
EfficientandExtensibleAlgorithmsfor Multi QueryOptimization

Prasan Roy
I.I.T. Bombay

S. Seshadri
Bell Labs.

S. Sudarshan
I.I.T. Bombay

Siddhesh Bhobe
PSPLLtd. Pune�

prasan,sudarsha� @cse.iitb.ernet.in
seshadri@research.bell-labs.com,siddhesh@pspl.co.in

Abstract
Complex queriesare becomingcommonplace,with the growing
use of decisionsupportsystems. Thesecomplex queriesoften
have a lot of common sub-expressions,either within a single
query, or acrossmultiple such queriesrun as a batch. Multi-
queryoptimizationaimsat exploiting commonsub-expressionsto
reduceevaluationcost.Multi-queryoptimizationhashither-to been
viewed as impractical, sinceearlier algorithmswere exhaustive,
andexploreadoublyexponentialsearchspace.

In this paperwe demonstratethatmulti-queryoptimizationus-
ing heuristicsis practical,and provides significantbenefits. We
proposethree cost-basedheuristic algorithms: Volcano-SHand
Volcano-RU, which arebasedon simplemodificationsto theVol-
canosearchstrategy, anda greedyheuristic.Our greedyheuristic
incorporatesnovel optimizationsthat improve efficiency greatly.
Our algorithmsare designedto be easily addedto existing opti-
mizers.Wepresentaperformancestudycomparingthealgorithms,
usingworkloadsconsistingof queriesfrom theTPC-Dbenchmark.
The study shows that our algorithmsprovide significantbenefits
over traditionaloptimization,at a very acceptableoverheadin op-
timizationtime.

1 Introduction
Complex queriesare becomingcommonplace,especially
due to the advent of automatic tools that help analyze
information from large data warehouses.Thesecomplex
queriesoften have a lot of commonsub-expressionssince
i) they make extensive use of views which are referred
to multiple times in the query and ii) many of them
are correlatednestedqueriesin which parts of the inner
subquerymaynot dependon theouterqueryvariables,thus
forming a commonsub-expressionfor repeatedinvocations
of theinnerquery.

Thescopefor finding commonsub-expressionsincreases
greatly if we consider a set of queries executed as a
batch. For example,SQL-3 storedproceduresmay invoke

several queries,which can be executedas a batch. Data
analysis/reportingoften requiresa batch of queriesto be
executed. The work of [SHT� 99] on using relational
databasesfor storingXML data,hasfound that querieson
XML data,written in a languagesuchasXML-QL, needto
betranslatedinto a sequenceof relationalqueries.Thetask
of updatingasetof relatedmaterializedviewsalsogenerates
relatedquerieswith commonsub-expressions[RSS96].

In this paper, we addressthe problemof optimizingsets
of querieswhich may have commonsub-expressions;this
problemis referredto asmulti-queryoptimization. We note
herethat commonsubexpressionsarepossibleeven within
a single query; the techniqueswe develop deal with such
intra-querycommonsubexpressionsaswell.

Traditionalqueryoptimizersarenot appropriatefor op-
timizing querieswith commonsubexpressions,sincethey
make locally optimal choices,andmay missglobally opti-
malplansasthefollowing exampledemonstrates.

Example 1.1 Let ��� and ��� betwo querieswhoselocally
optimalplans(i.e., individual bestplans)are �
	���������
and �
	��������� respectively. Thebestplansfor ��� and��� do not have any commonsub-expressions.However, if
we choosethe alternative plan ��	��������� (which may
not be locally optimal) for ��� , then,it is clearthat 	���
is a commonsub-expressionandcanbecomputedonceand
usedin bothqueries.Thisalternativewith sharingof 	��
maybethegloballyoptimalchoice.

Ontheotherhand,blindly usingacommonsub-expression
maynot alwaysleadto a globally optimalstrategy. For ex-
ample,theremaybecaseswherethecostof joining theex-
pression	�� with � is very largecomparedto thecostof
theplan �
	��!������ ; in suchcasesit maymake no sense
to reuse	�� evenif it wereavailable. "

Example1.1 illustratesthat the job of multi-queryopti-
mization,over andabove that of ordinaryqueryoptimiza-
tion, is to (i) recognizethe possibilitiesof shared compu-
tation, and (ii) modify the optimizersearch strategy to ex-
plicitly accountfor sharedcomputationandfind a globally
optimalplan.

While therehasbeenwork on multi-queryoptimization
in thepast([Sel88, SSN94, PS88]),prior work hasconcen-

1

tratedprimarily on exhaustive algorithms. Otherwork has
concentrated# on finding commonsubexpressionsasa post-
phaseto queryoptimization[Fin82, SV98], but this gives
limited scopefor costimprovement,or hasconsideredonly
the limited classof OLAP queries[ZDNS98]. (We discuss
relatedwork in detail in Section7.) The searchspacefor
multi-queryoptimizationis doubly exponentialin the size
of the queries,and exhaustive strategies are thereforeim-
practical;asa result,multi-queryoptimizationwashitherto
consideredtooexpensiveto beuseful.

In thispaperweshow how to makemulti-queryoptimiza-
tion practical, by developingnovelheuristicalgorithms,and
presentingaperformancestudythatdemonstratestheirprac-
tical benefits.

Our algorithmsare basedon an AND-OR DAG repre-
sentation[Rou82, GM93] to compactlyrepresentsalterna-
tive queryplans.TheDAG representationensuresthat they
areextensible, in thatthey caneasilyhandlenew operations
andtransformationrules. The DAG canbe constructedas
in [GM93], with someextensionsto ensurethat all com-
mon sub-expressionsare detectedand unified. The DAG
constructionalsotakesinto accountsharingof computation
basedon“subsumption”– examplesof suchsharinginclude
computing$&%('*)+��,�� from theresultof $-%('.�0/+��,�� .

The task of the heuristic optimization algorithms is
thento decidewhat subexpressionsshouldbe materialized
and shared. Two of the heuristicswe present,Volcano-
SH and Volcano-RU are lightweight modificationsof the
Volcano optimizationalgorithm. The third heuristic is a
greedystrategy which iteratively picks the subexpression
that gives the maximum benefit (reduction in cost) if
it is materialized and reused. One of our important
contributions here lies in three novel optimizations of
the greedy algorithm implementation,that make it very
efficient. Our performancestudiesshow that eachof
theseoptimizationsleads to a great improvement in the
performanceof thegreedyalgorithm.

In addition to choosingwhat intermediateexpression
resultsto materializeandreuse,ouroptimizationframework
also choosesphysical properties,such as sort order, for
the materializedresults. Our algorithmsalso handlethe
choiceof what(temporary)indicesto createonmaterialized
results/databaserelations.

Our algorithmscanbeeasilyextendedto performmulti-
queryoptimizationon nestedqueriesaswell asmultiple in-
vocationsof parameterizedqueries(with differentparameter
values).TheAND-OR DAG framework we exploit is used
in leasttwo commercialdatabasesystems,from Microsoft
andTandem.Our algorithmscan,however, be extendedto
work with SystemR stylebottom-upoptimizers.

We conducteda performancestudy of our multi-query
optimization algorithms, using queries from the TPC-D
benchmarkas well as other queriesbasedon the TPC-D
schema.Our studydemonstratesnot only savingsbasedon
estimatedcost,but alsosignificantimprovementsin actual

run timesona commercialdatabase.
Our performanceresultsshow that our multi-query op-

timization algorithmsgive significantbenefitsover single
queryoptimization,atanacceptableextraoptimizationtime
cost.Theextraoptimizationtime is morethancompensated
by theexecutiontime savings. All threeheuristicsbeatthe
basicVolcanoalgorithm,but in generalgreedyproducedthe
bestplans,followedby Volcano-RU andVolcano-SH.

We believe thatin additionto our technicalcontributions,
anotherof ourcontributionslies in showing how to engineer
a practicalmulti-query optimizationsystem— one which
can smoothly integrate extensions,such as indexes and
nestedqueries,allowing themto work togetherseamlessly.
In summer’99, our algorithmswere partially prototyped
on the Microsoft SQL Server optimizer, and multi-query
optimizationis currentlybeingevaluatedby Microsoft for
possibleinclusionin SQLServer.

