
Efficient and Provable Multi-Query Optimization

Tarun Kathuria
Microsoft Research

tarunkathuria@gmail.com

S. Sudarshan
Indian Institute of Technology Bombay

sudarsha@cse.iitb.ac.in

ABSTRACT
Complex queries for massive data analysis jobs have become
increasingly commonplace. Many such queries contain com-
mon subexpressions, either within a single query or among
multiple queries submitted as a batch. Conventional query
optimizers do not exploit these subexpressions and produce
sub-optimal plans. The problem of multi-query optimiza-
tion (MQO) is to generate an optimal combined evaluation
plan by computing common subexpressions once and reusing
them. Exhaustive algorithms for MQO explore an O(nn)
search space. Thus, this problem has primarily been tackled
using various heuristic algorithms, without providing any
theoretical guarantees on the quality of their solution.

In this paper, instead of the conventional cost minimiza-
tion problem, we treat the problem as maximizing a linear
transformation of the cost function. We propose a greedy
algorithm for this transformed formulation of the problem,
which under weak, intuitive assumptions, provides an ap-
proximation factor guarantee for this formulation. We go
on to show that this factor is optimal, unless P = NP. An-
other noteworthy point about our algorithm is that it can be
easily incorporated into existing transformation-based opti-
mizers. We finally propose optimizations which can be used
to improve the efficiency of our algorithm.

Keywords
Approximation algorithms; hardness of approximation;
Multi-query optimization

1. INTRODUCTION
Modern data analytics platforms frequently have to run

scripts that contain a large number of complex queries. Of-
ten, these queries contain common subexpressions due to
the nature of the analysis performed. These subexpressions
may occur within a single complex query which i) contains
multiple correlated nested subqueries or ii) if the database
contains many materialized views which are referenced mul-
tiple times in the query. A more interesting case where com-
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mon subexpressions arise is when a batch of related queries
are being executed together.

Conventional query optimizers are not suited for such sce-
narios since they do not exploit these subexpressions and
instead produce locally optimal plans for each query. These
plans can be globally sub-optimal since they do not make
use of the shared subexpressions while generating the plans.
The goal of multi-query optimization (MQO) is to generate
query plans where these subexpressions are executed once
and their results used by multiple consumers. The best plan
is selected in a completely cost-based manner.

We now present an example to illustrate the MQO prob-
lem and how locally optimal plans may be globally sub-
optimal for multiple queries in the presence of common
subexpressions.

Example 1. (Example 1.1 in [25]) Consider a batch con-
sisting of two queries (A ./ B ./ C) and (B ./ C ./ D)
whose locally optimal plans (i.e., individual best plans) are
(A ./ B) ./ C and (B ./ C) ./ D respectively. The in-
dividual best plans for the two queries do not have any
common subexpressions. However, consider a locally sub-
optimal plan for the first query A ./ (B ./ C). It is clear
that (B ./ C) is a common subexpression and can be com-
puted once and used by both queries.

Consider the following instantiation of the various costs
for the two queries shown in Figure 1. Suppose the base
relations A, B, C and D each have a scan cost of 10 units.
Each of the joins have a cost of 100 units, giving a total
evaluation cost of 460 units for the locally optimal plans
shown in Figure 1a. On the other hand, in the plan shown
in Figure 1b, the common subexpression (B ./ C) is first
computed and materialized on the disk at a cost of 10. Then,
it is scanned twice - the first time to join with A in order
to compute the first query, and the second time to join it
with D in order to compute the second - at a cost of 10 per
scan. Each of these joins have a cost of 100 units. Thus,
the total cost of this consolidated plan is 370 units, which is
lesser than the cost of the locally optimal plan in Figure 1a.

It should be noted that blindly sharing a subexpression
may not always lead to a globally optimal strategy. For
example, there may be cases where the cost of joining the
subexpression (B ./ C) with A is very large compared to the
cost of the plan (A ./ B) ./ C; in such cases it may make
no sense to reuse (B ./ C) even if it were available. �

The benefits of a good algorithm for MQO are not just re-
stricted to multiple queries in a batch but can also be used
to find better plans for a single complex query. Consider an
example of a large query consisting of multiple subqueries
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Figure 1: MQO example (from [25]) illustrating benefit of
sharing subexpressions

with a common subexpression between two subqueries. Tra-
ditional query optimizers do not consider such sharing, but
multi-query optimization techniques have been developed to
find the best plans taking such sharing into account, such
as [26, 27, 25, 32, 28] . While the early work on multi-query
optimization, e.g. [26, 27], focused on queries with only se-
lections and joins, later work, e.g. [25, 32, 28], which are
based on the Volcano/Cascades query optimization frame-
work [9, 10] use an AND-OR DAG representation of the
query plan space to handle arbitrary queries.

Dynamic-programming techniques for join order enumera-
tion, as well as transformation-rule based optimization tech-
niques based on the Volcano/Cascades framework with op-
timizations described in [21], run in time O(3n) for a query
that computes the join of n relations, when all join orders
are considered.

However, when these techniques are extended to handle
multi-query optimization, they need to consider all subex-
pressions that are potentially shared by multiple query
plans, or multiple parts of the same query plan. The num-
ber of such common subexpressions can be O(2n) when we
consider join queries involving n relations. An optimal plan
for the set of queries may materialize and share up to n
of these common subexpressions. A naive exhaustive algo-
rithms for MQO would consider all such subsets of cardinal-
ity n, leading to a very high cost. The best known exhaus-
tive algorithm takes O(nn) time [31], which is infeasible for
even moderate numbers of relations. Thus, work in this area
relies on heuristics to restrict the space of alternatives con-
sidered [25, 28, 32]. While such algorithms seems to work
well in practice, to the best of our knowledge there has been
no work that provides theoretical guarantees on the quality
of solution obtained by such heuristics.

Thus, an open question is
Can we devise an algorithm which runs in time polyno-

mial in the number of shared nodes (common subexpressions)
which provides us with theoretical guarantees on the quality
of the solution obtained as compared to the optimal? If so,
what is the best possible polynomial-time approximation al-
gorithm?

As a first step towards answering this question, we propose
a reformulation of the MQO problem, the motivation for
which is stated next.

The canonical multi-query optimization problem is con-
cerned with minimizing cost of the query plan for a set of
queries by choosing a set of nodes to materialize (say M)
and then finding the optimal plan exploiting nodes in M .
Another way to look at this problem is to maximize the

“materialization-benefit” we get by materializing M with re-
spect to a naive execution plan which is locally optimal and
does not exploit any common subexpressions. More for-
mally, this corresponds to maximizing the difference of the
cost of the best plan in which the set of materialized nodes
is M from the latter. As this is just a linear transformation
of the cost function, it is clear that the maximizer of the
materialization-benefit will be the minimizer of the cost.

Roy et al. [25] assume a property on the cost function that
they call the“monotonicity heuristic”. This essentially corre-
sponds to assuming the supermodularity of the cost function
defined on the set of nodes to be materialized. In [25], this
assumption is used to speed up their greedy algorithm via
a heap-based argument which exploits the supermodularity.
This is similar to the LazyGreedy algorithm described in [16]
for speeding up monotone submodular function maximiza-
tion subject to cardinality constraints via the well-known
greedy algorithm, which is also used by [25]. On the queries
used in their experiments, it was observed that the plan ob-
tained with or without assuming supermodularity led to the
same plan. This seems to imply that the supermodularity
assumption may be a reasonable one and may hold in prac-
tice.

1.1 Our contribution
The contributions of this paper are as follows

• Motivated by [25], we proceed with the “monotonicity
heuristic” assumption (which implies the submodular-
ity of the materialization benefit function). Under this
assumption, we propose an approximation algorithm
for the underlying problem of unconstrained, normal-
ized submodular maximization (UNSM). Note that we
allow the submodular function to take negative values,
which has not been considered previously and poses
a significant challenge1. Our algorithm runs in time
O(u2), where u is the size of the universe. In the MQO
setting, where u is the number of shared nodes, this
translates to a O(22n) time algorithm instead of the
exhaustive O(nn) algorithm.

• We then present a hardness of approximation proof for
the UNSM problem, which matches that obtained by
our algorithm, assuming P 6= NP.

• We present optimizations to our algorithm to improve
the running time of the algorithm, without sacrificing
any theoretical guarantees.

