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ABSTRACT
Database systems frequently have to execute a set of
related queries, which share several common subexpres-
sions. Multi-query optimization exploits this, by finding
evaluation plans that share common results. Current
approaches to multi-query optimization assume that co-
mmon subexpressions are materialized. Significant per-
formance benefits can be had if common subexpressions
are pipelined to their uses, without being materialized.
However, plans with pipelining may not always be re-
alizable with limited buffer space, as we show. We
present a general model for schedules with pipelining,
and present a necessary and sufficient condition for de-
termining validity of a schedule under our model. We
show that finding a valid schedule with minimum cost is
NP-hard. We present a greedy heuristic for finding good
schedules. Finally, we present a performance study that
shows the benefit of our algorithms on batches of queries
from the TPCD benchmark.

1. INTRODUCTION
Database systems are facing an ever increasing de-

mand for high performance. They are often required
to execute a batch of queries, which may contain sev-
eral common subexpressions. Traditionally, query op-
timizers like [6] optimize queries one at a time and do
not identify any commonalities in queries, resulting in
repeated computations. As observed in [10, 8] exploit-
ing common results can lead to significant performance
gains. This is known as multi-query optimization.
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Existing techniques for multi-query optimization as-
sume that all intermediate results are materialized [9,
4, 11]. They assume that if a common subexpression is
to be shared, it will be materialized and read whenever
it is required subsequently. Current multi-query opti-
mization techniques do not try to exploit pipelining of
results to all the users of the common subexpression.
Using pipelining can result in significant savings, as il-
lustrated by the following example.

Example 1. Consider 2 queries, Q1 : σA.x=5(A 1

B) and Q2 : σB.y=10(A 1 B). Suppose we evaluate
the 2 queries separately. In this case we pay the price
of recomputing A 1 B. If we materialize the result
of A 1 B, although we do not have to recompute the
result, we have to bear the additional cost of writing
and reading the result of the shared expression. Now,
if we pipeline the results of A 1 B to both the selects,
we do not have to recompute the result of A 1 B and
we also save the costs of materializing and reading the
common expression. 2

However, if all the operators are pipelined, then the
schedule may not be realizable. We will formalize this
concept later by defining valid schedules. The follow-
ing example illustrates why every schedule may not be
realizable.

Example 2. Consider the query execution plan sho-
wn in Figure 1. We assume nodes A and B produce
results sorted on the join attributes of A and B and
both joins are implemented using merge joins. Now,
suppose all the operators are pipelined and a pull model
of execution is used. Also suppose MJ1 is getting very
few tuples from A due to low selectivity of the select
predicate σA.x=v1. Then, it may not pull any tuple
from B. However, since MJ2 is getting tuples from
A, it will keep pulling tuples from B. Since MJ1 is
not consuming the tuples from B, B can not evict any
tuple from its output buffer, which will become full.
Now MJ2 cannot consume any more A tuples, so the
output buffer of A will also become full. Once both
output buffers are full, execution will deadlock. Hence,
this schedule may not be realizable. The same problems
would also arise with a push model for pipelining. 2
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Figure 1: Unrealizable Schedule

Our Contributions: The following are the major con-
tributions of this paper:

• We present a general model for pipeline schedules,
where multiple uses of a result can share a scan on
the result of a subexpression; as a special case, if
all uses of the result can share a scan, the result
need not be materialized.

• We then present a necessary and sufficient con-
dition for determining validity (realizability) of a
schedule under our model.

• We show that given a plan which includes shar-
ing of subexpressions, finding a valid schedule with
minimum cost is NP-hard.

• We then present algorithms for finding good pipe-
lined schedules statically (dynamic materialization
is briefly discussed in Section 6.5). We have imple-
mented our algorithms, and present a performance
study that illustrates the practical benefits of our
techniques, on a workload of queries taken from
the TPCD benchmark.

The rest of the paper is organized as follows. Section 2
covers related work. Section 3 gives an overview of the
problem. Section 4 gives a model for pipelining in a
DAG, as well as necessary and sufficient condition for
validity of a pipelined schedule. Section 5 gives our cost
model and shows that the problem of finding the least
cost pipeline schedule for a given DAG structured query
plan is NP-hard. We give a greedy heuristic for finding
good pipeline schedules in Section 6. In Section 7, we
give a detailed performance study of our heuristics, and
Section 8 concludes the paper.

2. RELATED WORK
Related works by Chekuri et al. and Hong [1, 7] have

concentrated on finding pipeline schedules for query
plans which are trees. These algorithms try to find
parallel schedules for query plans and do not consider
common subexpressions. Note that these algorithms
cannot be used in the context of multi query optimiza-
tion, where the plans are DAGs.

Tan and Lu [12] try to exploit common subexpres-
sions along with pipelining, but their technique applies
only to a very specific query processing mechanism: join

trees, broken into right deep segments where all the
relations used in a segment fit in memory. Pipelined
evaluation is used for each rightdeep segment. Their
optimizations lie in how to schedule different segments
so that relations loaded in memory for processing other
segments can be reused, reducing overall cost. Database
relations and shared intermediate are assumed to fit
in memory, which avoids the problems of realizability
which we deal with, but the assumption is unlikely to
hold for large databases. Further, they do not address
general purpose pipeline plans for joins, or any opera-
tions other than joins.

Graefe [5] describes a problem of deadlocks in paral-
lel sorting, where multiple producers working on par-
titions of a relation pipeline sorted results to multiple
consumers; the consumers merge the results in their in-
put streams. This problem is a special case of our prob-
lem: we can create a plan to model parallel sorting, and
apply our techniques to detect if a pipeline schedule for
the plan is valid.

