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ABSTRACT
Current day database applications, with large numbers of users, re-
quire fine-grained access control mechanisms, at the level of indi-
vidual tuples, not just entire relations/views, to control which parts
of the data can be accessed by each user. Fine-grained access con-
trol is often enforced in the application code, which has numerous
drawbacks; these can be avoided by specifying/enforcing access
control at the database level. We present a novel fine-grained access
control model based on authorization views that allows “authorization-
transparent” querying; that is, user queries can be phrased in terms
of the database relations, and are valid if they can be answered us-
ing only the information contained in these authorization views.
We extend earlier work on authorization-transparent querying by
introducing a new notion of validity, conditional validity. We give
a powerful set of inference rules to check for query validity. We
demonstrate the practicality of our techniques by describing how
an existing query optimizer can be extended to perform access con-
trol checks by incorporating these inference rules.

1. INTRODUCTION
Access control is an integral part of databases and information

systems.
Granularity of access control refers to the size of individual data

items which can be authorized to users. There are many scenarios
that demand fine-grained access control:

• For an academic institution’s database that stores information
about student grades, it may be desired to allow students to
see only their own grades. On the other hand, a professor
should get access to all grades for a course she has taught.

• For a bank, a customer should be able to query her account
balance, and no one else’s balance. At the same time, a teller
should have read access to balances of all accounts but not
the addresses of customers corresponding to these balances.

• A teller should be allowed to see the balance of any account
by providing the account-id but not the balances of all ac-
counts together.
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In all the above cases, authorization is required at a very fine-
grained level, such as at the level of individual tuples. Also, as
in the last example, there can be a policy that defines how an access
should be made apart from what data can be accessed.

Currently, authorization mechanisms in SQL permit access con-
trol at the level of complete tables or columns, or on views. There is
no direct way to specify fine-grained authorization to control which
tuples can be accessed by which users. In theory, fine-grained ac-
cess control at the level of individual tuples can be achieved by
creating an access control list for each tuple. However this ap-
proach is not scalable, and would be totally impractical in systems
with millions of tuples, and thousands or millions of users, since
it would require millions of access control specifications to be pro-
vided (manually) by the administrator. It is also possible to create
views for specific users, which allow those users access to only se-
lected tuples of a table, but again this approach is not scalable with
large numbers of users.

Current generation information systems therefore typically by-
pass database access control facilities, and embed access control
in the application program used to access the database. Although
widely used, this approach has several disadvantages:

• Access control has to be checked at each user-interface. This
increases the overall code size. Any change in the access
control policy requires changing a large amount of code.

• All security policies have to be implemented into each of the
applications built on top of this data (e.g. OLTP and decision
support applications using the same underlying data).

• Given the large size of application code, it is possible to over-
look loopholes that can be exploited to break through the se-
curity policies, e.g. improperly designed servlets. Also, it is
easy for application programmers to create trap-doors with
malicious intent, since it is impossible to check every line of
code in a very large application.

For the above reasons, fine-grained access control should ideally
be specified and enforced at the database level.

In this paper, we present a security model in which fine-grained
authorization policies are defined and enforced in the database.
This makes sure that the same policies hold, irrespective of how
the data is accessed - through a report-writing tool, a query, or an
application program.

The key features of our model are as follows:

1. Access control is specified using authorization views (Sec-
tion 2). An authorization view can be a traditional relational
view or a parameterized view. A parameterized authoriza-
tion view is an SQL view definition which makes use of pa-
rameters like user-id, time, user-location etc. The following
parameterized authorization view



create authorization view MyGrades as
select * from Grades where student-id = $user-id

lets the user see all tuples in the Grades relation where the
student-id matches her user-id (parameters, such as user-id,
are denoted by a $ prefix). Parameterized views provide an
efficient and powerful way of expressing fine-grained autho-
rization policies. As views can project out specific columns
in addition to selecting rows, this framework allows fine-
grained authorization at the cell-level.