2 Setting Up The Search Space For
Multi-Query Optimization

As we mentionedin Section 1, thejob of a multi-queryop-
timizer is to (i) recognizepossibilitiesof sharedcomputa-
tion (thusessentiallysettingup thesearchspaceby identify-
ing commonsub-expressions)and(ii) modify theoptimizer
searchstrategy to explicitly accountfor sharedcomputation
andfind a globally optimal plan. Both of the above tasks
areimportantandcrucialfor amulti-queryoptimizerbut are
orthogonal. In otherwords,the detailsof the searchstrat-
egy do not dependon how aggressively we identify com-
monsub-expressions(of course,theefficacy of thestrategy
does).We have exploredboth theabove tasksin detail,but
chooseto emphasizethe searchstrategy componentof our
work in this paper, for lack of space.However, we outline
thehigh level ideasandthe intuition behindour algorithms
for identifying commonsub-expresionsin this sectionand
referto thefull versionof thepaper[RSSB98]for detailsat
theappropriatelocationsin thissection.

Beforewedescribeouralgorithmsfor identifyingcommon-
subexpressions,we describethe AND-OR DAG represen-
tation of queries.An AND–OR DAG is a directedacyclic
graphwhosenodescanbedividedinto AND-nodesandOR-
nodes;theAND-nodeshave only OR-nodesaschildrenand
OR-nodeshaveonly AND-nodesaschildren.

An AND-nodein the AND-OR DAG correspondsto an
algebraicoperation,suchasthejoin operation(�) or aselect
operation($). It representsthe expressiondefinedby the
operationand its inputs. Hereafter, we refer to the AND-
nodesas operation nodes. An OR-nodein the AND-OR
DAG representsasetof logicalexpressionsthatgeneratethe
sameresultset;thesetof suchexpressionsis definedby the
childrenAND nodesof theOR node,andtheir inputs. We
shallreferto theOR-nodesasequivalencenodeshenceforth.

Thegivenquerytreeis initially representeddirectly in the
AND-OR DAG formulation. For example,the query tree
of Figure1(a) is initially representedin theAND-OR DAG

2

A B

C

A B C

A B C

A B

A B C

(Commutativity not shown - every join node has
 another join node with inputs exchanged, below
 the same equivalence node)

A B C

A B B C A C

(c) Expanded DAG after transformations(a) Initial Query (b) DAG representation of query

Figure1: Initial QueryandDAG Representations

formulation, as shown in Figure 1(b). Equivalencenodes
(OR-nodes)are shown as boxes, while operationnodes
(AND-nodes)areshown ascircles.

The initial AND-OR DAG is thenexpandedby applying
all possibletransformationson every node of the initial
queryDAG representingthe givensetof queries.Suppose
the only transformationspossiblearejoin associativity and
commutativity. Thenthe plans 12�2�
34�65�� and ��17�5��8�93 , aswell asseveralplansequivalentto thesemodulo
commutativity can be obtainedby transformationson the
initial AND-OR-DAG of Figure1(b). Thesearerepresented
in the DAG shown in Figure 1(c). We shall refer to the
DAG after all transformationshave been applied as the
expandedDAG. NotethattheexpandedDAGhasexactlyone
equivalencenodefor every subsetof :;1�<=3><?5A@ ; the node
representsall waysof computingthe joins of the relations
in that subset. For lack of spacewe omit details of the
expandedDAG generationalgorithm;detailsmaybefound
in [RSSB98].

2.1 Extensions to DAG Generation For Multi-Query
Optimization

To apply multi-query optimization to a batch of queries,
the queries are representedtogether in a single DAG,
sharingsubexpressions.To make theDAG rooted,a pseudo
operationnodeis created,which doesnothing,but hasthe
rootequivalencenodesof all thequeriesasits inputs.

We now outline two extensionsto the DAG generation
algorithmto aidmulti-queryoptimization.

The first extensiondealswith identificationof common
subexpressions.If a querycontainstwo subexpressionsthat
are logically equivalent, but syntacticallydifferent, (e.g.,�
1���3B����5 , and 1��C�
3���5��) the initial queryDAG
would containtwo differentequivalencenodesrepresenting
the two subexpressions. We modify the Volcano DAG
generationalgorithmso that whenever it finds nodesto be
equivalent (after applying join associativity) it unifies the
nodes,replacingthemby asingleequivalencenode.

The Volcanoalgorithmusesa hashingschemeto detect
repeatedderivations,andavoids creatingduplicateequiva-
lencenodesdueto cyclic derivations(e.g.,expressionD+E is
transformedto DGF , which is then transformedback to DHE).
Our modificationadditionally usesthe hashingschemeto
detectandunify duplicateequivalencenodesthat wereei-
therpre-existingor gotcreatedby transformationsfrom dif-
ferentexpressions.Detailsof unificationmay be found in
[RSSB98].

Thesecondextensionis todetectandhandlesubsumption.
For example, supposetwo subexpressionsDHE : $&%('*)+��,��
and DGF : $ %('.�0/ ��,�� appearin the query. The result ofDHE can be obtainedfrom the result of DGF by an additional
selection,i.e., $ %('I) �
,��KJL$ %('*) �
$ %('.�0/ ��,��M� . To represent
this possibilitywe addanextra operationnode $ %('I) in the
DAG, betweenD+E and DGF . Similarly, given DON : $ %.PQ) ��,��
and D;R : $ %.PS�0/ �
,�� , we can introducea new equivalence
node DOT : $ %.PQ)?UV%.PS�W/ �
,A� and add new derivationsof DON
and D;R from DGT . The new noderepresentsthe sharingof
accessesbetweenthe two selection. In general,given a
numberof selectionsonanexpression, , wecreatea single
new noderepresentingthe disjunctionof all the selection
conditions.Similar derivationsalsohelpwith aggregations.
For example, if we have D;X : Y?Z\[^]I_0`;a�bdcVe?fhgi�
,�� and Dkj :e?lim]*_W`Oa�bdcVe?fngi��,�� , wecanintroducea new equivalencenodeDOo : Y?Z\[qp eqlqm]*_W`Oa�bdcVe?fng^�
,�� andaddderivationsof DOX and Dkj
from equivalencenode DOo by further groupbyson r+sQt andu+v D .

The idea of applying an operation(such as $ %('I) on
one subexpressionto generateanotherhasbeenproposed
earlier [Rou82, Sel88, SV98]. Integrating such options
into the AND-OR DAG, as we do, clearly separatesthe
spaceof alternative plans(representedby the DAG) from
the optimization algorithms. Thereby, it simplifies our
optimization algorithms, allowing them to avoid dealing
explicitly with suchderivations.

3

2.2 Physical AND-OR DAG
Propertiesw of theresultsof anexpression,suchassortorder,
that do not form part of the logical datamodel are called
physicalproperties[GM93]. Physicalpropertiesof interme-
diateresultsareimportant,sincee.g. if an intermediatere-
sult is sortedona join attribute,thejoin costcanpotentially
be reducedby usinga merge join. It is straightforwardto
refinetheabove AND-OR DAG representationto represent
physicalpropertiesandobtaina physicalAND-OR DAG. 1

Oursearchalgorithmscanbeeasilyunderstoodontheabove
AND-OR DAG representation(withoutphysicalproperties),
althoughthey actuallywork on physicalDAGs. Therefore,
for brevity, we do not explicitly considerphysicalproper-
ties further; for detailssee[RSSB98]. Our implementation
indeedhandlesphysicalproperties.

3 Reuse Based Multi-Query Optimization
Algorithms

In this sectionwe studya classof multi-queryoptimization
algorithms basedon reusing results computedfor other
parts of the query. We presenttheseas extensionsof
the Volcano optimizationalgorithm. Before we describe
the extensions,in Section3.1, we very briefly outline the
basicVolcanooptimizationalgorithm, and how to extend
it to find best plans given some nodesin the DAG are
materialized.Sections3.2 and3.3 thenpresenttwo of our
heuristicalgorithms,Volcano-SHandVolcano-RU.

3.1 Volcano Optimization Algorithm and
Materialized Views

The Volcano optimization algorithm operateson the ex-
pandedDAG generatedearlier. It findsthebestplanfor each
nodeby performinga depthfirst traversalof theDAG start-
ing from thatnodeasfollows. Costsaredefinedfor opera-
tion andequivalencenodes.Thecostof anoperationnodet
is definedasfollows:xzyO{=|=}~yO�Q� costof executing }~yO� + �����0�^�W�q�n� �=�0���k���z� xzyO{=|?}�� � �
Thechildrenof t (if any) areequivalencenodes.2 Thecost
of anequivalencenode D is givenasxzyO{=|=}��^�Q���B���I�ixzyO{=|=}~y � �?� y �Q� x?�+���h�G�;�q�Q}����0 ¡

if thenodehasnochildren(i.e., it is abaserelation).