The RedBrick data warehouse (now part of Informix)
has long implemented a shared scan operation on base
relations, which allows multiple queries to share the out-
put of a scan (see, e.g., [2]). Pipelining results of a com-
mon subexpression to multiple uses is a generalization
of this idea. Since intermediate results are not shared,
the only problem of realizability in the context of Red-
Brick arises when a database relation is used twice in
the same query. A simple solution for this case would be
to simply not share relation scans within a query, but
we are not aware of any work describing how RedBrick
handles this case. However, the RedBrick warehouse
has an out-of-order delivery mechanism whereby a re-
lational scan that is just started can use tuples being
generated by an ongoing scan, and later fetch tuples al-
ready generated by the earlier scan. We do not consider
such dynamic scheduling. Our schedule is static.

3. INCORPORATING PIPELINING
The main objective of this paper is to incorporate

pipelining in multi-query optimization. We use a 2
phase optimization strategy. The first phase uses mul-
tiquery optimization to choose a plan for a given set
of queries, ignoring pipelining optimizations, as done in
[9]. The second phase, which we cover in this paper, ad-
dresses optimization of pipelining for a given plan. Sin-
gle phase optimization, where the multiquery optimizer
takes pipelining into account while choosing a plan, is
very expensive, so we do not consider it here.

Multi-query optimizers generate query execution plans
with common subexpressions used more than once, and
thus nodes in the plan may have more than one par-
ent. We therefore assume the input to our pipelining
algorithms is a DAG structured query plan. We as-
sume edges are directed from producers to consumers.
Henceforth, we will refer to the plan as the Plan-DAG.
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Figure 2: Examples of Pipelinable Edges

3.1 Annotation of Plan-DAG
Given a Plan-DAG, the first step is to identify the

edges that are pipelinable, depending on the operator
at each node. We say an edge is pipelinable if (a) the
operator at the output of the edge can produce tuples
as it consumes input from the edge, and (b) the oper-
ator reads its input only once. Otherwise the edge is
materialized.

The pipelinable edges for nested loop join and hash
join operators are shown in Figure 2. Solid edges sig-
nify pipelining while dashed edges signify materializa-
tion1. Since the inner relation in nested loop join and
the build relation in hash join have to be read more
than once and we assume limited buffers, they have to
be materialized. The inputs of select and project op-
erators, without duplicate elimination, as well as both
inputs of merge join are pipelinable. For sort the input
is not pipelinable since the input has to be consumed
completely before outputting any tuple. However, the
merge sort operation can be split into run generation
and merge phases, with the input pipelined to run gen-
eration, but the edges from run generation to merge
being materialized.

Thus finally we will have a set of pipelinable and ma-
terialized edges. We use the word pipelinable instead
of pipelined because all the edges marked so are only
potentially pipelinable. It may not be possible for all
of them to be simultaneously pipelined, as explained
below.

3.2 Problems in Pipelining
A schedule in which the edges are labeled purely on

the basis of the algorithm used at that node may not
be realizable using limited buffer space. Our basic as-
sumption is that any result pipelined to more than one
place has to be pipelined at the same rate to all uses.
This is because of the limited buffer size. Any differ-
ence in the rates of pipelining will lead to accumulation
in the buffer and either it will eventually overflow or
the result would have to be materialized. We assume
intermediate results will not fit in memory2.

For instance consider the following two examples.

1We will follow this convention throughout the paper
2If some, but not all intermediate results fit in memory, we
would have to choose which to keep in memory. This choice
is addressed by Tan and Lu [12] in their context, but is a
topic of future work in our context.
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Figure 3: Problems in Pipelining

• Consider the first schedule in Figure 3. The solid
edges show pipelining and dashed edges show ma-
terialization. The output of u is being pipelined
to both m and n. Also note that the output of m
is pipelined to v at the same time but the output
of n is being materialized. Now v cannot consume
its input coming from m till it sees tuples from n.
Thus it cannot consume the output of m. Thus,
either the buffer between v and m will overflow or
the result of m will need to be materialized. Thus,
this schedule cannot be realized.

• There is one more context in which problems can
occur. Consider the second schedule in Figure 3.
Suppose the operator at node a wants the rate of
inputs in some ratio Ra. Similarly, the operator b
wants input rates in ratio Rb. The rates of inputs
in various edges are x,y,z and w as shown. How-
ever, as stated earlier, we require x to be same as y
and z to be same as w. This forces Ra and Rb to be
equal, which may not be always true. Moreover,
the rates Ra and Rb will be changing dynamically
depending on the data. So, this schedule cannot
be realized.

In the next section we generalize the above situations
which can give rise to schedules which cannot be real-
ized.

4. PROBLEM FORMULATION
We now define a model for describing a valid pipeline

schedule, i.e. the schedule can be executed without ma-
terializing any edge marked as pipelined and using lim-
ited buffer space.

4.1 Problem definition

Definition 1. (Pipeline Schedule) A pipeline sched-
ule is a Plan-DAG with each edge labeled either pipelin-
ed or materialized. 2

Given a particular database, and a query plan, we can
give sequence numbers to the tuples generated by each
operator (including relation scan, at the lowest level).
We assume that the order in which tuples are generated



by a particular operation, is independent of the actual
pipeline schedule used; this assumption is satisfied by
all standard database operations.

Given a pipelined edge e, incoming to node n, the
function f(e, x) denotes the maximum sequence number
amongst the tuples from edge e that the operator at
node n needs to produce its xth output tuple. The
function f(e, x) is independent of the actual pipeline
schedule used.

We also define two functions whose value determines
an actual execution of a pipelined schedule. We assume
that time is broken into discrete units, and in each unit
an operator may consume 0 or 1 tuple from each of
its inputs, and may produce 0 or 1 output tuple. The
function P (e, t) denotes the sequence number of the last
tuple that is pipelined through edge e at or before time
t. Similarly P (n, t) denotes the sequence number of the
last tuple the operator at node n produces at or before
time t. We also refer to the sequence number of the last
tuple as the max tuple.