We also provide a special form of parameterized views, which
we call access pattern views, which allows specification of
authorizations such as “a teller can see the account informa-
tion of any one customer at a time, by providing her customer-
id”.

The model works within the basic SQL framework and does
not require the DBA to encode policies using a separate rule
language.

2. We allow queries to be written in an authorization-transparent
manner, that is, queries can be written against the database
relations without having to refer to the authorization views.

Given a user query (phrased in terms of database relations
or views), our system checks if the query is valid, that is, it
can be answered using the information available in the autho-
rization views that are accessible to the user. If found to be
valid, the query is allowed to execute as originally specified,
without any modification, otherwise it is rejected.

An obvious way to enforce access control using authoriza-
tion views is to allow queries to be written only against these
views, not against the original database relations. However,
since different users (or classes of users) may have different
authorization views, this would require application program-
mers to code interfaces differently for each user (or class of
users), increasing the cost and complexity of application de-
velopment.

Another alternative approach is to allow queries to be writ-
ten against database relations, but to modify the query by
replacing the database relations by the view of the relation
that is available to the user. For example, the Virtual Private
Database (VPD) feature of Oracle’s database server [1] im-
plements fine-grained access control using query modifica-
tion, by adding extra predicates to where clause of the given
query. However, as we describe in Section 3.3, query mod-
ification approaches have inherent undesirable side-effects,
such as giving erroneous answers to certain queries, instead
of rejecting them as unauthorized. In addition, modifying
the query can result in the query having very different execu-
tion characteristics; for instance the modified query may take
much longer to execute.

We present an authorization model, which we call the Tru-
man model, to understand the logical effect of the VPD and
related query modification models (Section 3). We point
out its drawbacks, and then propose our alternative model,
the Non-Truman model, which avoids these drawbacks (Sec-
tion 4).

Authorization transparent models have been previously pro-
posed by Motro [20] and by Rosenthal et al. [24, 22, 23].
Our model differs from these in several respects; we outline
the differences in Section 7.

3. As a first approximation, a user query q can be answered
using the information contained in the authorization views

available to the user if there is a query q′ using only the au-
thorization views that is equivalent to q, i.e., the two queries
give the same result on all database states. We categorize
such queries q as unconditionally valid.

The problem of rewriting a query using a set of available re-
lational views [15] has received tremendous attention. It has
been studied in the context of finding an efficient query ex-
ecution plan by rephrasing a query using the set of available
materialized views, in data integration systems, and for sup-
porting the separation of logical and physical views of data.
Our access control model leverages off these techniques.

The idea that a query is valid (authorized) if it can be rewrit-
ten in terms of authorized views was proposed earlier by
Motro [20] and by Rosenthal et al. [24, 22].

4. We show that certain queries can be answered using the in-
formation contained in a set of authorization views, even if
they cannot be rewritten using the views. Unconditional va-
lidity of q requires that q and q′ give the same results on all
database states. The key idea in going beyond unconditional
validity is that information in the authorization views avail-
able to a user rules out many database states, and we need
not require q and q′ to give the same result on such states.
On the other hand, as we show later (Example 4.3), requiring
q and q′ to give the same answer only in the current database
state is too weak a requirement, and can leak unauthorized
information.

5. Our next contribution is therefore to exactly characterize the
class of queries, which we call conditionally valid queries,
that can be answered using the information contained in a set
of views in a given database state (Section 4.3). The idea of
conditional validity is novel to this paper.

6. We give a set of powerful inference rules which can be used
to infer the unconditional and conditional validity of queries
(Section 5). We also describe how to efficiently check the
validity of a query by incorporating these rules into a query
optimizer (Section 5.6); for concreteness, we describe how
to incorporate these inference rules into the Volcano query
optimizer [13].

The idea that validity can be checked with help from a query
optimizer is present in the work by Motro and by Rosenthal
et al. cited above; however, they do not present any for-
mal inference rules. Motro [20] also presents an alternative
way of validity checking, for the special case of conjunctive
queries and views, which we outline in more detail in Sec-
tion 7.