Volcano also cachesthe best plan it finds for each
equivalencenode, in case the node is re-visited during
the depth first searchof the DAG. A branchand bound
pruningis alsoperformedby carryingarounda cost limit;
for simplicity, we disregardpruningin this paper. For lack
of spaceweomit details,but referreadersto [GM93].

Now we considerhow to extend Volcano to find best
plans,giventhat(expressionscorrespondingto) someequiv-
alencenodesin theDAGarematerialized.Let ¢GD;£*¤;DO¥itk¤^¦i��§¨�

1For example, an equivalence node is refined to multiple physical
equivalencenodes,one per requiredphysical property, in the physical
AND-OR DAG.

2Thecostof executinganoperation© alsotakesinto accountthecostof
readingtheinputs,if they arenot pipelined.

denotethecostof reusingthematerializedresultof § , and
let ª denotethesetof materializednodes.

To find the costof a nodegiven a setof nodesª have
beenmaterialized,wesimplyusetheVolcanocostformulae
above,with thefollowing change.Whencomputingthecost
of a operationnode t , if an input equivalencenode D is
materialized(i.e., in ª), usetheminimumof ¢GD;£*¤;DO¥itk¤^¦i�
DG�
and ¥itk¤^¦i��DO� when computing ¥itk¤^¦i��tk� . Thus, we use the
following expressioninstead:x=y;{=|?}~y;�Q� costof executing }~y;� + � � � �^�W�q�h� �z�0���\� �=��« }�� � �« }�� � �¬��xzyO{=|?}�� � � if � ���¯® ;�A�
�Q}~xzyO{=|?}�� � �z°W�^�q±²{q�ixzyO{=|=}�� � �W� if � � ��® .

3.2 The Volcano-SH Algorithm
In ourfirststrategy, whichwecallVolcano-SH,theexpanded
DAG is first optimizedusingthebasicVolcanooptimization
algorithm.Thebestplancomputedfor thevirtual root is the
combinationof the Volcanobestplansfor eachindividual
query.

The best plans producedby the Volcano optimization
algorithm may have commonsubexpressions;thus nodes
in the DAG may occur in the bestplansof more thanone
query. Theresultsof suchsharednodescanbematerialized
when they are first computed,and reusedlater. Since
materializationof a nodeinvolvesstoring the result to the
disk,andweassumepipelinedexecutionof operators,it may
bepossiblefor recomputationof a nodeto becheaperthan
thecostof materializingandreusingthenode.

The Volcano-SHalgorithm thereforedecidesin a cost
basedmannerwhich of the nodesto materializeandshare,
asoutlinedbelow.

Let us considerfirst a naive (and incomplete)solution.
Consideran equivalencenode D . Let ¥itk¤^¦i�
DG� denotethe
computationcost of node D . Let s.£-§³£*¤;DG¤H�
DG� denotethe
numberof times node D is usedin courseof executionof
the plan. Let § u ¦0¥itk¤^¦i�
DG� denotethe costof materializing
node D . As before,¢GD;£.¤^DO¥itk¤^¦i��DO� denotethecostof reusing
thematerializedresultof D . Then,we decideto materializeD if xzyO{=|?}����.´µ�A¶k|·x=y;{=|?}����I´��^�i±¸{i�qxzyO{=|?}����º¹»}~�²±V�A±²{q��{G}����¬¼½ �¿¾À�²±V�B±¸{i��{O}����Á¹Âx=y;{=|?}���� . The left handside of this
inequalitygivesthecostof materializingtheresultwhenfirst
computed,andusingthe materializedresult thereafter;the
right handsidegivesthecostof thealternative whereinthe
resultis not materializedbut recomputedon every use.The
abovetestcanbesimplifiedto�A¶G|�x=y;{=|?}����WÃ\}~�²±V�A±²{q��{G}����H¼ ½ �V´Ä�^�q±²{q�qx=y;{?|=}����S¾»xzyO{=|=}��^� (1)

Theproblemwith theabovesolutionis that s.£I§Å£.¤;DO¤H��DO�
and ¥itk¤^¦i�
DG� both dependon what other nodeshave been
materialized,For instance,supposenodeD � is usedtwice in
computingnode DO� , andnodeDO� is usedtwice in computing
node DOÆ . Now, if no nodeis materialized,Dk� is usedfour
times in computing D;Æ . If DO� is materialized,Dk� getsused
twice in computing D;� , and DO� getscomputedonly once.
Thus,materializing D;� canreduceboth s.£-§³£*¤;DG¤H�
Dk�?� and¥itk¤^¦i�
DOÆ;� .

TheVolcano-SHalgorithmresolvesthisproblemheuristi-
cally by traversingthetreebottom-up.As eachequivalence

4

node D is encounteredin the traversal,Volcano-SHdecides
whetherÇ or not to materializeD . Whenmakinga material-
izationdecisionfor a node,thematerializationdecisionsfor
all descendantsarealreadyknown. Basedon this, we can
compute¥itk¤^¦i�
DG� for anodeD , asdescribedin Section3.1.

To make a materializationdecisionfor a node D , we also
needto know s.£I§Å£.¤;DO¤H��DO� . Sinces.£I§Å£.¤;DG¤+��DG� dependson
thematerializationstatusof its ancestors(which is notfixed
yet), Volcano-SHusesan underestimates.£I§³£*¤;DG¤\Èº��DG� of
number of uses of D , obtainedby simply counting the
numberof parentsof D in the Volcanobestplan. We use
s.£-§³£*¤;DG¤ È �
DG� insteadof s.£I§Å£.¤;DG¤+��DG� in equation(1) to
makea conservativedecisiononmaterialization.3

Letusnow returnto thefirst stepof Volcano-SH.Notethat
the basicVolcanooptimizationalgorithm will not exploit
subsumptionderivations, such as deriving $ %('*) ��,�� by
using $ %('*) ��$ %('.�0/ �
,��z� , sincethe costof the latterwill be
morethantheformer, andthuswill notbelocally optimal.

To considersuchplans,we performa pre-pass,checking
for subsumptionamongstnodesin the plan producedby
thebasicVolcanooptimizationalgorithm. If a subsumption
derivation is applicable,we replacethe original derivation
by thesubsumptionderivation.At theendof Volcano-SH,if
the sharedsubexpressionis not chosento be materialized,
we replacethe derivation by the original expressions. In
the above example,in the prepasswe replace$ %('*) �
,A� by$ %('I) �
$ %('.�0/ ��,��M� . If $ %('.�0/ �
,�� is not materializedat the
end,wereplace$ %('I) �
$ %('.�0/ ��,��M� by $ %('*) �
,A� .

The algorithmof [SV98] alsofinds bestplansand then
chooseswhichsharedsubexpressionsto materialize.Unlike
Volcano-SH,it doesnotfactorearliermaterializationchoices
into thecostof computation.

3.3 The Volcano-RU Algorithm
Consider � � and � � from Example1.1. With the best
plansasshown in theexample,namely �
	��L������ and�
	É�2���Â�Ê , no sharingis possiblewith Volcano-SH.
However, whenoptimizing � � , if we realizethat 	Ë�� is
alreadyusedin thebestplan for � � andcanbeshared,the
choiceof plan ��	Ì�Í����9� maybefoundto bethebestfor
� � .

The intuition behindthe Volcano-RU algorithmis there-
fore asfollows. Givena batchof queries,Volcano-RU op-
timizesthemin sequence,keepingtrackof whatplanshave
alreadybeenchosenfor earlierqueries,andconsideringthe
possibilityof reusingpartsof the plans. The resultantplan
dependsontheorderingchosenfor thequeries;wereturnto
this issueafterdiscussingtheVolcano-RU algorithm.

Let ���G<�Î^Î�Î�<?��Z be the queriesto be optimizedtogether
(and thus under the samepseudo-rootof the DAG). The
Volcano-RU algorithm optimizes them in the sequence� � <^Î�Î�Î^<=� Z . After optimizing ��Ï , we note equivalence
nodesin the DAG that arepart of the bestplan �(Ï for ��Ï

3We alsodevelopedandtried out a moresophisticatedunderestimate.
We omit it from here for brevity, becauseit only lead to a minor
improvementonperformance.

ascandidatesfor potentialreuselater. We alsocheckif each
nodeis worth materializing,if it is usedonemoretime. If
so,whenoptimizingthenext query, we will assumeit to be
availablematerialized.