Definition 2. (Bufferless Pipeline Schedule) A pip-
eline schedule is said to be bufferless, if, given a function
f(e, x), defined for every pipelined edge e, there exists a
function P (e, t), increasing w.r.t. t, such that for every
node n, with outgoing edges o1, o2, · · · ok, and incoming
edges e1, e2, · · · ek, the following conditions are satisfied.

(i) P (o1, t) = P (o2, t) · · · = P (ok, t) = P (n, t)

(ii) P (ei, t) = f(ei, P (n, t)), ∀ i.

(iii) ∃ T such that ∀ n, ∀t ≥ T , P (n, t) = CARD(n)
where CARD(n) is the size of the result produced
by the operator at node n. 2

The first condition enforces that all the tuples gen-
erated at a node are passed immediately to each of its
parents, thereby avoiding the need of them to be stored
in buffer. The second condition enforces that the tuple
requirements of each operator is simultaneously satis-
fied. The third condition enforces that the schedule
gets completed.

Definition 3. (Valid Pipeline Schedule) A pipeline
schedule is said to be valid if it is bufferless and if each
node n in the Plan-DAG can be given an integer S(n),
referred to as the stage number, satisfying the follow-
ing property: If n is a node, with children a1, a2, · · · ak,
and corresponding edges e1, e2, · · · ek following condi-
tions are satisfied:

(i) If ei is labeled materialized, then S(ai) < S(n)

(ii) If ei is labeled pipelined, then S(ai) = S(n) 2

The idea behind the stage number is that all the op-
erators having the same stage number will be executed
simultaneously. Also, all operators having stage number
i − 1 will get completed before execution of operators
in stage i starts.

A B C D

E F

G H

e1

e2
e3

e4

Figure 4: The plan-DAG and the pipelining
schedule for Example 3

Note that the tuple requirements of the operators are
dynamic and are not known a priori. But, using either
push or pull, with limited buffers, the rates will get ad-
justed dynamically in an actual evaluation. Valid sched-
ules will complete execution and invalid ones may dead-
lock unless results are materialized. A detailed proof is
given in Section 4.2. For instance, using the pull model,
operators can be implemented as iterators as described,
for example, in [5]. If there are multiple roots in a Plan-
DAG, the iterators for all the roots start execution in
parallel. For instance, in Example 1, the iterators for
Q1 and Q2 would execute in parallel, both pulling tu-
ples from (A 1 B). A tuple can be evicted from the
output buffer of (A 1 B) only when it is consumed by
both Q1 and Q2.

Example 3. Consider the Plan-DAG given in Figure
4. The dashed edges are materialized while the rest are
pipelined. Also, the pipeline schedule is valid, because
we can have S(C), S(D) and S(F ) as 0, with the other
stage numbers as 1. Also, functions can be assigned to
all pipelined edges so that all the conditions are satis-
fied. At stage number 0, we would have computed C,
D and F . At stage number 1, we would compute the
results of the remaining nodes. Also note that the con-
straints on e1 and e3, placed by the operator at G, can
be satisfied by reading the results of F and passing to G
at the required rate. The rates of consumption of E at
G and H would get adjusted dynamically: if the output
buffer of E fills up, the faster of G or H will wait for the
other to catch up. The case with e2 and e4 is similar.2

4.2 Validity Criterion
As we have seen earlier, not all potentially pipelinable

edges of the Plan-DAG can be simultaneously pipelined.
We now give a necessary and sufficient condition for a
schedule to be valid. But before that, we need to define
some terminology.

Definition 4. (C-cycle) A set of edges in the Plan-
DAG is said to form a C-cycle, if the edges in this set,



when the Plan-DAG is considered as undirected, form
a simple cycle. 2

Definition 5. (Opposite edges) Two edges in a C-
cycle are said to be opposite, if these edges, when travers-
ing along the C-cycle, are traversed in opposite direc-
tions. 2

In the previous example, the edges e1, e2, e3 and e4

form a C-cycle. In it, e1 and e2 are opposite, so are e1

and e3, e3 and e4, and e2 and e4.

Definition 6. (Constraint Dag) The equivalence re-
lation ∼ on the vertex set of Plan-DAG is defined as fol-
lows: v1 ∼ v2 if there exists vertices v1 = a1, a2, · · · an =
v2 such that there is a pipelined edge between ai and
ai+1 for each 1 ≤ i < n.

Let Eq = C1, C2 . . . Ck be the set of equivalence classes
of∼. We define a directed graph, referred to as the Con-
straint Dag, on Eq by the following rule: draw an edge
from Ci to Cj if there exists vertices vi and vj such that
vi ∈ Ci, vj ∈ Cj and there is a path from vi to vj . 2

In the proof of Theorem 1, we show that the graph
defined above is a DAG.

The following theorem provides a necessary and suffi-
cient condition for determining the validity of a pipeline
schedule.

Theorem 1. Given a Plan-DAG, a pipeline schedule
is valid iff every C-cycle satisfies the following condition:
there exist two edges in the C-cycle both of which are
labeled materialized, and are opposite. 2

The proof is given in the Appendix.