The novel contributions of this paper include our model of autho-
rization based on parameterized/access pattern authorization views,
the notion of conditional validity, the inference rules for validity,
and the techniques for incorporating the inference rules into an op-
timizer.

The rest of the paper is organized as follows. Section 2 de-
scribes (parameterized) authorization views. In Section 3, we de-
scribe the Truman and VPD models, and outline the pitfalls of the
query modification approach. Section 4 presents our Non-Truman
model, including definitions of of our notions of unconditional and
conditional validity of queries. Section 5 describes a powerful set
of inference rules for conditional and unconditional validity. Sec-
tion 5.6 describes how to integrate our inference rules into a query



optimizer. Section 6 presents extensions of our basic scheme. Sec-
tion 7 describes related work in access control. Section 8 concludes
the paper and gives directions for future work.

2. AUTHORIZATION VIEWS
Traditionally, normal relational views have been used for access

control. In such a framework, the DBA creates different views for
each user. This is impractical when the database has thousands of
users and the DBA has to encode the same policies for each one of
them. Also, with a slight change of the authorization policy, a large
number of views will be affected. In contrast, parameterized views
provide a rule-based framework, where one view definition applies
across several users. Hence, some kinds of policies can be more
easily expressed using parameterized views.

A parameterized view is like a normal relational view, but with
parameters like user-id, time and user-location appearing in its def-
inition. The values of these parameters vary across different users
and different accesses. Hence, the same parameterized view can
give different results on the same database, depending on the exe-
cution context.

Consider a database with the following relations:
Students(student-id, name, type)
Courses(course-id, name)
Registered(student-id, course-id)
Grades(student-id, course-id, grade)

Let us assume integrity constraints that require each student-id and
course-id value in the tables Registered and Grades to appear in the
Students and Courses tables respectively. We use this schema as a
running example throughout the paper. The following parameter-
ized view stands for an authorization policy that allows a student to
see grade information for all courses she has registered for (includ-
ing the grades of other students).

create authorization view Co-studentGrades as
select Grades.*
from Grades, Registered
where Registered.student-id = $user-id
and Grades.course-id = Registered.course-id

The user-id $user-id appears as a parameter in this view defini-
tion. In general, the view can be a function of other parameters like
time and user’s location. For example, it may be desired to restrict
an authorization for a user from a specific IP address to only a par-
ticular time of the day. Authorization views can also be aggregate
views (if the DBA wants to allow a user to see only the average
grades for all courses).

Given a particular access to the database (by a particular user),
the parameters would be fixed, and we can replace all parameters
in the authorization views by the actual values. We call the resul-
tant set of authorization views the instantiated authorization views.
These define exactly what information is visible (authorized) to the
query; the validity of the query is thus tested using the instantiated
authorization views.

To handle complicated authorization scenarios, it is possible to
allow the DBA to define a procedure that takes as arguments the
values of the parameters (of a particular access), and returns a set
of instantiated authorization views, instead of using parameterized
authorization views. As a result, the set of instantiated authoriza-
tion views can be different for each user. Even in this case, the
validity of a query would be tested against the instantiated autho-
rization views, as before.

We also allow a class of authorization views which we call ac-
cess pattern views, which have parameters that must be bound at
access time, but can be bound to any value.

create authorization view SingleGrade as
select * from Grades where student-id = $$1

Here, $$1 indicates any specified value. Thus, this view does not
allow the user to see the grades of all students but by specifying
a particular student-id, the user can see the grades of that student.
A secretary may be provided with such an authorization, allowing
her to see grades of specific students, while at the same time pre-
venting her from getting a list of all students. (The notion of access
patterns has been studied in the context of mediator systems, e.g.
[27].) Web search forms with mandatory fields, for which a value
must be entered, are a typical example of the use of such authoriza-
tions. In the initial part of the paper, we consider only the basic
parameterized authorization views, and consider how to handle ac-
cess pattern views in Section 6.