After optimizing all the individual queries,the second
phaseof Volcano-RU executesVolcano-SHon the overall
bestplan foundasabove to furtherdetectandexploit com-
monsubexpressions.This stepis essentialsincetheearlier
phaseof Volcano-RU doesnot considerthe possibility of
sharingcommonsubexpressionswithin a single query In-
steadVolcano-SHmakesthefinal decisiononwhatnodesto
materialize.Thedifferencefrom directlyapplyingVolcano-
SH to the resultof Volcanooptimizationis that the plan �
that is givento Volcano-SHhasbeenchosentakingsharing
of partsof earlierqueriesinto account,unlike the Volcano
plan.

Note that the resultof Volcano-RU dependson theorder
in which queriesareconsidered.In our implementationwe
considerthe queriesin the order in which they are given,
aswell asin thereverseof thatorder, andpick thecheaper
oneof the two resultantplans. Note that the DAG is still
constructedonly once,so the extra costof consideringthe
two ordersis relatively quite small. Consideringfurther
(possiblyrandom)orderingsis possible,but theoptimization
timewould increasefurther.

4 The Greedy Algorithm
In this section, we presentthe greedy algorithm, which
provides an alternative approachto the algorithmsof the
previous section. Our major contribution herelies in how
to efficiently implementthe greedyalgorithm,andwe shall
concentrateon thisaspect.

In this section,we presentan algorithmwith a different
optimizationphilosophy. Thealgorithmpicksasetof nodes to be materializedandthenfinds the optimal plan given
that nodesin arematerialized.This is thenrepeatedon
differentsetsof nodes to find the best(or a good)setof
nodesto bematerialized.

As before,weshallassumethereis avirtual rootnodefor
theDAG; this nodehasasinput a “no-op” logical operator
whoseinputsarethe queries���SÎ�Î^Î=��Ð . Let � denotethis
virtual rootnode.

For a setof nodes , let ÑqDG¤�¦0¥�tk¤�¦i�·��<=8� denotethe cost
of the optimal plan for � given that nodesin are to be
materialized(this cost includesthe costof computingand
materializingnodesin). As describedin theVolcano-SH
algorithm,thebasicVolcanooptimizationalgorithmwith an
appropriatedefinitionof thecostfor nodesin canbeused
to find ÑqDG¤^¦0¥itk¤^¦i����<?�� .

To motivate our greedy heuristic, we first describea
simple exhaustive algorithm. The exhaustive algorithm,
iteratesover eachsubset of thesetof nodesin theDAG,
and choosesthe subsetQ[�ÒiÓ with the minimum value forÑqDG¤^¦0¥itk¤^¦i����<?�� . Therefore,ÑiDO¤^¦0¥itk¤^¦i�·��<= [WÒiÓ � is thecostof
thegloballyoptimalplanfor � .

5

Procedure GREEDY

Input: Expanded DAG for the consolidated input query Ô
Output: Set of nodes to materialize and the corresp. best plan

X = Õ
Y = set of equivalence nodes in the DAG
while (Y � Õ)

L1: Pick x � Y which minimizes bestcost(Q, � x ×Ö X)
if (bestcost(Q, � x ×Ö X) ¾ bestcost(Q, X))

Y = Y - x; X = X ÖÅ� x
else Y = Õ

return X

Figure2: TheGreedyAlgorithm

It is easyto seethat the exhaustive algorithmis doubly
exponential in the size of the initial query DAG and is
thereforeimpractical.

In Figure2 we outlinea greedyheuristicthatattemptsto
approximateQ[WÒqÓ by constructingit onenodeata time. The
algorithm iteratively picks nodesto materialize. At each
iteration, the node Ø that gives the maximumreductionin
thecostif it is materializedis chosento beaddedto Ù .

The greedyalgorithm as describedabove can be very
expensivedueto thelargenumberof nodesin theset Ú and
thelargenumberof timesthefunction ÑiDO¤^¦0¥itk¤^¦ is called.We
now presentthreeimportantandnovel optimizationsto the
greedyalgorithmwhichmake it efficientandpractical.

1. The first optimizationis basedon the observation that
the nodesmaterializedin the globally optimal plan are
obviously a subsetof the onesthat aresharedin some
planfor thequery. Therefore,it is sufficient to initializeÚ in Figure2, with nodesthat aresharedin someplan
for the query. We call such nodessharable nodes.
For instance,in the expandedDAG for � � and � �
correspondingto Example1.1, 	Û�� is sharablewhile	Ü�Ê� is not. We presentan efficient algorithm for
findingsharablenodesin Section4.1.

2. The secondoptimization is basedon the observation
that there are many calls to ÑqDG¤^¦0¥itk¤^¦ at line L1 of
Figure2,with differentparameters.A simpleoptionis to
processeachcall to ÑqDG¤^¦0¥itk¤^¦ independentof othercalls.
However, it makessensefor a call to leveragethework
doneby apreviouscall. Wedescribeanovel incremental
costupdatealgorithm,in Section4.2, thatmaintainsthe
stateof the optimizationacrosscalls to ÑqDG¤^¦0¥itk¤^¦ , and
incrementallycomputesa new statefrom theold state.

3. The third optimization,which we call themonotonicity
heuristic,avoidshaving to invoke ÑqDG¤^¦0¥itk¤^¦i����<O:;ØQ@²Ý×Ù»� ,
for every Ø¿ÞßÚ , in line L1 of Figure2. Wedescribethis
optimizationin detailin Section4.3.

4.1 Sharability
In this subsection,we outline how to detectwhetheran
equivalencenodecanbesharedin someplan.

A sub–DAG of a node Ø consistsof the nodesbelow Ø
along with the edgesbetweenthesenodesthat are in the
original DAG. For eachnode Ø of the DAG, and every
equivalencenode à in the sub-DAG rootedat Ø , we define
the degree of sharing of à in the sub-DAG rooted at Ø ,,>á Ø²âWá à\â , asfollows. For all equivalencenodesØ , ,>á Ø²âWá Ø&â isE . For a givennodeØ , all other ,>á Ø²âWá â valuesarecomputed
from thevalues,>á ãHâ�á â for all children ã of Ø asfollows.

If Ø is anoperationnode,>á Ø²âWá àkâ*äå�£I§Â:O,>á ã+âWá àkâ.æ�ãÄÞß¥^ç²èWé
r+¢GD;s���ØI�q@
andif Ø is anequivalencenode,,>á Ø²âWá àkâ*äåª u ØQ:O,>á ãHâWá à\âQæiãÅÞ³¥�ç&èWé
r+¢GD^s��
ØI�q@
We definethedegreeof sharingof anequivalencenodeà in
thefull DAG as ,Äá ¢;âWá à\â , where¢ is therootof theDAG. We
canshow thatthis numberrepresentsthemaximumnumber
of occurrencesof à in any plan.Thus,if anodeà hasdegree
of sharingin the full DAG as E , it cannotmore thanonce
in any plan. Nodeswith degreeof sharing ê7E arecalled
sharablenodes.

In a reasonableimplementationof the above algorithm,
the time complexity of computingthe row ,>á Ø&â is propor-
tional to the numberof non-zeroentriesin ,Äá Ø&â (say sQë)
timesthenumberof childrenof Ø . However, typically, , is
fairly sparsesincetheDAG is typically “short andfat” – as
thenumberof queriesgrows,theheightof theDAG maynot
increase,but it becomeswider. Thus, s ë is a small fraction
of thetotal numberof nodesfor most Ø , makingthis shara-
bility computationalgorithmfairly efficient in practice. In
fact,for thequeriesweconsideredin ourperformancestudy
(Section6), thecomputationtookat mosta few tensof mil-
liseconds.

4.2 Incremental Cost Update
The setswith which ÑqDG¤^¦0¥itk¤^¦ is calledsuccessively at line
L1 of Figure2 arecloselyrelated. with their (symmetric)
differencebeingvery small. For, line L1 finds the node Ø
with themaximumbenefit,which is implementedby callingÑqDG¤^¦0¥itk¤^¦i����<�:^Ø¬@KÝ»Ù»� , for differentvaluesof Ø . Thusthe
secondparameterto ÑiDO¤^¦0¥itk¤^¦ changesby droppingonenodeØ-Ï andaddinganotherØIÏ � � . Wenow presentanincremental
costupdatealgorithmthatexploits theresultsof earliercost
computationsto incrementallycomputethenew plan.

