. In Proceedings of ACM-SIGMOD 1987 Interna-tional Conference on Management of Data, San Fran-cisco, pages 104{117, 1987.[12] E. Levy and A. Silberschatz. Incremental recovery inlarge-memory database systems. IEEE Transactions onKnowledge and Data Engineering, 4(6):529{540, Dec.1992.[13] X. Li and M. H. Eich. Post-crash log processing forfuzzy checkpointing main memory databases. In In-ternational Conf. on Data Engineering, pages 117{124,1993.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, andP. Schwarz. ARIES: A Transaction Recovery MethodSupporting Fine-Granularity Locking and Partial Roll-backs Using Write-Ahead Logging. ACM Transactionson Database Systems, 17(1), Mar. 1992.[15] C. Pu. On-the-y, incremental, consistent reading ofentire databases. Algorithmica, (1):271{287, 1986.[16] K. Salem and H. Garcia-Molina. Crash recovery formemory-resident databases. Technical Report CS-TR-119-87, Princeton University, Computer Science De-partment, 1987.[17] K. Salem and H. Garcia-Molina. System M: A trans-action processing testbed for memory resident data.IEEE Transactions on Knowledge and Data Engineer-ing, 2(1):161{172, 1990.[18] W. E. Weihl. Commutativity-based concurrency con-trol for abstract data types. IEEE Transactions onComputers, C-37(12):1488{1505, Dec. 1988.