3. TRUMAN’S WORLD MODELS
In this section, we first look at the Virtual Private Database fea-

ture of Oracle’s 9iR2 RDBMS [1]. We then present the Truman
model, which generalizes the query modification approach using
the parameterized view framework. It should be noted that the
VPD and Truman models support fine-grained and authorization-
transparent access control. However, they have some major limita-
tions, described in Section 3.3.

3.1 Oracle’s Virtual Private Database
The Virtual Private Database (VPD) feature of Oracle’s 9iR2

RDBMS [1] provides fine-grained access control by transparently
modifying the user query. The authorization policy is encoded into
functions defined for each relation, which are used to return where
clause predicates to be appended to the user query before it is ex-
ecuted. The added predicates ensure that the user gets to see only
those tuples in each table or view that she is authorized to see. The
policy functions can in turn include callouts to C or Java functions.
These functions can access operating system files or a central pol-
icy store.

When a user logs in, a secure application context is created in
the database. This is used to store user-specific information, i.e.
parameter values, based on which the policy functions will return
the appropriate predicates. In general, different applications can
define different security policies, depending on their access control
needs.

3.2 Truman Model
Our coinage of the name Truman Model is inspired by the arti-

ficial world spun around the character of Truman Burbank in the
movie “The Truman Show”. The idea behind the Truman secu-
rity model is to provide each user with a personal and restricted
view of the complete database. User queries are modified transpar-
ently to make sure that the user does not get to see anything more
than her view of the database. The returned answer is correct with
respect to the restricted view, if we assume the database has no
other data. However, users may have more information about the
database from external sources (e.g., the user may know that there
are other students registered for CS101), and the answers could be
inconsistent with such information.

In the Truman model, the DBA defines a parameterized autho-
rization view for each relation in the database. This view defines
all that the user can access from this database relation. The user
query is modified transparently by substituting each relation in the
query by the corresponding parameterized view (the user can write
queries on base relations in addition to the authorization views).
Values of run-time parameters like user-id, time etc. are plugged in
before the modified query is executed.



The parameterized view framework provides a more general way
to express authorization policies than the technique of adding where
clause predicates used in VPD, since it can additionally perform
other actions such as hiding or falsifying specific attribute values
which cannot be done by VPD (for example, if an authorization
policy permits a student to see her grades tuple but only after the
grade attribute has been modified as - all A and B grades to ‘High’,
and all other grades to ‘Low’).

3.3 Limitations of VPD and Truman Models
A major drawback of VPD and Truman models results from the

fact that the query that is executed on the database is a transpar-
ent modification of the user query. This may cause inconsistencies
between what the user expects to see and what the system returns.

• Suppose a student is allowed to see only her own grades from
the Grades relation. Then, the DBA has to deploy the follow-
ing authorization view MyGrades (alternately in VPD, by the
use of appropriate functions to generate where predicates).

create authorization view MyGrades as
select * from Grades where student-id = $user-id

Let q be the query posed by the user.

q: select avg(grade) from Grades

The system-modified query

q′ select avg(grade) from MyGrades

returns the average of the user’s own grades, giving her an
impression that her average grade is the same as the over-
all average grade. Such misleading answers can cause fur-
ther problems when queries are a part of some larger logic
or application. The Non-Truman model described later re-
moves this limitation of the Truman model by not adopting
the query modification approach. Either the user query is
executed without any modification or rejected outright.

• Suppose in addition to the view MyGrades given above, there
is a view AvgGrades which allows the user to see the average
grade for each course. If the user wants to find the average
grade for a course and is unaware of the view AvgGrades,
she will write the query on the base relation. However, if
the query is transparently rewritten as in the example above,
she will get misleading results in spite of having the correct
authorizations to run the query.