Let be the set of nodessharedat a given point of
time, i.e., the previous call to ÑqDG¤^¦0¥itk¤^¦ was with as the
parameter. Theincrementalcostupdatealgorithmmaintains
thecostof computingeveryequivalencenode,giventhatall
nodesin areshared,andno othernodeis shared.Let ºì
be the new set of nodesthat areshared,i.e., the next call
to ÑqDG¤�¦0¥�tk¤�¦ has ºì asthe parameter. The incrementalcost
updatealgorithmstartsfrom thenodesthathave changedin
going from to ºì (i.e., nodesin ºì*íî and 9íÍºì) and
propagatesthe changein costfor the nodesupwardsto all
their parents;thesein turn propagateany changesin costto
their parentsif their costchanged,andso on, until thereis
no changein cost. Finally, to get the total costwe addthe
costof computingandmaterializingall thenodesin ºì .

6

If we performthis propagationin anarbitraryorderthen
in theï worst casewe could propagatethe changein cost
througha node Ø multiple times (for example,oncefrom
a node ã which is an ancestorof anothernode à andthen
from à). A simple mechanismfor avoiding repeated
propagationusestopologicalnumbersfor nodesof theDAG.
During DAG generationthe DAG is sortedtopologically
suchthat a descendantalwayscomesbeforean ancestorin
thesortorder, andnodesarenumberedin thisorder. Thecost
propagationis thenperformedaccordingto the topological
numberorderingusing a heapto efficiently find the node
with theminimumtopologicalsortnumberateachstep.

In our implementation,we additionally take care of
physicalpropertysubsumption.Detailsof how to perform
incrementalcost updateon physical DAGs with physical
propertysubsumptionaregivenin [RSSB98].

4.3 The Monotonicity Heuristic
In Figure 2, the function ÑqDG¤^¦0¥itk¤^¦ will be called oncefor
eachnode in Ú , under normal circumstances. We now
outline how to determinethe nodewith the smallestvalue
of ÑiDO¤^¦0¥itk¤^¦ muchmoreefficiently, using the monotonicity
heuristic.

Define ÑqD;sQDOðIè�¦i�
Ø¬<MÙµ� as
ÑqDG¤^¦0¥itk¤^¦i����<zÙ»�Sí�ÑiDO¤^¦0¥itk¤^¦i�·��<i:;ØQ@8ÝÅÙ»� .

Notice that,minimizing ÑqDG¤^¦0¥itk¤^¦ in line ñÁE correspondsto
maximizingbenefitasdefinedhere. Supposethe benefitis
monotonic. Intuitively, thebenefitof a nodeis monotonicif
it never increasesasmorenodesgetmaterialized;morefor-
mally ÑiD^sQDGðIè�¦ is monotonicif ò*ÙÜó�Ú , ÑqD;sQDGðIè�¦i��ØS<MÙ»�õôÑqD;sQDOðIè�¦i�
Ø¬<zÚA� .

We associateanupperboundon the benefitof a nodeinÚ andmaintaina heap ö of nodesorderedon theseupper
bounds.4 An initial upperboundon the benefitof a node
in Ú is computedby multiplying the cost of evaluating
thenode(without any materializations)timesthedegreeof
sharingof the node Ú in the full DAG (which we defined
earlier). The heap ö is now usedto efficiently find the
node Ø!ÞîÚ with themaximum ÑqD;sQDGðIè�¦i��ØS<MÙ»� asfollows:
Iteratively, the node s at the top ö is chosen,its current
benefit is recomputed,and the heap ö is reordered. Ifs remainsat the top, it is deletedfrom the ö heapand
chosento be materializedandaddedto Ù . Assumingthe
monotonicitypropertyholds,theothervaluesin theheapare
upperbounds,andtherefore,thenode s addedto Ù above,
is indeedthenodewith themaximumrealbenefit.

If themonotonicitypropertydoesnothold, thenodewith
maximumcurrentbenefitmaynot beat the top of theheapö , but we still usethe above procedureasa heuristicfor
finding thenodewith thegreatestbenefit.Our experiments
in Section6 demonstratethat the above proceduregreatly
speedsup thegreedyalgorithm. Further, for all querieswe
experimentedwith, theresultswereexactly thesameevenif
themonotonicityheuristicwasnotused.

4This cost heapis not to be confusedwith the heapon topological
numberingusedearlier.

5 Extensions
In thissection,webriefly outlineextensionsto i) incorporate
creationand useof temporaryindices,ii) optimize nested
queriesto exploit commonsub-expressionsandiii) optimize
multiple invocationsof parameterizedqueries.

Costsmay be substantiallyreducedby creating(tempo-
rary) indiceson databaserelationsor materializedinterme-
diateresults.To incorporateindex selection,we modelthe
presenceof anindex asaphysicalproperty, similartosortor-
der. Sinceouralgorithmsareactuallyexecutedon thephys-
ical DAG, they choosenot only what resultsto materialize
but alsowhat physicalpropertiesthey shouldhave. Index
selectionthenfalls out assimply a specialcaseof choosing
physicalproperties,with absolutelyno changesto our algo-
rithms.

Next we consider nestedqueries. One approachto
handlingnestedqueriesis to usedecorrelationtechniques
(see, e.g. [SPL96]). The use of such decorrelation
techniquesresults in the query being transformedto a
set of queries, with temporary relations being created.
Now, the queriesgeneratedby decorrelationhave several
subexpressionsin common, and are therefore excellent
candidatesfor multi-queryoptimization.Oneof thequeries
in ourperformanceevaluationbringsout thispoint.

Correlatedevaluation is usedin other cases,either be-
causeit may be moreefficient on the query, or becauseit
may not be possibleto get an efficient decorrelatedquery
usingstandardrelationaloperations[RR98]. In correlated
evaluation,thenestedqueryis repeatedlyinvokedwith dif-
ferentvaluesfor correlationvariables.Considerthefollow-
ing query.

select * from a, b, c
where a.x = b.x and b.y = c.y and
a.cost =
(select min(a1.cost) from a a1, b b1
where a1.x = b1.x and b1.y = c.y)

Oneoptionfor optimizingcorrelatedevaluationof thisquery
is tomaterializeu �îÑ , andshareit with theouterlevel query
andacrossnestedqueryinvocations.An index on u �!Ñ , on
attribute ÑOÎ ã is requiredfor efficientaccessto it in thenested
query, sincethereis a selectionon ÑOÎ ã from thecorrelation
variable. If the bestplan for the outer level queryusesthe
join order � u �îÑi���9¥ , materializingandsharingu �îÑ may
providethebestplan.

In general,partsof thenestedquerythatdonotdependon
the valueof correlationvariablescanpotentiallybe shared
acrossinvocations[RR98]. Wecanextendouralgorithmsto
considersuchreuseacrossmultiple invocationsof a nested
query. The key intuition is that when a nestedquery is
invoked many times, benefitsdue to materializationmust
be multiplied by the numberof timesit is invoked; results
that dependon correlationvariables,however, mustnot be
consideredfor materialization.The nestedquery invariant
optimizationtechniquesof [RR98] thenfall out asa special

7

caseof ours.
Ouralgorithmscanalsobeextendedto optimizemultiple

invocationsof parameterizedqueries.Parameterizedqueries
are queries that take parametervalues, which are used
in selectionpredicates;storedproceduresare a common
example. Parts of the query may be invariant, just as in
nestedqueries,and thesecan be exploited by multi-query
optimization.

Theseextensionshave beenimplementedin our system;
detailsmaybefoundin [RSSB98]. Our algorithmscanalso
be usedwith System-Rstyle bottom-upoptimizers,which
useaDAG representationimplicitly althoughnotexplicitly.

6 Performance Study
Our algorithmswere implementedby extendingandmod-
ifying a Volcano-basedqueryoptimizerwe haddeveloped
earlier. All codingwasdonein C++, with the basicopti-
mizertakingapprox.17,000lines,commonMQO codetook
1000 lines, Volcano-SHandVolcano-RU took around500
lineseach,andGreedytookabout1,500lines.

The optimizer rule set consistedof selectpush down,
join commutativity andassociativity (to generatebushyjoin
trees),andselectandaggregatesubsumption.