4.3 Testing for Validity
Now, we show that given a schedule we can test whether

it is valid or not in polynomial time. First, we construct
the equivalence classes C1, C2, · · · , Cm as described in
the previous section. We then check that the subgraphs
induced by each of the Ci is a tree, which is a necessary
condition as shown in the proof of Theorem 1. Finally
we construct the graph on these equivalence classes and
check that it is a DAG, which is also a necessary condi-
tion as shown in the proof of Theorem 1. As shown in
the same proof, if all the above conditions are satisfied
then the schedule is valid, otherwise it isn’t. All the
above steps can be easily executed in polynomial time
and hence we have the following theorem:

Theorem 2. Validity of a pipeline schedule for a Plan-
DAG can be checked in polynomial time. 2

5. LEAST COST PIPELINE SCHEDULE
In the previous section we considered the problem of

checking the validity of a pipeline schedule. Now, we
come to the problem of finding the least cost pipeline
schedule, given an input Plan-DAG. Before that we de-
scribe the cost model which forms the basis of the cost
calculations.
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Figure 5: Shared-read Optimization

5.1 Cost Formulation
Given a pipeline schedule S, its materialization and

reading cost MC(S) is given by the following formula.3

MC(S) =
∑

n∈V (S)

(WC(n) +Matdeg(n) ∗RC(n))

where V (S) is the set of all materialized nodes of S,
i.e., all nodes having at least one outgoing materialized
edge, Matdeg(n) is the number of materialized edges
coming out of n, and WC(n), RC(n) are the read and
the write costs of n.

Since each materialized node is written one time and
read Matdeg(n) times, we get the above expression for
the cost.

5.2 Shared-read Optimization
The cost formulation assumes a read cost for every

use of a materialized result along a materialized edge.
We can further reduce costs by optimizing the multi-
ple reads of materialized nodes. The following example
illustrates this point.

Example 4. Consider the query with a section of
Plan-DAG given in Figure 5(a). Assume that the node
B is materialized, and both the operators m and n have
to read the node. The reading is shown by dashed lines.
Now, we can execute the whole query by reading the
node B just once, as shown in the Plan-DAG in Figure
5(b). 2

However, not all uses of a materialized node can be
shared. For example, if the two nodes reading the ma-
terialized node have different stage numbers, then they
cannot share the read. This is because sharing a read
will force both of them to be computed together, but
different stage numbers imply that one has to be com-
pleted before the other starts.

The criterion for checking the validity of a pipeline
schedule can be used here for checking whether a set
3Do not confuse this with the plan cost. The actual plan
cost includes the materialization cost and the algorithm cost
at each node, but algorithm costs do not change as pipeline
schedules change, so we ignore them here.



of reads of a materialized node can be shared. This
can be done by transforming the Plan-DAG as shown
in Figure 5. An extra node corresponding to a scan op-
erator is added to the Plan-DAG, a materialized edge
is added from the materialized node to the scan opera-
tor, and then pipelined edges are added from the scan
node to each of the nodes sharing the read. The cost
formula given earlier can be applied on this modified
Plan-DAG, where sharing of reads is explicit. Later, we
present a polynomial time exact algorithm for finding
the best way of sharing reads to maximize the benefit
from shared-read optimization.

5.3 NP-Completeness
In this section, we prove the NP-hardness of the prob-

lem of finding least cost schedules, as stated in Theorem
3. Clearly the corresponding decision problem belongs
to the class NP , since by Theorem 2, the validity of a
schedule can be checked in polynomial time.

Theorem 3. Given a Plan-DAG, the problem of find-
ing the least cost set of materialized edges, such that in
any C-cycle there exists two edges which are material-
ized and are opposite, is NP-hard. 2

The proof of this theorem is given in the Appendix.

6. FINDING LEAST COST SCHEDULES
In this section, we present algorithms for finding the

least cost pipeline schedule. We present an algorithm
which performs an exhaustive search. We then describe
a polynomial time greedy algorithm. Finally, we de-
scribe an extension for incorporating shared-read op-
timization. But before that, we describe a merge op-
eration on the Plan-DAG, which is the basis for the
algorithms.

6.1 Merge operation
Given a Plan-DAG, which may have multiple edges,

and two nodes n1 and n2 belonging to the Plan-DAG,
we define Merge(n1, n2) as follows: If there is no edge
from n1 to n2, then Merge is unsuccessful. If there is
at least one edge, and after removing it, there is still
a directed path from n1 to n2, again Merge is unsuc-
cessful. Otherwise, Merge combines n1 and n2 into a
single node. The Merge operation on a Plan-DAG has
some special properties, as described in the following
theorem.

Theorem 4. If in any Plan-DAG, there is an edge e
from n1 to n2, then the following hold:

1. e can be pipelined in a valid schedule only if the
operation Merge(n1, n2) is successful.

2. A valid pipeline schedule of the Plan-DAG formed
after merging, together with pipelining e, gives a
valid pipeline schedule for the original Plan-DAG.

3. Any valid pipeline schedule for the original Plan-
DAG can be achieved through a sequence of merge
operations.

PROOF: (i) If Merge is not successful, then there is a
path P from n1 to n2, which together with e forms a
C-cycle. In this C-cycle all edges in P are in one direc-
tion which is opposite to that of e. Since any pair of
opposite edges in this C-cycle necessarily contains e, it
must be materialized, and hence cannot be pipelined.

(ii) Now suppose this edge is merged, and consider any
valid pipeline schedule in the new Plan-DAG. We have
to show that this pipeline schedule, together with pipeli-
ned e, is valid. So consider any C-cycle K in old Plan-
DAG. If it does not contain e, it is also there in the new
Plan-DAG, and hence must contain two materialized
edges in opposite direction. If it contains e, then C-
cycle formed by collapsing e is there in new Plan-DAG,
and therefore contains two materialized edges which are
opposite. Since they will still be opposite in K, the
condition is satisfied, and hence, the pipeline schedule
is valid.