• We also consider a special case of the problem of sub-
modular maximization under cardinality constraints.

– A natural extension to our greedy algorithm for
this problem is presented. We further propose a
pruning strategy to reduce the search space before
running our greedy algorithm, by exploiting this
cardinality constraint.

– While, at this point, we do not formally prove
any theoretical guarantees on the approximation
factor for this constrained problem, we show that
the answer obtained by our greedy algorithm is
the same when run with or without this pruning.

1Inapproximability results when the submodular function
may be unnormalized are well known [8].
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• We compare our algorithm against the Greedy algo-
rithm and stand-alone Volcano (without MQO) on
queries from the TPCD benchmark and show signif-
icant benefits.

It is important to note that our approximation guaran-
tees are for the benefit-maximization problem, under the
submodularity assumption, and do not imply a multiplica-
tive factor approximation to the cost minimization problem.
However, results in our experimental section shows that our
proposed algorithm performs as well as or better than the
Greedy heuristic of [25].

Our techniques for the problem of multi-query optimiza-
tion are presented in the context of query optimizers based
on the Volcano/Cascades framework [10, 9]. This frame-
work for optimizing queries uses transformation rules which
makes it inherently extensible, and has been implemented
in several widely-used commercial database systems such as
Microsoft SQL Server. It should be noted, however, that our
algorithm is agnostic to the query optimization framework,
and can be easily extended to other frameworks as well.

Organization. In Section 2, we present a detailed
overview of multi-query optimization in the context of the
Volcano framework which was presented in [25] along with
how submodular maximization arises in this context. Sec-
tion 3 presents our greedy algorithm for unconstrained, nor-
malized submodular maximization with the proof of its ap-
proximation factor guarantee. In Section 4, we prove the
hardness of approximation of the unconstrained, normal-
ized submodular maximization which rules out better ap-
proximation factors than the one attained by our algorithm,
under the assumption of P 6= NP. Section 5 presents ways to
speed up our algorithm. We present experimental results on
benchmark queries in Section 6. Related work in the areas
of MQO and submodular maximization is presented in Sec-
tion 7. We conclude and discuss directions for future work
in Section 8.

2. PRELIMINARIES
This section presents some relevant background in

(Multi)-Query Optimization in the Volcano framework fol-
lowed by some preliminaries of submodular maximization
and finally ends with how submodular maximization arises
in MQO. Readers well-versed in MQO techniques in Volcano
may skip to the Section 2.3 directly.

2.1 Query Optimization in Volcano
The Volcano/Cascades query optimization framework [10,

9] is based on a system of equivalence rules, which specify
that the result of a particular transformation of a query tree
is the same as the result of the original query tree. The key
aspect of this framework is the efficient implementation of
the transformation rule-based approach.

The Volcano framework uses the AND-OR DAG represen-
tation [10, 23] for compactly representing the given query
and its alternative query plans. An AND-OR DAG is a di-
rected acyclic graph whose nodes can be divided into AND-
nodes and OR-nodes; the AND-nodes have only OR-nodes
as children and the OR-nodes have only AND-nodes as chil-
dren. An AND-node corresponds to an algebraic operator,
such as the join operator (./) or a select operator (σ). It
represents the expression defined by the operator and its
inputs. An OR-node represents a set of logical expressions
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./ C

A B

(a) Initial Query

ABC

./

AB

./

A B

C

(b) DAG representation of query

ABC
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./
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(c) Expanded LQDAG after transformation (Commutativity not
shown explicitly)

Figure 2: Initial Query and LQDAG Representation

that generate the same result set; the set of such expressions
is defined by the children AND nodes of the OR node, and
their inputs. Hereafter, we refer to the OR-nodes and AND-
nodes as equivalence nodes and operator nodes respectively.

The given query tree is initially represented in the AND-
OR DAG formulation. For example, the query tree of Figure
2a is initially represented in the AND-OR DAG formulation,
as shown in Figure 2b. Equivalence nodes are shown as
boxes, while operator nodes are shown in circles.

The initial AND-OR DAG is then expanded by applying
all possible logical transformations on every node of the ini-
tial DAG created from the given query. Suppose the only
possible transformations are join associativity and commu-
tativity. Then the plans A ./ (B ./ C) and (A ./ C) ./ B,
as well as several plans equivalent to these, modulo commu-
tativity, can be obtained by transformations on the initial
AND-OR DAG of Figure 2b. These are represented in the
DAG shown in Figure 2c. The AND-OR DAG representa-
tion after applying all the logical tranformations is called
the (expanded) Logical Query DAG (or LQDAG).

Each operator node can have different physical implemen-
tations; for example, a join operator can be implemented as
a hash join, a nested loop join or as a merge join. Once the
LQDAG has been generated, physical implementation rules
are applied on the logical operators to generate the physical
AND-OR DAG, which is called the Physical Query DAG or
PQDAG for short.

Properties of the results of an expression, such as sort
order, that do not form part of the logical data model are
called physical properties [10]. The importance of exploit-
ing physical properties such as sort order and partitioning of
result sets is well known in traditional query optimization.
The DAG is actually built and stored using a “memo” struc-
ture, a concise data structure used in the Volcano/Cascades
framework to represent the entire space of equivalent query
evaluation plans succintly. The AND-OR DAG representa-
tion considered for MQO actually works on the PQDAG but
we present our algorithms to work at the LQDAG level for
brevity.

2.2 Multi-Query Optimization in Volcano
This subsection primarily focuses on the techniques pre-

sented in [25] for MQO in the Volcano framework. In order
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to extend the Volcano AND-OR DAG generation for MQO
on a batch of queries to be jointly optimized, the queries are
represented together in a single DAG, sharing subexpres-
sions. The DAG is converted to a rooted DAG by adding
a dummy operation node, which does nothing, but has the
root equivalence nodes of all the queries as its inputs.

The two main challenges for a multi-query optimizer are :

1. Recognizing possibilities of shared computation by
identifying common subexpressions.

2. Finding a globally optimal evaluation plan exploiting
the common subexpressions identified.

Roy et al. [25] present an efficient hashing-based algo-
rithm that identifies the set of all common subexpressions,
including subqueries that are syntactically different but se-
mantically equivalent, in a single bottom-up traversal of the
LQDAG by using the “memo” structure; for details see [25].
This is similar to the “expression fingerprinting” used to
identify the common subexpressions in [28]. The combined
LQDAG for the queries of Example 1 is shown in Figure 3.
This step takes exponential time as the size of the DAGs
may itself be exponential and is unavoidable, even in single-
query optimization.

Similar to the single query optimization done by Volcano,
in a single-pass, one can annotate each node in the DAG with
its estimated cost. Note that the cost estimator functions
are taken as input to the optimizer, i.e., the optimizer algo-
rithm is agnostic to the cost estimates. Indeed, this is one of
the reasons why the Volcano query optimizer framework is
widely used. It is important to note that in the single query
optimization as well as the multi query optimization setting,
one assumes that the cost estimates provided to us are cor-
rect for any guarantees to hold. Thus, we also work under
the assumption that the cost estimates are correct. After the
common subexpressions are identified and the cost of each
node computed, the next task is to find the best consolidated
plan for the queries exploiting the subexpressions.

In this paper, we are primarily concerned with the op-
timization philosophy adopted by the Greedy algorithm in
[25] which is presented next. For a set of equivalence nodes
S, let bestCost(Q,S) (for brevity, bc(S)) denote the cost of
the optimal plan for Q given that nodes in S are to be ma-
terialized (this includes the cost of computing and material-
izing nodes in S). Here Q is the combined query DAG with
the dummy root operator node with inputs being the DAGs
of Q1, . . . , Qk, as described above. The bc(S) function, of
course, depends on the cost estimates and is treated as a
black-box for the MQO algorithms. Given a set of nodes S
to be materialized, [25] present an efficient scheme to find
the best plan and the best cost, bc(S) (this includes the cost

of materializing S, which may be done in multiple ways and
is figured out by the optimizer in [25] as well).