Implementationalgorithmsincludedsort-basedaggrega-
tion, mergejoin, nestedloopsjoin, indexedjoin, indexedse-
lect andrelationscan.Our implementationincorporatesall
the techniquesdiscussedin this paper, including handling
physicalproperties(sort orderandpresenceof indices)on
baseandintermediaterelations,unificationandsubsumption
duringDAG generation,andthesharabilityalgorithmfor the
greedyheuristic.

Theblock sizewastakenas4KB andour costfunctions
assume6MB is availableto eachoperatorduringexecution
(wealsoconductedexperimentswith largermemorysizesup
to 128MB, with similar results).Standardtechniqueswere
usedfor estimatingcosts,using statisticsabout relations.
The cost estimatescontainan I/O componentand a CPU
component,with seektime as10 msec,transfertime of 2
msec/blockfor readand4 msec/blockfor write, andCPU
cost of 0.2 msec/blockof dataprocessed. We assume
that intermediateresultsare pipelined to the next input,
using an iterator model as in Volcano; they are saved to
disk only if the result is to be materializedfor sharing.
Thematerializationcostis thecostof writing out theresult
sequentially.

The tests were performed on a single processor233
Mhz Pentium-II machinewith 64 MB memory, running
Linux. Optimization times are measuredas CPU time
(user+system).

6.1 Basic Experiments
The goal of the basic experimentswas to quantify the
benefitsand cost of the three heuristicsfor multi-query
optimization, Volcano-SH,Volcano-RU and Greedy, with
plain Volcano-styleoptimizationasthebasecase.We used
theversionof Volcano-RU whichconsiderstheforwardand

reverseorderingsof queriesto find sharingpossibilities,and
choosestheminimumcostplanamongstthetwo.
Experiment 1 (Stand-Alone TPCD):

The workload for the first experimentconsistedof four
queriesbasedon theTPCDbenchmark.We usedtheTPCD
databaseat scaleof 1 (i.e.,1 GB totalsize),with a clustered
index on the primary keys for all the baserelations. The
resultsarediscussedbelow andplottedin Figure3.

TPCD queryQ2 hasa large nestedquery, and repeated
invocationsof the nestedquery in a correlatedevaluation
couldbenefitfrom reusingsomeof theintermediateresults.
For this query, though Volcano-SHand Volcano-RU do
not lead to any improvementover the plan of estimated
cost 126 secs.returnedby Volcano, Greedy results in a
planof with significantlyreducedcostestimateof 79 secs.
Decorrelationis analternative to correlatedevaluation,and
Q2-D is a (manually) decorrelatedversion of Q2 (due
to decorrelation,Q2-D is actually a batch of queries).
Multi-queryoptimizationalsogivessubstantialgainson the
decorrelatedqueryQ2-D, resultingin a planwith estimated
costsof 46 secs.,since decorrelationresults in common
subexpressions.Clearly the bestplan here is multi-query
optimizationcoupledwith decorrelation.

Observe alsothat the costof Q2 (without decorrelation)
with Greedyis muchlessthanwith Volcano,andis lessthan
even the cost of Q2-D with plain Volcano— this results
indicatesthat multi-queryoptimizationcan be very useful
in other querieswhere decorrelationis not possible. To
test this, we ran our optimizer on a variant of Q2 where
the in clauseis changedto not in clause,which prevents
decorrelationfrom being introducedwithout introducing
new internal operatorssuchas anti-semijoin[RR98]. We
alsoreplacedthecorrelatedpredicate�� ��1Á	õ�Á÷»,�Úøä� ��1Á	õ�Á÷»,�Ú by �� ��1�	���÷Â,�Ú�ùä�� ��1�	õ�Á÷Â,�Ú .
For thismodifiedquery, Volcanogavea planwith estimated
costof 62927secs.,while Greedywasableto arriveataplan
with estimatedcost7331,animprovementby almostafactor
of 9.

Wenext consideredtheTPCDqueriesQ11andQ15,both
of which have commonsubexpressions,andhencemake a
casefor multi-query For Q11,eachof our threealgorithms
leadto a planof approximatelyhalf thecostasthatreturned
by Volcano.Greedyarrivesatsimilarimprovementsfor Q15
also, but Volcano-SHand Volcano-RU do not lead to any
appreciablebenefitfor thisquery.

Overall,Volcano-SHandVolcano-RU take thesametime
and spaceas Volcano. Greedytakes more time than the
othersfor all the queries,but the maximumtime taken by
greedyoverthefourquerieswasjustunder2 seconds,versus
0.33secondstakenby Volcanofor thesamequery. Theextra
overheadof greedyis negligible comparedto its benefits.
The total spacerequiredby Greedyrangedfrom 1.5 to 2.5
times that of the other algorithms,and againthe absolute
valueswerequitesmall(up to justover130KB).
Results on Microsoft SQL-Server 6.5:

8

 Q2ú Q2-Dû Q11 Q15
0

50

100

150
E

st
im

a
te

d
 C

o
st

 (
se

cs
)

Volcano
ü
Volcano-SH
ü
Volcano-RU
ü
Greedy
ý

 Q2þ Q2-Dÿ Q11 Q15

0.008

0.016

0.031

0.062

0.125

0.250

0.500

1.000

O
pt

im
iz

at
io

n
T

im
e

(s
ec

s)
, l

og
sc

al
e

Volcano
�
Volcano-SH
�
Volcano-RU
�
Greedy
�

Figure3: Optimizationof Stand-aloneTPCDQueries

To study the benefitsof multi-query optimizationon a
realdatabase,we testedits effect on thequeriesmentioned
above, executedon Microsoft SQL Server 6.5, runningon
WindowsNT, ona333Mhz Pentium-IImachinewith 64MB
memory. WeusedtheTPCDdatabaseatscale1 for thetests.
To do so, we encodedthe plansgeneratedby Greedyinto
SQL. We modeledsharingdecisionsby creatingtemporary
relations, populating, using and deleting them. If so
indicatedby Greedy, wecreatedindexeson thesetemporary
relations. We could not encodethe exact evaluationplan
in SQL sinceSQL-Server doesits own optimization. We
measuredthetotalelapsedtimefor executingall thesesteps.

The resultsare shown in Figure 4. For query Q2, the
time taken reducedfrom 513 secs.to 415 secs. Here,
SQL-Server performeddecorrelationon the original Q2 as
well as on the result of multi-query optimization. Thus,
the numbersdo not matchour cost estimates,but clearly
multi-query optimizationwas useful here. The reduction
for the decorrelatedversionQ2-D was from 345 secs.to
262 secs;thusthe bestplan for Q2 overall, even on SQL-
Server, was using multi-queryoptimizationas per Greedy
on a decorrelatedquery. The query Q11 speededup by
just under50%, from 808 secs.to 424 secs.andQ15 from
63 secs.to 42 secs.usingplanswith sharinggeneratedby
Greedy.

The resultsindicatethat multi-query optimizationgives
significanttime improvementson a real system. It is im-
portantto notethatthemeasuredbenefitsareunderestimates
of potentialbenefits,for the following reasons.(a) Due to
encodingof sharingin SQL, temporaryrelationshadto be
storedandre-readeven for the first use. (b) The opera-
tor setfor SQL-Server6.5doesnotsupportsort-mergejoin.
Our optimizerat times indicatedthat it wasworthwhile to
materializethe relationin a sortedorderso that it couldbe
cheaplyusedby a merge-joinor aggregationover it, which
wecouldnotencodein SQL/SQL-Server. If multi-queryop-
timizationwereproperlyintegratedinto thesystem,theben-
efitsarelikely to besignificantlylarger, andmoreconsistent
with ourestimates.

 Q2� Q2-D Q11 Q15
0

200

400

600

800

T
ot

al
 E

xe
cu

ti
on

 T
im

e
(s

ec
s)

� No-MQO
�
MQO

Figure4: Executionof Stand-aloneTPCD Querieson MS
SQLServer

Experiment 2 (Batched TPCD Queries):
In thesecondexperiment,theworkloadmodelsa system

whereseveral TPCD queriesareexecutedasa batch. The
workloadconsistsof subsequencesof the queriesQ3, Q5,
Q7, Q9 and Q10 from TPCD; none of thesequerieshas
any commonsubexpressionswithin itself. Eachquerywas
repeatedtwicewith differentselectionconstants.Composite
queryBQi consistsof the first i of the above queries,and
weusedcompositequeriesBQ1to BQ5in ourexperiments.
Likein Experiment1,weusedtheTPCDdatabaseatscaleof
1 andassumedthatthereareclusteredindicesontheprimary
keysof thedatabaserelations.