(iii) Given a valid pipeline schedule, collapse all the
edges(by merging the required nodes)which are to be
finally pipelined. If we are able to do so then we are
through, otherwise, suppose we are not able to collapse
some pipelined edge, e joining two nodes n1 and n2.
This implies that there exists a path between these two
vertices in the current Plan-DAG. Hence, a path must
have been there between these two vertices in the orig-
inal Plan-DAG, since a merge operation cannot induce
a path between 2 disconnected components. Thus there
is a contradiction. Hence proved. 2

We saw that any valid pipeline schedule can be ob-
tained from the Plan-DAG by a sequence of Merge op-
erations. Therefore, we can get the optimal solution by
considering all the possible sequences, and choosing the
one with most benefit. It is however exponential in the
number of edges.

6.2 Greedy Algorithm
Since the problem of finding the least cost pipeline

schedule is NP-hard, we present a greedy heuristic, shown
in Algorithm 1. At each stage, the Greedy heuristic
chooses that edge to Merge which will give the maxi-
mum benefit.

We take the benefit of an edge to be its read cost,
if it is materialized. This is done because if an edge
is materialized it will incur a certain read cost, so we
select the edge with the highest read cost to be pipelined
because we will save the maximum read cost. Also, if
the edge is the only edge originating from the node, (or
all the remaining edges are already merged), then its
benefit is taken to be the sum of read and write costs,
because if such an edge becomes pipelined, we can save
a read and a write cost.



At each iteration, the Greedy heuristic calls Merge
for each of the edges in the Plan-DAG. Each Merge
operation requires O(m) time, and hence, each iteration
takes O(m2) time, where m is the number of edges in
the Plan-DAG.

Algorithm 1 Greedy algorithm

findBestGreedy(dag)
begin
E ← set of all edges of dag
Em ← φ
for e ∈ E do

if Merge(e) is possible then
Add e to set Em

end if
end for
if Em = φ then

return
end if
e← edge in Em with highest benefit
output e as pipelined
dag1← dag after Merge(e)
call findBestGreedy(dag1)

end

6.3 Algorithm for Shared-read Optimization
In section 5.2, we discussed the optimization which

reduces the number of reads of materialized results.
Before describing the algorithm, we note the following
points:

1. Sharing of a read can occur only between nodes of
different equivalence classes.

2. Two nodes belonging to different equivalence classes
can share a read only if they have same stage num-
bers.

3. Two equivalence classes having the same stage num-
ber cannot share more than one read.

The proofs of these easily follow from the criterion
for valid schedule given in Section 4.2 by applying the
transformation described in Section 5.2.

We now construct a graph with vertices as the set
of equivalence classes. Firstly, we add edges present
in the Constraint Dag, defined in Section 4.2. These
edges are all directed and are given weights equal to
infinity. Let this set of directed edges be denoted by Ed.
Also, for each pair of equivalence classes and for each
materialized node, we add an undirected edge between
the two equivalence classes if they both read from this
materialized node. We put the weight of the edge as
the read cost of node. Note that there can be multiple
edges between two classes, corresponding to different
materialized nodes. We call the set of undirected edges
as Eu.

n1 n2 n n1 2

C C C C1 12 2

s

s = shared scan
m = materialized node

m

Figure 6: Transformation of Plan-DAG for
shared-read optimization

Theorem 5. Let S be any subset of Eu. Then, the
materialized nodes denoted by the edges in S can be
shared by corresponding equivalence classes if and only
if the subgraph formed by S ∪Ed does not contain any
cycle.

PROOF: A cycle in this graph corresponds to a C-cycle
in the transformed Plan-DAG. This is because every
undirected edge in this graph will be replaced by two
pipelined edges in the transformed Plan-DAG, as shown
in Figure 6. Also the directed edges will appear as it is
in the transformed Plan-DAG and will be in the same
direction in the C-cycle. The theorem then easily fol-
lows. 2

So, now the problem is to find the set S with largest
total weight such that no cycle is formed. This can be
done in a greedy fashion by sorting all the undirected
edges in decreasing order of weight and keep on adding
those which do not result in a cycle. To prove that this
algorithm will give the required S, we can use argu-
ments similar to the Kruskal’s algorithm [3] for finding
minimal spanning trees.

6.4 Generating a Good Initial Plan-DAG
Our overall algorithm is a 2-phase algorithm, with

the first phase using any multi-query optimizer, and
our Greedy heuristic for pipelining forming the second
phase. However, the best plan of the first phase may
not result in the best Plan-DAG with pipelining. As a
heuristic we consider the following two approaches for
generating the initial Plan-DAG.

• Pessimistic Approach: In the pessimistic ap-
proach, the optimizer in the first phase assumes
all materialized expressions will incur a write cost
once, and a read cost whenever they are read.

• Optimistic Approach: In the optimistic approa-
ch the optimizer in the first phase is modified to
assume that all the materialized expressions will
get pipelined in the second phase and will not in-
cur any materialization (read or write) cost.

The optimistic approach can give plans with schedules
that are not realizable, but our pipelining technique is
used to get realizable schedules. The resultant schedules



may be better than pessimistic in some cases, but can
potentially be worse than even not using multi-query
optimization. Therefore it makes sense to run both
optimistic and pessimistic, find the minimum cost re-
alizable schedule in each case, and choose the cheaper
one.

6.5 Discussion
It is possible to execute a schedule by dynamically

materializing results when buffer overflow happens. But
in a naive implementation of this approach overflows
may occur at nodes which have high materialization
cost and thus a naive implementation may result in a
high price for materialization. On the other hand, our
algorithm which gives a static schedule forces materi-
alization. Combining the benefits of the static and dy-
namic approaches to materialization is a topic for future
work.

7. PERFORMANCE STUDY
We now present the results of a preliminary perfor-

mance study of our algorithms. The algorithms de-
scribed in the previous section were implemented by ex-
tending and modifying an existing Volcano-based multi
query optimizer described in [9].