Now, we just need to identify the subset S of nodes in the
AND-OR DAG for which bestCost(Q,S) is minimum. How-
ever, an exhaustive algorithm which enumerates all possible
subsets S will take time exponential in the size of the AND-
OR DAG, which itself may be exponential in the number of
relations. In [25], an intuitive greedy algorithm is proposed,
which iteratively picks which node to materialize. At each
iteration, the node x that gives the maximum reduction in
the cost, if materialized, is chosen to be added to the current
set of materialized nodes X. While this greedy algorithm is
shown to work well in practice, [25] does not provide any
theoretical guarantees on the quality of solution obtained
via this algorithm. The algorithm is presented below for
completeness.

Algorithm 1 Greedy Algorithm of [25]

X = ∅
Y = Set of shareable equivalence nodes in the DAG
while Y 6= ∅ do

Pick x ∈ Y which minimizes bc(X ∪ {x})
if bc(X) > bc(X ∪ {x}) then

X = X ∪ {x}, Y = Y \ {x}
else

Y = ∅
end if

end while
return X

As noted in [25], the nodes materialized in the globally
optimal plan are just a subset of the ones that are shared in
some plan for the query. It is, thus, sufficient to search only
over the set of shareable equivalence nodes, instead of search-
ing over the entire set of equivalence nodes in the DAG.

Clearly, some assumptions on the cost function have to
be made in order to give theoretical guarantees for any al-
gorithm. Furthermore, it is desirable to make assumptions
which may hold in practice. Roy et al. [25] make an addi-
tional assumption which they call the “monotonicity heuris-
tic”.
Define benefit(x,X) as bc(X)− bc(X ∪ {x}). The assump-
tion is that

∀ Y ⊆ X, ∀ x /∈ X, benefit(x,X) ≤ benefit(x, Y ).

They [25] make this assumption in order to improve the
running time of their greedy algorithm via a heap-based ar-
gument which corresponds to the LazyGreedy algorithm [16]
for faster monotone, submodular maximization. Their ex-
periments, however, show that the plans obtained with and
without the assumption had exactly the same cost. While
the assumption may not always hold, their experiments seem
to indicate that the assumption may be a reasonable one, in
practice. Thus, in this paper, we work under this assump-
tion to devise an algorithm with theoretical guarantees on its
performance for maximizing the “materialization benefit”.

2.3 Submodular Maximization
Let U be a universe of n = |U | elements, let f : 2U → R

be a function. For simplicity, we use the notation f ′(u, S)
to denote the incremental value in f of adding u to S, i.e.,
f ′(u, S) = f(S ∪ {u})− f(S).
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Definition 1. (Submodular Functions)
A function f : 2U → R is called submodular if

∀ A ⊆ B ⊆ U, ∀ u ∈ U \B,we have f ′(u,A) ≥ f ′(u,B).

Definition 2. (Supermodular Functions)
A function f : 2U → R is called supermodular if

∀ A ⊆ B ⊆ U, ∀ u ∈ U \B,we have f ′(u,A) ≤ f ′(u,B).

Definition 3. (Additive Functions)
A function c : 2U → R is called additive if it is of the form
c(S) =

∑
e∈S c({e}).

Definition 4. (Monotone Functions)
A function f : 2U → R is said to be monotone if

∀A ⊆ B ⊆ U,we have f(A) ≤ f(B).

Definition 5. (Normalized Functions)
A function f : 2U → R is called normalized if f(∅) = 0.

Given a normalized submodular function f : 2U → R,
the unconstrained, normalized submodular maximization
(UNSM) problem is to find a set S ⊆ U which maximizes
the value of f , i.e., arg max

S⊆U
f(S).

Since submodular maximization problems are in general
NP-hard and can only be approximated, a simple additive
scaling of the function by a large constant to make the func-
tion non-negative and running an algorithm like [2] suffers in
the approximation factor and moreover does not guarantee
a multiplicative approximation.

It is well-known that any non-monotone submodular func-
tion f , with the constraint that f(∅) = 0, can be written as
the difference of a non-negative monotone submodular func-
tion fM and an additive “cost” function c. However, mul-
tiple such decompositions are possible and as we will show,
there is one particular decomposition (the decomposition in
Proposition 1) which will give us the best approximation
ratio and a matching hardness of approximation.

Proposition 1. Any normalized, non-monotone (which
may take negative values) submodular function f can be de-
composed as

f(S) = fM (S)− c(S) , ∀ S ⊆ U

where fM is a monotone submodular function and c is an
additive cost function. In particular, one possible decompo-
sition is

f∗M (S) = f(S) +
∑
e∈S

(f(U \ {e})− f(U))

c∗(S) =
∑
e∈S

(f(U \ {e})− f(U))

Proof. The proof is provided in Appendix A.

Since our approximation ratio depends on the decomposi-
tion and owing to the importance of the decomposition in
Proposition 1, we refer to it as f∗M and c∗.

2.4 Multi-Query Optimization and UNSM
We now describe the changes to the MQO formulation of

[25] and show the role submodularity plays in the same. As
defined above, bestCost(Q,S) includes the cost of computing

and materializing the set of PQDAG nodes to be material-
ized S. Consider a scenario where S was already material-
ized and we just have to find the optimal plan which may
or may not use the materialized nodes in S. However, no
further nodes may be chosen to be materialized. The cost of
the optimal plan can be thought of as the best use cost and
the function is thus called bestUseCost(Q,S). This function
is monotonically decreasing since as more nodes are materi-
alized, we will exploit the additional nodes only if they lead
to a reduction in cost. Of course, the cost of materializing
S needs to be taken into account and we call that function
c(S). Clearly, bestCost(Q,S) = bestUseCost(Q,S) + c(S).
For brevity, we refer to bestUseCost(Q,S) as buc(S).

The MQO problem can be thought of as maximizing the
“materialization-benefit” (mb(S) for brevity) we get in the
plan cost by exploiting common subexpressions over a naive
execution plan which is just locally optimal and does not
exploit subexpressions. Clearly the cost of the latter is
bc(∅) = buc(∅). Mathematically, mb(S) is defined as

mb(S) = bc(∅)− bc(S)

= buc(∅)− (buc(S) + c(S))

= (buc(∅)− buc(S))− c(S)

The function in parenthesis in the last line is a monotonically
increasing function since buc(S) is a monotonically decreas-
ing function. Also, if the set of materialized nodes S are “far
apart” in the PQDAG, the cost of computing and material-
izing a node e ∈ S can be thought of as being independent
of the other nodes in S. This motivates us to assume that
the c function is additive. Of course, this assumption need
not be true. For example, if two of the equivalence nodes in
S are just below each other, we can significantly benefit by
computing the “lower” node and then just reading it from
disk to compute the “upper” node. As proved in Proposition
1, under the assumption of submodularity, mb can always
be decomposed into a difference of monotone, submodular
function and an additive function2. Observe that

∀X, ∀x /∈ X, benefit(x,X) = −bc′(x,X)

Thus, the “monotonicity heuristic” assumption is essentially
that the bestCost function is supermodular. This implies
that mb is submodular. Note that mb is normalized. Thus,
the problem is essentially the UNSM problem with mb as
the submodular function. The reason why materialization
benefit for a particular set of nodes may be negative is due
to the fact that there may be certain nodes which may have
very high materialization cost but may not have high benefit.

3. THE MARGINAL GREEDY ALGO-
RITHM

In this section, we propose a greedy algorithm for the
UNSM problem for which we prove an approximation guar-
antee. A proof of a matching hardness of approximation,
under the assumption of P 6= NP is presented in the next
section.

Given a decomposition of a non-monotone, normalized
submodular function f , let the monotone submodular and

2The decomposition in Proposition 1 does not actually cor-
respond to the cost of materializing nodes but parallels are
drawn for intuition
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additive functions be denoted by fM and c. Thus, the prob-
lem we want to solve is as follows

max
S⊆U

f(S) = max
S⊆U

fM (S)− c(S)

The MarginalGreedy algorithm (Algorithm 2) has been pro-
posed before [30], albeit for non-negative, monotone sub-
modular maximization under knapsack constraints. At each
iteration, the algorithm greedily selects the element with the
highest use-benefit to cost ratio from those elements which
satisfy a knapsack constraint. In our case, however, there is
no knapsack constraint and instead we add elements as long
as it leads to an increase in the value of f . We emphasize
that the problem in our case is considerably different than
this problem and highlight the differences in subsection 3.1.