• The rewritten query executed by the system may be different
from the query posed by the user, and may have very dif-
ferent execution characteristics. For example, if each base
relation is substituted by a view, and the views are complex
(as they may be, if they express complex authorization poli-
cies), the rewritten query may be quite expensive to execute.
In the case of VPD, equivalently, the conditions introduced in
the where clause may have complex subqueries, which may
be expensive to execute. A user query and an authorization
view used to replace a relation in the query may both contain
the same test, leading to redundant tests. If the test involves
a join, the Truman-modified query may also contain redun-
dant joins. Removal of redundant joins is an extra task for
the query optimizer, and if not removed, the redundant joins
would result in wasted execution time. The Non-Truman
model does not suffer from this problem.

4. NON-TRUMAN MODEL
Although the Truman’s world models provide fine-grained and

authorization-transparent access control, they suffer from the lim-
itations described in Section 3.3. The Non-Truman model is mo-
tivated by these limitations. Under the Non-Truman model, the
query is subjected to a validity test, failing which, the query is re-
jected and the user is notified about this (this can be handled like
an exception by the user application). If the query passes the test,
it is allowed to execute normally, without modification.

Intuitively, under this model a user query is said to be valid, if
it can be answered using only the information contained in the au-
thorization views available to the user. The user can write queries
against the database relations. The DBA can create several autho-
rization views, one for each access policy, and any of those views
can testify for the validity of the user’s query.

We first define the notion of unconditional validity, which cap-
tures the queries that can be inferred to be equivalent to some ex-
pression written on just the authorization views. This is the same
notion proposed by Motro [20] and by Rosenthal et al. [24, 22, 23].

The notion of unconditional validity may seem to capture all
queries that can be answered using the information contained in the
authorization views. However, this is not the case, and we charac-
terize a class of queries, called conditionally valid queries, whose
validity is contingent on the current database state, rather than just
the authorization information.

4.1 Granting of Authorization Views
In the Non-Truman model, an authorization view can be treated

just like other privileges in SQL. For instance a user can use an
authorization view only if he/she has been granted (select) access
on the authorization view. We use the term available authoriza-
tion views to denote the set of authorization views that have been
granted to the user.

We assume that when a user is granted an authorization view, the
user can see the definition of the view. Without this information,
the user will not be able to understand why a query was deemed to
be valid or invalid. Also, this makes our access control model more
robust, as users in general may be aware of the access policies in
their organization.

4.2 Unconditional Validity
This notion of validity captures those queries that can be declared

as valid irrespective of the current database state.

DEFINITION 4.1. (Unconditionally Valid Query) For given
parameter values, a query q is said to be unconditionally valid if
there is a query q′ that is written using only the instantiated autho-
rization views, and is equivalent to q, that is, q′ produces the same
result as q on all database states.

�

Note that ‘equivalence’ in the above definition refers to multiset
equivalence, as in the case of SQL.

The intuition behind categorizing such queries as valid is that the
user could have just as well used q′ and got the same information,
provided they could have inferred that they would get the same
information from q and q′. By categorizing q as valid we save the
user (or programmer) the trouble of rewriting q as q′.

EXAMPLE 4.1. Consider the query q

select avg(grade) from Grades
where student-id = ‘11’

Assume that $user-id is 11, and the authorization view MyGrades
given in Section 1 is available. The above query q is equivalent to



the following query q′ that applies aggregation on the MyGrades
view

select avg(grade) from MyGrades

and is therefore unconditionally valid.
Now suppose the user had the following authorization view:

create authorization view AvgGrades as
select course-id, avg(grade)
from Grades group by course-id

The query

q1: select avg(grade) from Grades where course-id = ‘CS101’

can then be rewritten using only AvgGrades, and is thus uncon-
ditionally valid.

�

Note also that if the user is aware of integrity constraints that
restrict the set of legal database states, we can treat q and q′ as
equivalent if they return the same answer on all database states that
satisfy the integrity constraints. However, integrity constraints that
the user is not authorized to know should not be taken into account
when making this inference. Otherwise, the act of declaring q as
valid could allow the user to infer the presence of the integrity con-
straints.