Through the experiments, we try to analyze the per-
formance of our algorithm as compared to the multi-
query optimizer algorithm without applying our pipelin-
ing optimizations. We applied our pipelining algorithm
on Plan-DAG generated by both pessimistic and opti-
mistic approaches. We also show an optimistic lower
bound, which assumes that all the shared expressions
are pipelined.

For experimental purposes, we use the multi-query
optimizer algorithm described in [9]. In all the exper-
iments conducted, the time taken by the 2nd phase is
only a few milliseconds and is negligible as compared
to the 1st phase. So we do not report execution time
details.

We present cost estimates instead of actual run times,
since we currently do not have an evaluating engine
where we can control pipelining. All the cost estimate
calculations were with respect to the cost model de-
scribed in Section 5.1 for materialization costs, in con-
junction with the cost model from [9]. The cost model
is fairly accurate as shown in [9].

We use the TPCD database at scale factor 1 (i.e., 1
GB total data). The block size was taken to be 4KB
and the cost functions assume that 6MB is available
to each operator during its execution. Standard tech-
niques were used for estimating costs, using statistics
about the base relations. The cost estimates contain
an I/O component and a CPU cost, with seek time as
10m-sec, transfer time of 2m-sec/block for read and 4m-
sec/block for write, and CPU cost of 0.2m-sec/block of
data processed. The materialization cost is the cost of
writing out the result sequentially.
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Figure 7: Results on batched TPCD queries

The batched TPCD workload models a system where
several TPCD queries are executed as a batch. The
workload consists of subsequences of the queries Q1,
Q3, Q5, Q7 and Q9 from TPCD. These queries have
common subexpressions between themselves. The batch
query BQi contains the first i queries from the above
sequence. Thus BQ2 contains Q1 and Q3, while BQ5

contains all of the above queries.
The results of the workload are shown in Figure 7.

The plot contains a set of four values on each query.
The first bar shows the cost of the query plan gener-
ated by the multi-query optimizer without pipelining.
The second one is the cost of the plan after applying
greedy pipelining algorithm on the plan generated us-
ing pessimistic approach. The third bar is the cost of
the plan after applying greedy algorithm on the plan
generated using optimistic approach. The fourth bar
shows the cost of the optimistic plan, assuming every-
thing is pipelined. Pipelining everything may not result
in a valid pipeline schedule, but it gives a lower bound
on the cost of any valid pipeline schedule.

From the graph, we can infer that the percentage
gain over basic multi-query optimizer varies from 13%
to 35% for pessimistic approach, while for optimistic
approach it varies from 32% to 50%. Thus, signifi-
cant gains can be achieved through the optimistic ap-
proach without any noticeable increase in the optimiza-
tion time.

We also see that the optimistic lower bound is signifi-
cantly less than the cost of the pipelined approach. This
indicates that there is a significant number of shared
subexpressions and also that not all of these subexpres-
sions can be pipelined. We found that the main rea-
son subexpressions not getting pipelined is that there
are several subexpressions having shared-scans on the
same set of base relations. This results in the forma-
tion of several C-cycles which have to be broken. These



C-cycles are both inter-query and intra-query.

8. CONCLUSIONS
In this paper, we studied the issue of pipelining in

DAG structured query plans generated by multi-query
optimization. We began by motivating the need for
pipelining and presented a model for a pipeline schedule
in a Plan-DAG. We outlined key properties of pipelin-
ing in a Plan-DAG and showed NP-completeness of the
problem of finding minimum cost pipeline schedules.
We developed a greedy algorithm for scheduling the ex-
ecution of a query DAG to reduce the cost of reading
and writing the intermediate results to the disk.

The implementation of our algorithm demonstrated
that pipelining can be added to existing multi-query op-
timizers without any increase in time complexity. Our
performance study, based on the TPCD benchmark,
shows that pipelining in multi-query optimization can
lead to significant performance gains.

In conclusion, we can say that a good choice of a
pipeline schedule gives significant benefits in multi-query
optimization.
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APPENDIX

Proof of Theorem 1
THEOREM 1. Given a Plan-DAG, a pipeline schedule is
valid iff every C-cycle satisfies the following condition:
there exist two edges in the C-cycle both of which are
labeled materialized, and are opposite. 2

PROOF: We will prove that the criterion is necessary
and sufficient in two parts.

Part (I): First we prove that if a pipeline schedule is
valid, then any C-cycle will have at least two material-
ized edges which are opposite. On the contrary, assume
that there exists a C-cycle such that all materialized
edges are in the same direction. We consider two cases:

Case (i): There is at least one materialized edge in the
C-cycle.
Let the C-cycle be a1, a2, · · · an. Since, no two oppo-
site edges in this C-cycle are both materialized, when
we traverse through this cycle, all materialized edges
are traversed in the same direction. Across pipelined
edges aiaj , S(ai) and S(aj) values remain same, while
across materialized edges from ai to aj , S values strictly
increase. Hence we have,

S(a1) ≤ S(a2) ≤ S(a3) · · · ≤ S(an) ≤ S(a1) (1)

Since we know that at least one of the edges is material-
ized, one of the inequalities in equation 1 becomes strict
and we get S(a1) < S(a1), leading to a contradiction.
Case (ii): Now suppose there is a C-cycle C with no
materialized edges.
Suppose the cycle is A1, A2 · · ·An. Without loss of gen-
erality, we can assume that the edge between A1 and A2
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Figure 8: C-cycle without materialized edges

is from A1 to A2. Let Ai1 , Ai2 , · · ·Ai2k be the vertices of
this C-cycle such that between Aik and Aik+1 all edges
have the same direction and that the direction of edges
changes across these vertices, as shown in Figure 8.