Algorithm 2 MarginalGreedy Algorithm

X = ∅
Y = Set of shareable equivalence nodes in the DAG
while Y 6= ∅ do

Pick x ∈ Y which maximizes r(x,X) =
f ′M (x,X)

c({x})
if r(x,X) > 1 then

X = X ∪ {x}, Y = Y \ {x}
else

Y = ∅
end if

end while
return X

The MarginalGreedy algorithm also finally adds all ele-
ments with negative c values. This was also done in Sviri-
denko’s case [30] as one can only increase the value of the
function without increasing the budget. This is fine for us
as well and can only raise the value of the function f . This
is because fM is monotone so including more elements only
raises its value and we are subtracting off some negative c
values which can only raise the value of f . If the decomposi-
tion used is the one given in Proposition 1, we can compute
the term in the summation for each element once and store
it. This can be done in just n + 1 bc(S) invocations (for
the sets U and for U \ {ei} ∀ei ∈ V ). We note that while
Algorithm 2 is presented referencing shared nodes in the
DAG, the algorithm works for any instance of UNSM with
an arbitrary universe of elements U .

3.1 Approximation Factor of Marginal
Greedy

Let Θ be an optimal solution. Let Xi denote the set of
nodes selected by Algorithm 2 just after the ith iteration.
Define ∆fM (E,S) = fM (S ∪ E) − fM (S), where E and S
are subsets of U .

We state the main theorem of this section which mentions
the approximation guarantee Algorithm 2 provides. The
approximation factor is not a constant and instead depends
on the value of the f and c functions at optimal.

Theorem 1. The answer obtained by the MarginalGreedy
algorithm (X) satisfies the following inequality

f(X) ≥
[
1− c(Θ)

f(Θ)
ln(1 +

f(Θ)

c(Θ)
)

]
f(Θ).

We prove the theorem after presenting a lemma and its corol-
lary which are central to the proof. At a high level, the

lemma states that upto a certain point in the execution of
the algorithm, there exists an element that can be picked
and has a marginal-benefit to cost ratio which is at least the
marginal-benefit to cost ratio we would get if we picked all
remaining elements in the optimal solution.

Lemma 1. At any iteration i+1 < n in the execution of
the MarginalGreedy algorithm, if fM (Xi) < f(Θ), then there
exists some element e ∈ Θ \Xi that satisfies

∆fM ({e}, Xi)
c({e}) ≥ ∆fM (Θ, Xi)

c(Θ)
.

Proof. Firstly, note that if

fM (Xi) < f(Θ) = fM (Θ)− c(Θ) ≤ fM (Θ),

then Θ\Xi 6= ∅. This is because fM is monotonically increas-
ing. Also, note that if S is fixed, ∆fM (E,S) is a submodular
function in E, due to submodularity of fM .

We consider two cases. Since the fM function is mono-
tonically increasing, the numerators on both sides of the
inequality are non-negative.

Case 1. ∆fM (Θ, Xi) = 0
In this case, the RHS of the inequality is 0. Since the fM
function is monotonically increasing, ∀e′ ∈ Θ \Xi, we have

∆fM (e′, Xi)

c({e′}) ≥ ∆fM (Θ, Xi)

c(Θ)
.

Since Θ \ Xi 6= ∅, any element e′ ∈ Θ \ Xi satisfies the
required inequality.

Case 2. ∆fM (Θ, Xi) > 0
We first show that there exists some element e ∈ Θ for which
the inequality holds. Assume the contradiction, i.e.,

∀e ∈ Θ,
∆fM ({e}, Xi)

c(e)
<

∆fM (Θ, Xi)

c(Θ)
.

∴ c(e)(∆fM (Θ, Xi)) > c(Θ)(∆fM ({e}, Xi)).

Summing up over all e ∈ Θ, we get

∑
e∈Θ

c(e)(∆fM (Θ, Xi)) >
∑
e∈Θ

c(Θ)(∆fM ({e}, Xi))

=⇒ (∆fM (Θ, Xi))
∑
e∈Θ

c(e) > c(Θ)
∑
e∈Θ

(∆fM ({e}, Xi))

=⇒ (∆fM (Θ, Xi))c(Θ) > c(Θ)
∑
e∈Θ

(∆fM ({e}, Xi))

=⇒ ∆fM (Θ, Xi) >
∑
e∈Θ

(∆fM ({e}, Xi)).

Since Xi is fixed, ∆fM (E,Xi) is a submodular function in
E. Thus, we have

∆fM (Θ, Xi) ≤
∑
e∈Θ

(∆fM ({e}, Xi)).

This leads to a contradiction. Thus, there exists some ele-
ment e′ ∈ Θ for which the required inequality holds.

Now, observe that the RHS of the required inequality in
this case is strictly positive and ∀e ∈ Xi, the LHS of the
inequality is 0. Hence, e′ /∈ Xi and we are done.

Corollary 1. When the conditions of Lemma 1 hold,

∆fM ({e}, Xi)− c({e})
∆fM ({e}, Xi)

≥ ∆fM (Θ, Xi)− c(Θ)

∆fM (Θ, Xi)
.
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Proof. From Lemma 1, we have

∆fM ({e}, Xi)
c({e}) ≥ ∆fM (Θ, Xi)

c(Θ)
.

Since fM is monotonically increasing, it implies

∆fM ({e}, Xi)− c({e})
∆fM ({e}, Xi)

≥ ∆fM (Θ, Xi)− c(Θ)

∆fM (Θ, Xi)
,

and we are done.

Proof. (of Theorem 1) Say the MarginalGreedy algorithm
runs for l ≤ n iterations. Define α(Xi) to be the rate of
increase of f with respect to fM just after the ith iteration
(and thus the current chosen set of elements is Xi). Further,
let e ∈ U \Xi be the next element that will be chosen by the
MarginalGreedy algorithm. Note that e is actually a function
of Xi and, thus, once Xi is fixed, so is e. Mathematically,

α(Xi) =
f(Xi ∪ {e})− f(Xi)

δ(fM (Xi))

where δ(fM (Xi)) = fM (Xi ∪ {e})− fM (Xi).
Let j ≤ l be the maximal index such that fM (Xj) < f(Θ).

The rate of increase at iteration i of the algorithm is at least
as large as choosing the element from Θ \Xi with the rate
presented in LHS of Corollary 1.

The corollary also implies that while fM (Xi) < f(Θ),
the greedy algorithm has an element that it can pick. This
implies that j < l. Thus, we have

f(Xl) =

l−1∑
i=0

α(Xi)δ(fM (Xi)).

Using Corollary 1,

f(Xl) ≥
l−1∑
i=0

(
fM (Θ)− fM (Xi)− c(Θ)

fM (Θ)− fM (Xi)

)
δ(fM (Xi))

≥
l−1∑
i=0

(
1− c(Θ)

fM (Θ)− fM (Xi)

)
δ(fM (Xi)).

Since the term in the parenthesis in the last line is a de-
creasing function of fM (Xi), we get

f(Xl) ≥
fM (Xl)∫

0

(
1− c(Θ)

fM (Θ)− u

)
du

≥
f(Θ)∫
0

(
1− c(Θ)

fM (Θ)− u

)
du

=

[
u+ c(Θ) ln(fM (Θ)− u)

]f(Θ)

0

=f(Θ) + c(Θ) ln

(
fM (Θ)− f(Θ)

fM (Θ)

)
=f(Θ) + c(Θ) ln

(
c(Θ)

f(Θ) + c(Θ)

)
=f(Θ)− c(Θ) ln

(
c(Θ) + f(Θ)

c(Θ)
)

)
=f(Θ)− c(Θ) ln

(
1 +

f(Θ)

c(Θ)
)

)

=

[
1− c(Θ)

f(Θ)
ln

(
1 +

f(Θ)

c(Θ)

)]
f(Θ).

This concludes our proof and gives us our required ap-

proximation factor of

[
1− c(Θ)

f(Θ)
ln

(
1 + f(Θ)

c(Θ)

)]
.

Since the approximation ratio depends on the decomposi-
tion (specifically the function c), it is natural to ask whether
different decompositions can lead to different solutions and
approximation ratios. This is indeed the case; given a de-
composition fM and c, we can add a positive linear func-
tion d(S) =

∑
i∈S di to both fM and c, we still have a

valid decomposition and the approximation factor has be-
come smaller. This is because f(Θ) is fixed but c(Θ) be-
comes larger and clearly, the ratio is a decreasing function
of c. Since this is the case, one may ask what is the “best”
decomposition for this problem? We now show that the de-
composition in Proposition 1, f∗M and c∗, is indeed the best
decomposition. This is done by first improving the ratio for
an arbitrary decomposition and then showing that the im-
provement procedure for f∗M and c∗ does not lead to any
improvement. In fact, in the next section, we will show a
hardness of approximation which matches the ratio provided
by this decomposition.