Notethatalthougha queryis repeatedwith two different
valuesfor a selectionconstant,we found that the selection
operationgenerally lands up at the bottom of the best
Volcanoplantree,andthetwo bestplantreesmaynot have
commonsubexpressions.

Theresultson theaboveworkloadareshown in Figure5.
Acrosstheworkload,Volcano-SHandVolcano-RU achieve
up to only about 14% improvement over Volcano with
respectto the cost of the returnedplan, while incurring
negligible overheads.Greedyperformsbetter, achieving up
to 56%improvementover Volcano,andis uniformly better

9

 BQ1� BQ2� BQ3� BQ4� BQ5�
0

200

400

600
E

st
im

a
te

d
 C

o
st

 (
se

cs
)

Volcano
�
Volcano-SH
�
Volcano-RU
�
Greedy
�

 BQ1� BQ2� BQ3� BQ4� BQ5�
0.008

0.016

0.031

0.062

0.125

0.250

0.500

1.000

2.000

4.000

8.000

O
pt

im
iz

at
io

n
T

im
e

(s
ec

s)
, l

og
sc

al
e

	 Volcano

Volcano-SH

Volcano-RU

Greedy
�

Figure5: Optimizationof BatchedTPCDQueries

thantheothertwo algorithms.
As expected,Volcano-SHand Volcano-RU have essen-

tially the sameexecutiontime and spacerequirementsas
Volcano.Greedytakesabout10secondsonthelargestquery
in the set, BQ5, while Volcanotakes about0.7 secondon
the same. However, the estimatedcostsavings on BQ5 is
260seconds,which is clearlymuchmorethantheextra op-
timizationtimecostof 10secs.Similarly, thespacerequire-
mentsfor Greedyweremoreby abouta factorof threeto
four over Volcano,but theabsolutedifferencefor BQ5 was
only 60KB. The benefitsof Greedy, therefore,clearly out-
weighthecost.

6.2 Scaleup Analysis
To seehow well our algorithmsscaleup with increasing
numbersof queries,we defineda new set of 22 relations��º��� to ��º�(�=� with anidenticalschema��� , º� , ���ª��
denoting part id, subpart id and number. Over these
relations,we defineda sequenceof 18 componentqueries�� � to �� ��� : componentquery ���Ï wasa pair of chain
queriesonfiveconsecutiverelations��º�SÏ to ����SÏ ��� , with
the join condition being ��º���\Î º� ä ��º��� � � Î � , for� ä4è?ÎhÎ è���N . One of the queriesin the pair ���Ï had a
selection��º�(Ï0Î ���ª�� u Ï while theotherhada selection
��º�SÏzÎ ���ª�� ÑqÏ whereu Ï and ÑiÏ arearbitraryvalueswithu Ï�ùä�ÑqÏ .

To measurescaleup,we usethe compositequeries5����
to 5���) , where 5�� Ï is consistsof queries8��� to �� � Ï È � .
Thus, 5���Ï usesR\è���F relations ��º� � to ��º� � Ï � � , and
hasN+Fkè.í9E^X join predicatesand okè.í¿R selectionpredicates.
Query CQ5, in particular, is on 22 relationsand has144
join predicatesand 36 selectpredicates. The size of the
22 baserelations ��º� � <�Î^Î�Î^<z��º� �z� variedfrom 20000to
40000tuples(assignedrandomly)with 25 tuplesperblock.
No index wasassumedon thebaserelations.

Thecostof theplanandoptimizationtime for theabove
workload is shown in Figure 6. The relative benefits
of the algorithms remains similar to that in the earlier
workloads,except that Volcano-RU now gives somewhat
better plans than Volcano-SH. Greedy continues to be

the best, although it is relatively more expensive. The
optimization time for Volcano, Volcano-SHand Volcano-
RU increaseslinearly. Theincreasein optimizationtime for
Greedyis alsopracticallylinear, althoughit hasaverysmall
super-linear component. But even for the largest query,
CQ5 (with 22 relations,144 join predicatesand 36 select
predicates)the time taken wasonly 30 seconds.The size
of the DAG increaseslinearly for this sequenceof queries.
Fromtheabove,we canconcludethatGreedyis scalableto
quitelargequerybatchsizes.

We also ran Greedyon querieswith larger numbersof
relationsto test its scaleup the sizeof a singlequery. The
querieswere repeatedtwice to make every subexpression
shared. The DAG size is, as expected,exponentialin the
numberof relations. For chain and star patternsof joins,
Greedyscaledup nicely at F Z , but in thecasewhereevery
relationhasa join predicatewith everyother, thescaleupof
Greedywasworse,at aroundF �=Z . Greedyshouldtherefore
beusedwith careonquerieswith alargenumberof relations.

6.3 Effect of Optimizations
In this seriesof experiments,we focus on the effect of
individual optimizationson theoptimizationof the scaleup
queries. We first considerthe effect of the monotonicity
heuristic addition to Greedy. Without the monotonicity
heuristic,beforeanodeis materializedthebenefitswouldbe
recomputedfor all thesharablenodesnot yet materialized.
With the monotonicity heuristic addition, we found that
on an averageonly about 45 benefitswere recomputed
eachtime, acrossthe rangeof CQ1 to CQ5. In contrast,
without themonotonicityheuristic,evenat CQ2therewere
about1558benefitrecomputationseachtime, leadingto an
optimizationtime of 77 secondsfor the query, as against
7 secondswith monotonicity. Scaleupis alsomuchworse
without monotonicity. Best of all, the plans produced
with andwithout themonotonicityheuristicassumptionhad
virtually the samecost on the querieswe ran. Thus, the
monotonicity heuristic provides very large time benefits,
withoutaffectingthequalityof theplansgenerated.

To find thebenefitof thesharabilitycomputation,wemea-

10

 CQ1� CQ2� CQ3� CQ4� CQ5�
0

200

400

600

800

E
st

im
a

te
d

 C
o

st
 (

se
cs

)

Volcano
�
Volcano-SH
�
Volcano-RU
�
Greedy
�

 CQ1� CQ2� CQ3� CQ4� CQ5�

5

10

15

20

25

O
p

ti
m

iz
a

ti
o

n
 T

im
e

(s
ec

s)

�
Volcano
�
Volcano-SH
�
Volcano-RU
�
Greedy

Figure6: Optimizationof ScaleupQueries

suredthe cost of Greedywith the sharabilitycomputation
turnedoff; everynodeis assumedto bepotentiallysharable.
Acrossthe rangeof scaleupqueries,we found that the op-
timization time increasedsignificantly. For CQ2, the opti-
mization time increasedfrom 30 secs.to 46 secs. Thus,
sharabilitycomputationis alsoa veryusefuloptimization.

In summary, our optimizationsof the implementation
of the greedy heuristic result in an order of magnitude
improvementin its performance,andarecritical for it to be
of practicaluse.

6.4 Discussion
To checktheeffectof memorysizeonourresults,weranall
the above experimentsincreasingthe memoryavailable to
theoperatorsfrom 6MB to 32MB andfurtherto 128MB.We
foundthatthecostestimatesfor theplansdecreasedslightly,
but therelativegains(i.e.,costratiowith respectto Volcano)
essentiallyremainedthe samethroughoutfor the different
heuristics.

We stressthat while the costof optimizationis indepen-
dentof thedatabasesize,theexecutioncostof a query, and
hencethebenefitdueto optimization,dependsuponthesize
of theunderlyingdata.Correspondingly, thebenefitto cost
ratio for our algorithmsincreasemarkedly with the sizeof
the data. To illustrate this fact, we ran the batchedTPCD
queryBQ5(consideredin Experiment2) onTPCDdatabase
with scaleof 100(totalsize100GB).Volcanoreturnedaplan
with estimatedcostof 106897secondswhile Greedyobtains
aplanwith costestimate73143seconds,animprovementof
33754seconds.The extra time spentduring optimization
is 10 seconds,asbefore,which is negligible relative to the
gain.

While the benefitsof using MQO show up on query
workloadswith commonsubexpressions,a relevant issue
is the performanceon workloadswith rare or nonexistent
overlaps.To studytheoverheadsof Greedyin acasewith no
sharing,we took a batchcontainingTPCDqueriesQ3, Q5,
Q7, Q9 andQ10, and renamedthe relationsto remove all
overlapsbetweenqueries.BasicVolcanooptimizationtook
650msec,while theGreedyalgorithmtook820msec.Thus

the overheadwas around25%, but note that the absolute
numbersareverysmall.Theoverheadsaredueto full DAG
expansionandsharabilitydetection.