Let fj be the cascade of all functions f(e, x) over all
edges e in the path fromAi2j−1 toAi2j , i.e., if e1, e2 . . . ek
are the edges in the path, then we have

fj(x) = f(e1, f(e2, · · · f(ek, x)))

The function gives the max tuple the operator at node
Ai2j needs from the operator at Ai2j−1 to produce the
xth tuple. Similarly, let gj be the cascade of all functions
f(e, x) over all edges e in the path from Ai2j−1 to Ai2j−2 .

Then, we have the following set of equations

f1(P (Ai2 , t)) = g1(P (Ai2k , t))
f2(P (Ai4 , t)) = g2(P (Ai2 , t))
f3(P (Ai6 , t)) = g3(P (Ai4 , t))

· · ·
fk(P (Ai2k , t)) = gk(P (Ai2k−2 , t))

Let f−1(e, x) denote the max tuple the operator at
node n can produce given the xth tuple from the edge
e, where edge e is an incoming edge into node n. Let g−1

j

be the cascade of the functions f−1(e, x) over all edges
in the path from Ai2j−2 to Ai2j−1 . It denotes the max
tuple the operator at node Ai2j−2 can produce given the
tuple from Ai2j−1 . We see that g−1

j ◦ gj(P (Ai2j−2 , t)) =
P (Ai2j−2 , t). This is because P (x, t) is the max tuple
that can be produced at time t by the operator at node
x.

If we denote g−1
j ◦ fj by hj , from the above equations

we get h1 ◦ h2 ◦ · · · ◦ hk(P (Ai2k , t)) = P (Ai2k , t)
We thus see that there is a constraint on these func-

tions, and given an arbitrary set of functions {fj} and
{gj}, this constraint may not be satisfied. For instance,
if we take gj(x) = x and fj(x) = 2x then we will get
P (Ai2k , t) = 0, which will violate the requirement that
P (n, t) = CARD(n) at some t. Hence the pipeline
schedule is not bufferless, and hence not valid.

Thus, we have proved that if there is a valid pipeline
schedule, then any C-cycle has at least two materialized
edges which are opposite.

am bma b a b
1 1 2 2

CCC1 2 m

Figure 9: The set of equivalence classes

Part (II): Now, we prove that if any C-cycle has at
least two materialized edges which are opposite then
there exists a valid pipeline schedule.

Now let Eq = C1, C2 . . . Ck be the set of equivalence
classes of ∼ defined in Definition 6. It can be shown
that the subgraph induced by the vertices in Ci doesn’t
contain any materialized edge. On the contrary, assume
that there is a materialized edge between two vertices.
Since there exists a path between the 2 vertices consist-
ing only of pipelined edges we see that there exists a
C-cycle in the Plan-DAG which doesn’t contain 2 ma-
terialized edges, which is a contradiction. Now, it is
easy to see that none of the Ci contains any C-cycle. If
there existed one, it would contain only pipelined edges
which is not possible. Thus, each Ci is a tree.

Now, consider the graph on Eq as defined in Defini-
tion 6. We claim that it is a DAG. This is so because,
if there is a cycle in this graph, say C1, C2, . . . , Cm, C1,
then we will have vertices a1, b1, a2, b2, . . . am, bm such
that ai, bi ∈ Ci and there will be paths (in directed
sense) from bi to ai+1 and bm to a1, because Ci is con-
nected to Ci+1 and Cm to C1, and only these paths can
have materialized edges. The graph is shown in Figure
9, where equivalence classes are represented as trian-
gles. The solid lines represent that the path contains
only pipelined edges where as dashed lines indicate the
presence of materialized edges. Also there exist paths
(in undirected sense) between ai and bi. Thus we will
have a C-cycle from a1 to b1 to a2 to . . . bm and finally
back to a1 which contains materialized edges in only
one direction. Hence there is a contradiction. Thus the
graph is a DAG.

Now, let Ci1 , Ci2 , · · ·Cik be a topological ordering on
this DAG. Now for all vertices v ∈ Cij we assign the
stage label S(v) = j. To prove that the schedule is
valid we have to show that for each Ci, given any set
of function {f(e, x)}, each edge in Ci can be assigned
valid function P (e, t).

We construct the function P for each t serially. We
will construct P in such a way that it will always satisfy
the first two conditions needed for schedule to be buffer-
less. Also, we will make sure that at each stage, atleast
one operator is making progress, which will ensure that
all the operators eventually complete execution. So sup-
pose we have constructed P (e, t) for each edge in Ci for



1 ≤ t ≤ T . We then construct P for t = T+1. We show
that atleast one operator can make progress, while the
first two conditions are satisfied.

We say that an operator is blocked if it can neither
consume nor produce any tuple. Further, an operator
is said to be blocked on its output if it is able to produce
a tuple but one or more of its parents are not able to
consume it. The operator is blocked on its input if there
is atleast one child from which it needs to get a tuple but
the child is itself blocked. Note that the first condition
of Definition 2 enforces that if an operator produces
a tuple it has to pass to all the parents. So, even if
one of the parents is not accepting tuples, the operator
gets blocked on its output. Also, if an operator does
not get required tuples from its children in accordance
with second condition of Definition 2, then operator gets
blocked on its input.

Note that by definition, if an operator o1 is blocked
on its child o2 then o2 cannot be blocked on its output
o1. Let’s associate the edge between o1 and o2 with
o1 if o1 is blocked by o2, or it is associated with o2 if
o2 is blocked by o1. Thus, every edge can be associated
with atmost one blocked node. Also, every blocked node
must have an edge associated with it. But since Ci is a
tree, the number of nodes are greater than the number
of edges. So, there must be atleast one node which is not
blocked. Hence, we can construct P (e, T+1) so that the
unblocked node progresses. Also, whenever an operator
completes its execution, we can delete it from the tree
and we get a set of smaller trees, on which we proceed
similarly till every operator completes execution.