First we show how to obtain from an arbitrary decompo-

sition fM and c, another decomposition f̃M and c̃ such that
the ratio improves. This happens if we can subtract a linear
term from fM and c while preserving monotonicity of fM
based on the above argument. And then we show that for
f∗M and c∗, this improvement procedure returns f∗M and c∗

Proposition 2. Given an arbitrary decomposition fM
and c of a normalized submodular function f , i.e., f(S) =
fM (S) − c(S) ∀ S ⊆ V with monotone fM and consider
another decomposition

f̃M (S) = fM (S)−
∑
i∈S

(
fM (U)− fM (U \ i)

)
c̃(S) = c(S)−

∑
i∈S

(
fM (U)− fM (U \ i)

)
Then, f̃M is monotone. Furthermore, for the decomposi-

tion in Proposition 1, f∗M and c∗, f̃∗M = f∗M and c̃∗ = c∗.

Proof. The proof is provided in Appendix A.

We now remark on certain aspects of the algorithm and its
analysis. Since the algorithm is inspired by [30], one may ask
whether running that algorithm for multiple values of the
budget in the knapsack constraint leads to the same answer.
Indeed, this is the case with the budget being the value
of c(Θ). However, since we do not apriori know c(Θ), we
would have to potentially try out a large number of budget
values which is not feasible. Furthermore, our analysis of
the approximation ratio crucially uses the fact that we are
actually running the algorithm on this decomposition of f in
order to maximize f itself, and not maximizing a monotone
submodular function subject to knapsack constraints.

4. INAPPROXIMABILITY OF UNSM
In this section, we prove a hardness of approximation re-

sult for the UNSM problem, when the size of the universe is
part of the input, which matches the approximation factor
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given by the MarginalGreedy algorithm in Theorem 1 when
the decomposition used is f∗M and c∗ as defined in Proposi-
tion 1.

Theorem 2. For any ε > 0, it is NP-hard to approxi-
mate the unconstrained, normalized submodular maximiza-
tion problem to a factor of at least(

1− ln(1 + γ)

γ
+ ε

)
.

Here, γ = f(Θ)
c∗(Θ)

and Θ is an optimal solution to the UNSM

problem.

This approximation factor depends on the value at optimal
(which may go to 0), implying that a constant factor ap-
proximation to the UNSM problem is unlikely.

Before proving Theorem 2, we first present a separation
result of the Max Coverage problem which is central to the
proof of Theorem 2.

4.1 Inapproximability of Max Coverage
An instance I = (X,S) of the Set Cover problem is defined

as follows: we are given the ground set X = {e1, e2, . . . , en}
and S = {S1, S2, . . . , Sm} ⊆ 2X . The goal is to choose the
minimum number of sets O ⊆ S such that

⋃
Si∈O Si = X.

Feige [7] showed that for any ε > 0, there is no (1− ε) lnn-
approximation polynomial time algorithm for this problem
unless NP ⊆ DTIME(nO(log logn)). The hardness was later
proved under the weaker assumption of P 6= NP by [18, 5].

A problem closely related to the Set Cover problem is the
Max Coverage problem. An instance of the Max Coverage
problem consists of an instance I = (X,S, l) where X is the
ground set, S is a collection of subsets of X, and l ≤ m is
an integer specifying the budget. The goal is to select l sets
Si1 , Si2 . . . , Sil and cover as many elements of the ground
set as possible. Feige [7] shows that it is NP-hard to approx-
imate this problem to a factor better than 1 − 1/e. Krish-
naswamy and Sviridenko [14] prove the following separation
result (which is an extension of the Max Coverage hardness
stated above) which is of interest to us.

Theorem 3. (Theorem 2.2 in [14]) Suppose there exists
a polynomial algorithm, which for some constants B ≥ 1
and 0 < ε < e−B has the following property : Given any
instance (X,S, l) of Max Coverage with optimal value equal
to |X| (i.e., there exist l sets that cover the ground set X
completely), the algorithm picks a collection of βl sets for
some β ∈ [0, B] which can cover (1 − e−β + ε)n elements.
Then P = NP. Note that we allow the algorithm to pick
different values of β for different instances of the problem.

Theorem 2.2 in [14] is actually stated under the stronger

assumption of NP 6⊆ DTIME(nO(log logn)). Their reduction
relies on the hardness of Set Cover which, at the time of
that paper, was known only under this stronger assumption.
Leveraging the set cover hardness result by [18, 5] under
the weaker assumption of P 6= NP, we arrive at Theorem 3
without any changes to the proof provided in [14].

Note that the coverage function f(A) =
∣∣⋃

S∈A S
∣∣ is a

monotone, submodular function. The proof of Theorem 2
proceeds by considering a special case of UNSM where for
a Max Coverage instance, fM (A) is taken to be a scaling of
the coverage function and the additive cost function c(A) is
a scaling of the cardinality of the chosen set of subsets A.
We call this the Profitted Max Coverage problem.

Problem 1. (The Profitted Max Coverage problem) An
instance of this problem consists of an instance I = (X,S, l)
like the Max Coverage problem. Consider γ to be a constant
for this problem whose value will be revealed later.

Let fM (A) = (γ+1)
γ

∣∣ ⋃
S∈A

S

∣∣
n

and c(A) = 1
γ
|A|
l

. The goal is
to maximize

f(A) = fM (A)− c(A)

=
(γ + 1)

γ

∣∣⋃
S∈A S

∣∣
n

− 1

γ

∣∣A∣∣
l

Proof. (of Theorem 2) We want to show that if there
exists a polynomial time algorithm which approximates the
Profitted Max Coverage problem to a ratio better than

1− ln(γ + 1)

γ
+ ε

(γ + 1)

γ
,

then P = NP.
We consider a hard instance I = (X,S, l) of the Max

Coverage problem such that the optimal value is n (i.e., there
exist l sets to cover the entire ground set X). Now, let
functions f, fM and c be defined as in Problem 1.

[Completeness] Let us take a collection of l sets G =
{Si1 , Si2 , . . . , Sil} that cover the ground set X (such a col-
lection exists because I is a Max Coverage instance with
optimal value n). The optimal value of the corresponding
Profitted Max Coverage instance occurs when exactly the sets
in G are chosen.

f(G) =
(γ + 1)

γ

n

n
− 1

γ

l

l

=
(γ + 1)

γ
− 1

γ

= 1.

Observe that f(G)
c(G)

= γ.

[Soundness] It is easy to see that we will never choose
more than (γ + 1)l sets as the function f will take negative
values in those cases.

For any set, say F , of βl (where β ∈ [0, γ + 1]) subsets
from S which cover at most (1 − e−β + ε)n elements, the
value of the Profitted Max Coverage instance in this case is
at most:

f(F) ≤ (γ + 1)

γ

(1− e−β + ε)n

n
− 1

γ

βl

l

=
(γ + 1)

γ
(1− e−β + ε)− 1

γ
β

=
(γ + 1)(1− e−β + ε)− β

γ
.

Differentiating the expression in the last line w.r.t β and
setting the derivative to 0, we get

γ + 1

γ
(e−β)− 1

γ
= 0

=⇒ eβ = (γ + 1)

=⇒ β = ln(γ + 1) ≤ (γ + 1).
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Thus, the value f(F) is always less than the value attained
for that value of β and is

f(F) ≤ 1− ln(γ + 1)

γ
+ ε

(γ + 1)

γ
.

Now, if there exists a polynomial time algorithm (say Alg)
which solves the Profitted Max Coverage problem to a factor

better than 1− ln(γ+1)
γ

+ε (γ+1)
γ

, then on any input instance of
the Max Coverage problem such that the optimal value is n,

Alg will output a set F such that f(F) > 1− ln(γ+1)
γ

+ε (γ+1)
γ

(since the optimal value is 1). Thus, F covers strictly more

than (1 − e−β + ε)n elements with β = |F|
l

(by contraposi-
tivity). By Theorem 3, we have P = NP.