To summarize,for very low costqueries,which take only
afew seconds,onemaywanttouseVolcano-RU, whichdoes
a “quick-and-dirty” job; especiallyso if the query is also
syntacticallycomplex. For moreexpensive queries,aswell
as“canned”queriesthat areoptimizedrarely but executed
frequentlyoverlargedatabases,it clearlymakessenseto use
Greedy.

7 Related Work
The multi-queryoptimizationproblemhasbeenaddressed
in [Fin82, Sel88, SSN94,PS88,ZDNS98, SV98]. Thework
in [Sel88, SSN94,PS88] describeexhaustive algorithms.
They also do not exploit the hierarchicalnatureof query
optimizationproblems,whereexpressionshave subexpres-
sions.

The work in [SV98] considerssharingonly amongstthe
bestplansof eachquery – this is similar to Volcano-SH,
and as we have seen,this often doesnot yield the best
sharing.For thespecialcaseof OLAP queries(aggregation
on a join of fact table with dimensiontables)Zhao et al.
[ZDNS98] considermultiqueryoptimizationto sharescans
andsubexpressions.They donotconsidermaterializationof
sharedresults,which is requiredto handlethemoregeneral
class of SQL queries,which we consider. Their Local
Greedyalgorithmis similar in spirit to Volcano-RU, while
GlobalGreedyis anextensionthatallows plansfor queries
consideredearlierto bechanged.

The problemof materializedview/index selectionis re-
latedto multi-queryoptmization,but needsto considerup-
datesandview maintenancecosts(see,e.g.,[Rou82, RSS96,
Gup97], andin thecontext of datacubes,[GHRU97]). Sev-
eralof thealgorithmsproposedfor thisproblemuseagreedy
heuristic,but do not discussefficient implementation,and
tight integrationwith thequeryoptimizer. We arecurrently
working on extendingour techniquesto handleview/index
selectionandmaintenance.

Ourmulti-queryoptimizationalgorithmsimplementquery

11

optimizationin the presenceof materialized/cachedviews,
as a subroutine. By virtue of working on a generalDAG
structure,our techniquesareextensible,unlike thesolutions
of [CKPS95] and[CR94].Theproblemof detectingwhether
anexpressioncanbeusedto computeanotherhasalsobeen
studiedin [YL87]; however, they donotaddresstheproblem
of query optimizationor of choosingwhat to materialize.
Query resultcaching[CR94] canbe viewed asa dynamic
form of multi-queryoptimization,andwe arecurrentlyex-
tendingour algorithmsto provide betterselectionof inter-
mediateresultsto cache.

Rao and Ross[RR98] considerthe problemof exploit-
ing invariantpartsof a nestedsubquery. Multi-query op-
timization on nestedqueriesachievesthe sameeffect, thus
our techniquesaremoregeneral.

8 Conclusions
We have describedthreenovel heuristicsearchalgorithms,
Volcano-SH,Volcano-RU andGreedy, for multi-queryopti-
mization.We presenteda a numberof techniquesto greatly
speedup the greedyalgorithm. Our algorithmsare based
on the AND-OR DAG representationof queries,and are
therebycanbeeasilyextendedto handlenew operators.Our
algorithmsalsohandleindex selectionandnestedqueries,in
a very naturalmanner. We alsodevelopedextensionsto the
DAG generationalgorithmto detectall commonsubexpres-
sionsandincludesubsumptionderivations.

Our implementationdemonstratedthat the algorithms
can be addedto an existing optimizer with a reasonably
small amount of effort. Our performancestudy, using
queriesbasedon the TPC-Dbenchmark,demonstratesthat
multi-query optimizationis practicaland gives significant
benefitsat a reasonablecost. The benefitsof multi-query
optimization were also demonstratedon a real database
system.

In conclusion,webelievewehavelaid thegroundworkfor
practicaluseof multi-queryoptimization,andmulti-query
optimizationwill forma critical part of all queryoptimizers
in thefuture.

Acknowledgments: This work wassupportedin part by a
grant from EngageTechnologies/RedbrickSystems. Part of the
work of PrasanRoy was supportedby an IBM Fellowship. We
wishto thankK. Sriravi, for helpwith coding,DanJayeandAshok
Sawe,for motivatingthiswork throughtheEngage.Fusionproject,
Krithi RamamrithamandSridharRamaswamy, for feedbackonthe
paper, and Paul Larsonboth for feedbackon the paper, and for
inviting PrasanRoy to participatein prototypingouralgorithmson
SQLServeratMicrosoft.

References
[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros

Potamianos,andKyuseokShim.Optimizingquerieswith ma-
terializedviews. In Intl. Conf. on Data Engineering, Taipei,
Taiwan,1995.

[CR94] C. M. ChenandN. Roussopolous.The implementation
andperformanceevaluationof the ADMS queryoptimizer:

Integratingqueryresultcachingandmatching.In Extending
DatabaseTechnology (EDBT), Cambridge,UK, March1994.

[Fin82] S. Finkelstein. Commonexpressionanalysisin database
applications.In SIGMODIntl. Conf. onManagementof Data,
pages235–245,Orlando,FL,1982.

[GHRU97] H. Gupta,V. Harinarayan,A. Rajaraman,andJ. Ull-
man. Index selectionfor olap. In Intl. Conf. on Data Engi-
neering, Binghampton,UK, April 1997.

[GM93] GoetzGraefeandWilliam J.McKenna.Extensibilityand
SearchEfficiency in theVolcanoOptimizerGenerator.In Intl.
Conf. onDataEngineering, 1993.

[Gup97] H. Gupta. Selectionof views to materializein a data
warehouse.In Intl. Conf. onDatabaseTheory, 1997.

[PS88] JooseokPark and Arie Segev. Using common sub-
expressionsto optimizemultiple queries. In Intl. Conf. on
DataEngineering, 1988.

[Rou82] N. Roussopolous.View indexing in relationaldatabases.
ACM Trans.onDatabaseSystems, 7(2):258–290,1982.

[RR98] Jun Rao and Ken Ross. Reusinginvariants: A new
strategy for correlatedqueries. In SIGMOD Intl. Conf. on
Managementof Data, Seattle,WA, 1998.

[RSS96] KennethRoss,DiveshSrivastava,andS.Sudarshan.Ma-
terializedview maintenanceand integrity constraintcheck-
ing: Tradingspacefor time. In SIGMODIntl. Conf. on Man-
agementof Data, May 1996.

[RSSB98] PrasanRoy, S. Seshadri,S. Sudarshan,and Siddhesh
Bhobe. Efficient andextensiblealgorithmsfor multi query
optimization. Technicalreport, Indian Instituteof Technol-
ogy, Bombay, OctoberNov 1998.

[Sel88] Timos K. Sellis. Multiple query optimization. ACM
Transactionson Database Systems, 13(1):23–52, March
1988.

[SHT! 99] J. Shanmugasundaram,G. He, K. Tufte, C. Zhang,
D. DeWitt, and J. Naughton. Relational databasesfor
queryingXML documents:Limitationsandopportunities.In
Intl. Conf. VeryLarge Databases, 1999.

[SPL96] Praveen Seshadri, Hamid Pirahesh, and T. Y. Clif f
Leung. Complex querydecorrelation.In Intl. Conf. on Data
Engineering, 1996.

[SSN94] KyuseokShim,Timos Sellis, andDanaNau. Improve-
mentson a heuristicalgorithmfor multiple-queryoptimiza-
tion. DataandKnowledge Engineering, 12:197–222,1994.

[SV98] Subbu N. Subramanianand ShivakumarVenkataraman.
Cost basedoptimizationof decisionsupportqueriesusing
transientviews. In SIGMODIntl. Conf. on Managementof
Data, Seattle,WA, 1998.

[YL87] H. Z. YangandP. A. Larson.Querytransformationfor PSJ
queries.In Intl. Conf. VeryLargeDatabases, pages245–254,
Brighton,August1987.

[ZDNS98] Y. Zhao,PrasadDeshpande,Jefrrey F. Naughton,and
Amit Shukla. Simultaneousoptimizationandevaluationof
multiple dimensionalqueries. In SIGMOD Intl. Conf. on
Managementof Data, Seattle,WA, 1998.

12