Thus each Ci is a bufferless pipeline schedule. Hence
the whole schedule is a valid pipeline schedule. 2

Proof of Theorem 3
THEOREM 3. Given a Plan-DAG, the problem of find-
ing the least cost set of materialized edges, such that in
any C-cycle there exists two edges which are material-
ized and are opposite, is NP-hard. 2

PROOF: In order to prove the theorem we show in The-
orem 6 that a special case of the problem is NP-hard, in
which all the edges have equal weight and all the edges
are potentially pipelinable. 2

Theorem 6. Given a Plan-DAG, the problem of find-
ing the least number of edges to be materialized such
that any C-cycle contains at least two materialized edges
which are opposite, is NP-hard.

PROOF: Consider the equivalence relation ∼ on the
vertex set defined in the Section 4.2. We have seen that
it produces equivalence classes C1, C2 . . . Ck such that
each equivalence class, when considered as a subgraph,
is a tree and contains no materialized edge. Also, be-
tween vertices of two distinct equivalence classes, there
can only be materialized edges and that too, in the same
direction.

Since each Ci is a tree, the number of edges in the
subgraph formed by the vertices of Ci will be |Ci| − 1,
where |Ci| is the cardinality of Ci.

Now, let n be the number of vertices in the Plan-
DAG and e be the number of edges, p be the number
of pipelined edges and m be the number of materialized
edges. Then,

n =
∑

1≤i≤k

|Ci| (2)

p =
∑

1≤i≤k

(|Ci| − 1)

= n− k (3)

From the above equations, we get

m = e− p = e− n+ k

Thus, to materialize minimum number of edges we
have to minimize k, i.e., divide the Plan-DAG into min-
imum number of equivalence classes. In other words,
we have to divide the Plan-DAG into minimum num-
ber of trees so that all the edges between any two trees
are in the same direction and the graph made on these
trees do not contain any cycle. If the Plan-DAG itself
is a tree, then only one equivalence class is acceptable.
Otherwise, at least two trees will be required. Lemma
1 proves that the problem of deciding whether the divi-
sion can be done with two trees is itself NP-hard. Hence
proving the NP-hardness of finding the minimum num-
ber of trees. 2

Lemma 1. The problem of deciding whether a di-
rected acyclic graph can be broken into two trees with
all the cross edges, from one tree to the other, in the
same direction is NP-hard.

PROOF: We will prove the NP-hardness by giving
a polynomial time reduction of Exact Cover problem
to this problem. The exact cover problem is as follows:
given a set S and a collection C of subsets do there exist
sets in C which partition S.

We will assume that each element is present in at least
two sets belonging to C. Suppose there is an element
which is there in only one set. Then we will have to take
that set in the cover and hence we can incrementally
go on removing such elements, and some sets will be
forced into the cover and some will be forced out of
the cover. Finally, only elements which are present in
at least 2 sets will remain. Let the remaining subsets
be S1, S2 . . . Sn and the elements be a1, a2 . . . an. We
consider the following graph G(V,E) on the above sets
and elements.

(i) V = 0, 1 ∪ {ai} ∪ {Sj}
(ii) (1, 0) ∈ E
(iii) (Si, 0), (1, Si) ∈ E
(iv) (ai, Sj) ∈ E, if ai ∈ Sj
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Figure 10: The graph G for Example 5 along
with partition.

Refer ahead to Example 5.
We now show that exact cover exists if and only if G

can be divided into two trees with all the cross edges in
the same direction.

First, suppose there is a partition of the above graph
into two trees so that the edges between the two trees
are in the same direction. We will show that exact cover
exists.

We see that 0 and 1 cannot be in the same tree be-
cause if so, then if some Si is there in the other tree
then there will be 2 edges between the trees in opposite
directions and if some Si is there in the same tree then
there will be a cycle 0-1-Si-0 ( in undirected sense ) and
hence it won’t be a tree. Thus 0 and 1 are in separate
trees.

Now let T0 and T1 be the trees containing 0 and 1
respectively. We show that there cannot be any node
corresponding to some element ai in T0. On the con-
trary, suppose there is an element e in T0. Every ele-
ment is there in at least two sets. Also e is connected
to at least one set node in T0. These together imply
that either there exists Si, Sj in T0 such that both are
adjacent to e or there exists Si in T0 and Sj in T1 such
that both are adjacent to e. In the first case there will
be a cycle(in undirected sense) e, Si, 0, Sj , e in T0 and in
the second case there will be 2 edges (1, 0) and (e, Sj)
in opposite directions, both of which are not possible.
Hence all the element nodes are in T1.

Now consider any element in T1. It cannot be adja-
cent to two vertices Si, Sj . Also it should be adjacent
to at least one vertex. Thus, if we take all the Si in
T1, they will, as a whole, cover each element once and
exactly once. Hence if the graph satisfies the property
stated in the lemma, we see that there exists an exact
cover.

It is also easy to see that if there is an exact cover then
we can partition the graph into two trees such that the
required property is satisfied. Let T1 contain the sub-
graph on the vertices 1, {ai} and {Sj |Sj ∈ Cover}, and
let T0 contain the remaining vertices and the subgraph
formed. It is easy to see that both T0 and T1 are trees

and all edges between T0 and T1 are from T0 to T1.
This completes the proof of the lemma. 2

The following example illustrates the reduction used
in the proof of Lemma 1.

Example 5. Consider S = {a1, a2, a3, a4, a5}. Let C
consist of S1, S2, S3 and S4, where S1 = {a1, a4, a5},
S2 = {a2, a3}, S3 = {a1, a2, a3} and {a2, a4, a5}. The
corresponding graph G is given in Figure 10. 2