The above argument establishes the hardness for γ = f(Θ)
c(Θ)

for the function c defined in Problem 1. Since the factor
depends only on c(Θ), if we can show that c(Θ) = c∗(Θ) for
these hard instances, we would be done. This can be shown
by considering the expression for c∗(Θ) in this case :

c∗(Θ) =
∑
i∈Θ

(
f(U \ {i})− f(U)

)
=
∑
i∈Θ

(
fM (U \ {i})− fM (U)− c(U \ {i}) + c(U)

)
=
∑
i∈Θ

(
c(U)− c(U \ {i})

)
+
∑
i∈Θ

(
fM (U \ {i})− fM (U)

)
= c(Θ) +

∑
i∈Θ

(
fM (U \ {i})− fM (U)

)
= c(Θ) +

(γ + 1)

γ · n

∑
i∈Θ

[∣∣∣∣ ⋃
S∈U\{i}

S

∣∣∣∣− ∣∣∣∣ ⋃
S∈U

S

∣∣∣∣]
Note that all the hard instances of SetCover and Max Cov-

erage are derived from the construction of [15]. All such
instances are such that each element has multiple subsets
which may cover it (intuitively if there is only one subset
which covers a particular element in any hard instance, then
we will pick it and get a smaller, easier instance of the prob-
lem). Since the union of all subsets of the given instance is
n and so is the union of all but one of the available subsets
in the hard instance, each term in the above summation is
0. This implies that c∗(Θ) = c(Θ) and we are done.

5. SPEEDING UP THE MARGINAL
GREEDY

In the worst case, the MarginalGreedy algorithm runs in
O(n2 · EO) time, where n is the number of shareable nodes
and EO is the time to evaluate bc(S), i.e., the time to op-
timize the batch of queries given the set of nodes S, to be
materialized. This makes the algorithm expensive since n
itself may be exponential in the worst case. Thus, we would
like to reduce the time taken by the algorithm without sac-
rificing on the theoretical guarantees on the quality of the
solution proved in Section 3. In this section, we present
some optimizations to our algorithm to improve its running
time.

5.1 Basic Optimizations
We first note that two optimizations presented in [25] can

be used for our algorithm as well. Their first observation is
about searching only over all the shareable nodes. As noted

above, this can be directly used by us since our algorithm
just presents a different heuristic for choosing which nodes
to materialize. Their second optimization presents a way to
incrementally update the bestCost function for various sets
that exploits the result of earlier cost computations to in-
crementally compute the new plan. Since the mb function
is just a linear transformation of the bestCost function and
our greedy algorithm (at least when the decomposition pre-
sented in the proof of Proposition 1 is used) is also concerned
with just successive differences in the values of the bestCost
function, their optimization can also be used to speed up
our algorithm; for details see [25].

Another optimization (not in [25]) that can be made is
based on a simple observation of the greedy algorithm and by
exploiting submodularity. In the ith iteration, the Marginal-
Greedy algorithm needs to compute the maximum benefit to

cost ratio
f ′M (e,Xi−1)

c({e}) . Thus, if while scanning elements to

compute the maximum, we encounter an element that has
the marginal-benefit to cost ratio less than 1, we can remove
it from the set Y of elements to be searched over as it will
never be picked by the MarginalGreedy algorithm in the fu-
ture iterations either. This is because fM is also submodular
and the size of Xi always increases as i increases so the value
of the marginal-benefit to cost ratio only decreases as the al-
gorithm proceeds and will never become greater than 1. A
similar optimization for the simple greedy algorithm used
for monotone, submodular maximization under cardinality
constraints is also possible.

5.2 The Lazy Marginal Greedy algorithm
The third optimization in [25] essentially leverages super-

modularity to improve the running time of the greedy algo-
rithm. The argument is similar to that used by [16] for the
LazyGreedy algorithm. We observe that a similar argument
as the ones presented in these two papers may be used for
the MarginalGreedy algorithm and is presented next.

As noted previously, in each iteration i, the Marginal-
Greedy algorithm must identify the element e with the max-

imum marginal-benefit to cost ratio
f ′M (e,Xi−1)

c({e}) . For each

element e, the denominator is fixed and the marginal bene-
fits are monotonically nonincreasing during the iterations of
the algorithm, i.e., f ′M (e,Xi) ≥ f ′M (e,Xj) whenever i ≤ j.

Thus, instead of recomputing
f ′M (e,Xi−1)

c({e}) for each element

e ∈ V , which requires O(n) computations of f , the Lazy-
MarginalGreedy algorithm maintains a list of upper bounds
u(e) (initialized to a large value) on the marginal-benefit to
cost ratio sorted in decreasing order (using a heap).

In each iteration, the algorithm extracts the element with
largest u(e) from the ordered list of remaining elements
and add its to the current solution. If, after this update,
u(e) ≥ u(e′) ∀e′ 6= e, then submodularity guarantees that
f ′M (e,Xi−1)

c({e}) ≥ f ′M (e′,Xi−1)

c({e}) ∀e′ 6= e, and therefore the algo-

rithm has identified the element with the largest marginal
benefit to cost ratio without computing the ratio for a po-
tentially large number of elements e′.

5.3 Universe Reduction under size constraints
We may sometimes want to consider a cardinality con-

straint (say k) on the number of nodes to be materialized.
This may arise due to storage constraints which only al-
low materialization of a few subexpressions. We adapt our
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greedy algorithm for this constraint by simply stopping after
k elements are picked.

While, at this point, we do not show any theoretical ap-
proximation guarantees for this problem, there is a way to
leverage this cardinality constraint to prune out certain ele-
ments from the ground set U . This preprocessing step may
be used to reduce the size of the set of PQDAG nodes U on
which the algorithm will be run.

We show that the algorithm run on this reduced set is the
same as that obtained when the algorithm runs on the full
set. This check is useful only when there is a cardinality
constraint of k < n, as we will show.

Theorem 4. Let U = {e1, . . . , en} be the set of all share-
able PQDAG nodes ordered as

f ′M (e1, U \ {e1})
c({e1})

≥ . . . ≥ f ′M (en, U \ {en})
c({en})

.

Furthermore, let

U ′ = {e ∈ U
∣∣ fM (e)

c({e}) ≥
f ′M (ek, U \ {ek})

c({ek})
} for k < n.

The output of the MarginalGreedy algorithm (with cardinality
constraint of k) when it runs on U is the same as the output
when it runs on U ′.

Proof. The proof is provided in Appendix A.

It is important to note that this strategy may not always
lead to a reduction in the ground set but it may lead to
pruning in certain cases.

Note that this pruning procedure can be modified to work
for the simple greedy algorithm for monotone, submodular
maximization under cardinality constraints. The proof is
also along similar lines as those stated above.

6. EXPERIMENTAL SECTION
We now describe our experimental setup and findings. We

worked with the original C++ code of Pyro which imple-
mented the Greedy algorithm [25]. We extended it by im-
plementing the Marginal Greedy algorithm. All the opti-
mizations discussed in Section 5 are implemented with the
exception of the one discussed in subsection 5.3 as we are
mainly interested in the best plan without imposing any car-
dinality constraints.

The optimizer rule set consists of select push down, join
commutativity and associativity (to generate bushy join
trees), and select and aggregate subsumption. The physi-
cal operators included sort-based aggregation, merge join,
nested loop join, indexed selection and relation scan. The
implementation includes handling physical properties (sort
order and presence of indices) on base and intermediate rela-
tions, unification and subsumption during DAG generation
(see [25] for details).

The block size was taken as 4KB and our cost functions as-
sume 6MB is available to each operator during execution (we
also conducted experiments with memory sizes of 128MB).
Standard techniques were used for estimating costs, using
statistics about relations. The cost estimates are of the
standard resource consumption estimates (see Appendix C
of Roy’s thesis [24] for details) which contain an I/O com-
ponent and a CPU component, with seek time as 10 msec,
transfer time of 2 msec/block for read and 4 msec/block for
write, and CPU cost of 0.2 msec/block of data processed.

We assume that intermediate results are pipelined to the
next input, using an iterator model as in Volcano; they are
saved to disk only if the result is to be materialized for shar-
ing. The materialization cost is the cost of writing out the
results sequentially. The tests were performed on a 2.4 GHz
Intel i7 processor laptop with 8GB memory running Linux.
We compare Marginal Greedy with Greedy and stand-alone
Volcano (no MQO). The optimization time of our Marginal
Greedy algorithm was very close to that of the Greedy algo-
rithm in [25]. The optimization times are measured as CPU
time.

6.1 Experiment 1 (Batched TPCD Queries)
The workload for the first experiment models a system

where several TPCD queries are executed as a batch. The
workload consists of subsequences of the queries Q3, Q5, Q7,
Q8, Q9 and Q10. Each query was repeated twice with differ-
ent selection constants. Composite query BQi consists of the
first i of the above queries, and we used composite queries
BQ1 to BQ6 in our experiments. The TPCD database is
used at a scale of 1 (1 GB total size), with a clustered index
on the primary keys for all the base relations. We also ran
the queries in this experiment and the next at a scale of 100
(total size 100GB).

Note that although a query is repeated with two different
values for a selection constant, we found that the selection
operator generally lands up at the bottom of the best Vol-
cano plan tree, and the two best plan trees may not have
common subexpressions.

The results on the two workloads (1GB and 100 GB to-
tal sizes) are shown in Figure 4. The number on top of the
bars for Greedy and Marginal Greedy denotes the number of
materialized nodes. Greedy does substantially better than
Volcano (without MQO) by upto 57%. Marginal Greedy
always does as well as or better than Greedy. In fact, the
results are the same only for BQ1 where both chose to ma-
terialize the two nodes which lead to benefit. For all other
queries in the experiment with 1GB Total Size, the improve-
ment of Marginal Greedy is always between 12% and 25%.
This is primarily due to the number of materialized nodes
by Marginal Greedy being more than that by Greedy. BQ5
is especially interesting in Figure 4a as the number of ma-
terialized nodes is the same yet there is almost a 20% im-
provement over Greedy. In fact, for queries from BQ4 to
BQ6, the intersection in the materialized nodes by the two
algorithms had an overlap of 1 or 2 only.

In the experiment with 100GB Total Size (Figure 4b), as
mentioned, the nodes chosen to be materialized for BQ1 are
the same for both algorithms. For the rest of the queries, the
number of materialized nodes is much larger than in the 1GB
size dataset. While the relative gains in this dataset might
seem comparable or slightly lesser than those observed in the
smaller dataset, the actual gains in these cases are substan-
tial due to large costs coming from these large data sizes.
In these queries, there were 1 or 2 nodes which had sub-
stantially more benefit and got picked by both Greedy and
Marginal Greedy. While Greedy picked a few more nodes
which seemed benefical initially, Marginal Greedy picked
many more nodes, each of which had moderate benefit but
lead to an overall decrease in the cost. This behaviour was
particularly observed in BQ5 and BQ6 and we conjecture
for larger sets of queries on larger data sets, this behavior
may be more pronounced.
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Figure 4: Results for batched TPCD queries (Experiment 1)

The optimization times for the queries are shown in Figure
4c. Since the values for Greedy and Marginal Greedy were
very close to each other, we present the results in logscale.
As can be seen, the optimization times are very close to
each other. We stress that while the execution cost of a
query depends on the size of the underlying data, the cost
of optimization does not.

6.2 Experiment 2 (Stand-Alone TPCD
Queries)

Roy et al. [25] also had an experiment consisting of four
individual queries based on TPCD using the same data sizes
(1GB and 100GB) and the same indices. These queries had
common subexpressions within themselves and benefitted
from MQO to optimize just those queries individually. How-
ever, in each of these queries only one node was beneficial
and hence, both algorithms found that node and resulted in
the same answer. We present the results here for complete-
ness. We explain these queries themselves and the actual
results are presented in Figure 5 in Appendix B.

TPCD query Q2 has a large nested query, and repeated
invocations of the nested query in a correlated evaluation
could benefit from reusing some of the intermediate results.
Greedy and Marginal Greedy gave a plan with an estimated
cost of 79 seconds for the smaller data set and 1929 sec-
onds for the larger one. Decorrelation is an alternative to
correlated evaluation and Q2-D is a (manually) decorrelated
version of Q2 (due to decorrelation, Q2-D is actually a batch
of queries). Multi-query optimization also gives substantial
gains on the decorrelated query Q2-D, results in a plan of
estimated cost 46 and 2059 for the two data sizes respec-
tively, by both algorithms. We next considered the TPCD
queries Q11 and Q15, both of which have common subex-
pressions, and hence make a case for multi-query optimiza-
tion. For Q11, both the greedy algorithms lead to a plan
of approximately half the cost as that returned by Volcano.
The improvements for Q15 are similar but more pronounced
for the smaller data set.

The conclusion based on the experiments seems to be that
when there are multiple possible nodes that can be material-
ized, Greedy chooses the nodes which result in considerable
improvements early on but Marginal Greedy is more global
and chooses to materialize more nodes which might have
moderate benefit individually but can result in overall ben-
efits.

7. RELATED WORK
We now present the related work in the areas of multi-

query optimization and submodular maximization.

7.1 Multi-Query Optimization
The MQO problem has received significant attention in

the past [26, 20, 27, 22, 29]. Initial work [26, 20, 22, 27]
proposed solutions that were not fully integrated with the
query optimizer and were primarily exhaustive.

Subramanian and Venkataraman [29] consider sharing
only among the best plans of the query; this approach can
be implemented as an efficient, post-optimization phase in
existing systems, but can be highly suboptimal.

To choose the set of nodes to be materialized, Roy et al.
[25] use a greedy algorithm discussed in detail in Section 2.
Dalvi et al. [4] explores the possibility of sharing interme-
diate results by pipelining, avoiding unnecessary material-
iziations. Thomas et al. [31] consider the MQO problem in
Volcano taking scheduling and caching into account. They
present an exhaustive algorithm which takes O(nn) time,
which is clearly infeasible.

Zhou et al. [32] propose a framework to use common
subexpressions for MQO and materialized view selection in
a query optimizer based on the Cascades framework [9]. The
focus however is on“covering”subexpressions at the LQDAG
level and they do not take into account competing physical
properties like sort orders and partitioning properties from
different consumers.

Silva et al. [28] consider physical properties in a cost-based
fashion. However, their solution is also based on heuris-
tics which materializes every common subexpression at the
LQDAG level. The best physical property for each subex-
pression is chosen and all consumers are forced to use the
same physical property, which can be sub-optimal. Even
with this heuristic, their approach can be very expensive
when there are many potential physical properties for each
subexpression.

7.2 Submodular Maximization
Submodular maximization has received a significant

amount of attention in optimization [3, 19, 2] with wide
applicability in machine learning, computer vision and in-
formation retrieval [11, 12, 1, 13]. In this problem, we are
given a submodular function f and a universe U , with the
goal of selecting a subset S ⊆ U which maximizes f(S).
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Typically, S must satisfy additional feasibility constraints
such as cardinality, knapsack or matroid constraints.

This problem is NP-hard even for the simplest prob-
lems which involve only cardinality constraints and mono-
tone functions. Nemhauser et al. [19] show that a sim-
ple greedy algorithm gives a (1 − 1/e) approximation for
monotone submodular maximization under cardinality con-
straints. They further show that it is NP-hard to obtain a
better approximation guarantee. Sviridenko [30] presents a
modified greedy algorithm for monotone submodular func-
tion maximization under knapsack constraints and is the
main motivation for our algorithm.

Buchbinder et al. [2] gave a 1/2-approximation algorithm
for unconstrained non-monotone submodular maximization,
for which there is a matching hardness result. However, all
these results assume non-negativity of the function f . Mit-
tal and Shulz [17] show that a constant factor approximation
for non-negative supermodular minimization is NP-hard. In-
approximability of non-monotone submodular maximization
(with possibly negative values) is also well known. More
specfically, it is NP-hard to even decide whether the op-
timum is non-negative or not for a general non-monotone
submodular function (which may take negative values). We
were able to sidestep this hardness as we already knew that
the optimum is greater than or equal to zero due to the nor-
malized assumption. To the best of our knowledge, ours is
the first work which, under the assumption of f(∅) = 0, pro-
vides an approximation algorithm with a matching hardness
of approximation result for unconstrained non-monotone
submodular maximization when the function may take neg-
ative values. Since the hardness of approximation factor
depends on the optimal (and may go to 0), this rules out
constant factor approximations for the problem even in the
restricted setting of f(∅) = 0.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a reformulation of the

well-studied MQO problem. Under the assumption of su-
permodularity of the bestCost function, we propose a greedy
algorithm for the maximization problem and provide an ap-
proximation factor guarantee for our algorithm. We then
showed that obtaining a better approximation factor than
the one attained by our greedy algorithm is NP-hard. Such a
theoretical guarantee on the quality of any heuristic has not
been presented before. Since the underlying problem solved
in this paper is the unconstrained, normalized submodular
maximization problem, with possibly negative values, we be-
lieve our results can be useful beyond just MQO.

One area of future work is the problem of non-negative,
non-monotone submodular maximization problem under
cardinality constraints and more generally, matroid con-
straints. This is an open problem and even the most recent
work [6] has a considerable gap in the approximation ratio
and the hardness of approximation known. We would like to
see if ideas in this paper like the “best decomposition” can
be used to devise algorithms with better guarantees for that
problem.
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APPENDIX
A. ADDITIONAL PROOFS

We now present the missing proofs. We reproduce the
theorem statements for convenience.

Proposition 1. (in the main paper) Any normalized,
non-monotone (which may take negative values) submodular

function f can be decomposed as

f(S) = fM (S)− c(S) , ∀ S ⊆ U

where fM is a monotone submodular function and c is an
additive cost function. In particular, one possible decompo-
sition is

f∗M (S) = f(S) +
∑
e∈S

(f(U \ {e})− f(U))

c∗(S) =
∑
e∈S

(f(U \ {e})− f(U))

Proof. It is easy to see that c is additive and that

∀ S ⊆ X, we have f(S) = fM (S)− c(S)

Since c is additive and f is submodular, fM is also sub-
modular since for arbitrary S1 ⊂ S2 ⊂ U and an arbitrary
e ∈ U \ S2,

fM (S1 ∪ {e})− fM (S1)

= f(S1 ∪ {e})− c(S1 ∪ {e})− f(S1) + c(S1)

= f(S1 ∪ {e})− f(S1)− c({e}) (by linearity of c)

≥ f(S2 ∪ {e})− f(S2)− c({e}) (by submodularity of f)

= f(S2 ∪ {e})− f(S2)− c(S2 ∪ {e}) + c(S2) (by linearity)

= fM (S2 ∪ {e})− fM (S2).

Now we just have to show that fM is monotone.
Consider an arbitrary S ⊂ U and an arbitrary e ∈ U \ S.
Let us consider the expression

fM (S ∪ {e})− fM (S)

= f(S ∪ {e})− f(S) + (f(U \ {e})− f(U))

= (f(S ∪ {e})− f(S))− (f(U)− f(U \ {e}))
≥ 0

The inequality in the last line follows from the fact that
S ⊆ U \ {e} and the submodularity of f . The terms in the
summation can be suitably scaled to ensure that c is zero
only at ∅ and positive everywhere else.

Proposition 2. (in the main paper) Given an arbitrary
decomposition fM and c of a normalized submodular func-
tion f , i.e., f(S) = fM (S) − c(S) ∀ S ⊆ V with monotone
fM and consider another decomposition

f̃M (S) = fM (S)−
∑
i∈S

(
fM (U)− fM (U \ i)

)
c̃(S) = c(S)−

∑
i∈S

(
fM (U)− fM (U \ i)

)
Then, f̃M is monotone. Furthermore, for the decomposi-

tion in Proposition 1, f∗M and c∗, f̃∗M = f∗M and c̃∗ = c∗.

Proof. To show monotonicity of f̃M , it is enough to show

∀j ∈ U, ∀S ⊆ U \ {j}, f̃M (S ∪ {j})− f̃M (S) ≥ 0.

f̃M (S ∪ {j})− f̃M (S)

= fM (S ∪ {j})− fM (S)−
(
fM (U)− fM (U \ {j})

)
≥ 0 (by submodularity of fM )

For the second part, we just expand the expressions to get
the desired result.
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Figure 5: Results for stand-alone TPCD queries (Experiment 2)

c̃∗(S) = c∗(S)−
∑
i∈S

(
f∗M (U)− f∗M (U \ {i})

)
= c∗(S)−

∑
i∈S

f(U)− f(U \ {i}) +
(
f(U \ {i})− f(U)

)
= c∗(S)

The computation for f̃∗M (S) proceeds similarly.

Theorem 4. (in the main paper) Let the set of all shareable
PQDAG nodes U = {e1, . . . , en} be ordered as

f ′M (e1, U \ {e1})
c({e1})

≥ . . . ≥ f ′M (en, U \ {en})
c({en})

.

Furthermore, let

U ′ = {e ∈ U
∣∣ fM (e)

c({e}) ≥
f ′M (ek, U \ {ek})

c({ek})
} for k < n.

The output of the MarginalGreedy algorithm (with cardinal-
ity constraint of k) when it runs on U is the same as the
output when it runs on U ′.

Proof. Without loss of generality, assume that the al-
gorithm, when run on U’, terminates after the full k steps.
Let the sequence of chosen elements, in order of inclusion, be
{s1, s2, . . . , sk} and for all i ∈ [k], let Xi = {s1, s2, . . . , si},
as before. Clearly, ∅ = X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xk.

Case 1. k = n
This is a simple case in which all elements are chosen and,
thus, U ′ should be equal to U which is shown as follows
∀e ∈ U , we have

fM ({e})
c({e}) =

f ′M (e, ∅)
c({e})

≥ f ′M (e, U \ {e})
c({e}) (by submodularity)

≥ f ′M (ek, U \ {ek})
c({ek})

.

Hence, all elements of U are going to be in U ′ since they
all satisfy the condition to be in U ′. In this case, the check
is clearly wasteful since the ground set has no reduction and
a lot of functional calls are made. In the MQO context,
this corresponds to invoking a lot of bestCost(Q,S) calls,
each of which are moderately expensive. Thus, in this case,
the preprocessing step should just check if k = n and if so,
directly pass the full ground set to the greedy algorithm.

Case 2. k < n & Xk = {e1, e2, . . . , ek}.
In this case, the theorem follows trivially since U ′ will con-
tain all elements in Xk, along with some other elements.

Case 3. k < n & Xk 6= {e1, e2, . . . , ek}.
We first make a claim which we will prove later.

Claim 1. For all i ∈ {1, 2, . . . , k}, we have

f ′M (si, Xi−1)

c({si})
≥ f ′M (ei, U \ {ei})

c({ei})
.

The claim is used to show that elements in U \U ′ will never
be picked by the MarginalGreedy algorithm. Intuitively, for

any element e /∈ U ′, the
f ′M (e,Xi)

c({e}) ratio of picking it is largest

in the first iteration (by submodularity) and that itself is
less than the element with the smallest ratio of the elements
selected by the greedy algorithm. So, it is guaranteed that
the greedy algorithm does not pick any element which is not
in U ′. This is easy to see and is as follows
For all e ∈ U \ U ′, we have

f ′M (e, ∅)
c({e}) =

fM (e)

c({e}) <
f ′M (ek, U \ {ek})

c({ek})
.

By Claim 1,

f ′M (sk, Xk−1)

c({sk})
≥ f ′M (ek, U \ {ek})

c({ek})

=⇒ f ′M (sk, Xk−1)

c({sk})
>
f ′M (e, ∅)
c({e}) .

We now present the proof of Claim 1.

Proof. (of Claim 1) The case of ei 6∈ Xi−1 is trivial due
to submodularity and the greedy algorithm.

Thus, we just have to prove for the case when ei ∈ Xi−1

Since |Xi−1| = i− 1, Xi−1 cannot include all elements from
the set {e1, e2, . . . , ei}. Thus, there exists some element, say,
ez ∈ e1, e2, . . . , ei such that ez /∈ Xi−1.

Thus, we have
f ′M (si, Xi−1)

c({si})

= max
e∈U\Xi−1

f ′M (e,Xi−1)

c({e})

≥f
′
M (ez, Xi−1)

c({ez})

≥f
′
M (ez, U \ {ez})

c({ez})
(by submodularity)
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≥f
′
M (ei, U \ {ei})

c({ei})

This concludes our proof.

B. RESULTS OF EXPERIMENT 2
In this section, we present the results of Experiment 2

(Stand-alone TPCD). The results are shown in Figure 5.
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