The definition of unconditional validity is essentially the same
as the notions of query validity proposed by [20, 24, 22] and [23],
except for the issue of authorization to see integrity constraints.
However, the notion of conditional validity, explored next, is novel
to this paper.

4.3 Conditional Validity
Intuitively, a query q can be considered valid if the user could

have written an “equivalent” query using only the authorization
views. We have so far assumed that an “equivalent” query gives
the same answer on all database states. However, the user may be
aware of some information about the current database state. Based
on this information, the user may be able to infer that the given
query would give the same result as another query q′ that uses only
authorization views, on the current database state. Intuitively, the
given query q should be declared as valid, since the user could
have got the same information by executing q′, even though the
two queries may not give the same result on all database states.

We give two examples of such a situation below; the examples
also illustrates some problems that could arise from a naive ap-
proach to solving the problem. We then define our extended notion
of validity, which we call conditional validity.

EXAMPLE 4.2. Consider Example 4.1 again. Suppose the view
AvgGrades was modified to only show average grades for courses
that had an enrollment of 10 or more students (call this modified
view LCAvgGrades). The query

q: select avg(grade) from Grades where course-id = ‘CS101’

is then not equivalent to a selection on LCAvgGrades, and cannot
be declared unconditionally valid. However, if ‘CS101’ has 10 or
more students, then the view LCAvgGrades can indeed be used to
answer query q. Thus, the validity of q depends on the database
state.

�

EXAMPLE 4.3. Now suppose the authorization view Co-student-
Grades defined earlier in Section 2 is available (the view permits a
user to see all grades-information of courses for which the user has
registered). Consider the following query:

q: select * from Grades where course-id = ‘CS101’

It is not possible to apply any operations on the authorization
view Co-studentGrades to get a query q′ that is equivalent to q

across all database states. To prove this, suppose we have such a
query q′. Then, we can have a database instance which has some
CS101 grades but the user is not registered for any course; in that
case the result of Co-studentGrades and hence q′ is empty, whereas
that of q is not. So, such a query q′ cannot exist.

However, if the user has registered for CS101 (a requirement on
the current database state), the user can use the query

q′: select * from Co-studentGrades
where course-id = ‘CS101’

to get the result of q. Thus, one may assume that it is safe to
declare q as valid in this case.

However, there is a further complication in declaring q to be
valid. Suppose there is no authorization view that tells the user what
courses she has registered for. If the user has registered for CS101
and there were grades for CS101, the user would be able to infer
that she is registered for CS101 by simply looking at the result of
Co-studentGrades. But suppose that no grades have been entered
for CS101. In this case, the user cannot infer her registration status
for CS101 using Co-studentGrades. In this situation, if the system
accepts query q, the user can infer that she is registered for CS101,
even though the actual answer set of the query q is empty. Thus,
the act of accepting a query can itself reveal information that was
not supposed to be revealed by the authorization views. In contrast,
rejection is safe here, since if the system rejects q, the user can only
infer that one of these is true: (a) she is not registered for CS101 or
(b) she is not allowed to know if she is registered for CS101.

Note that in the above case (when the user is registered for CS101),
the answer to q as well as to q′ are the same in the current database
state, but since the user does not know whether she is registered
for CS101 or not, she cannot infer that the two queries would give
the same answer. The user could have inferred that q′ would give
the same result as q only if she knew that she was registered for
CS101. This shows that the naive approach of testing the equiva-
lence between q and q′ over just the current database state, leaks
unauthorized information.

In general, q should be declared valid only if the user would
be able to infer that q and q′ would give the same result, using
only the information that the available authorization views provide
without knowing the complete current state of the database. In this
example, the user would be able to make this inference only if (a)
the user is registered for CS101, and (b) the user is authorized to
know if she is registered for CS101.

�

The above example illustrates the difficulties in going beyond
the notion of unconditional validity. Our characterization of con-
ditional validity extends the class of queries declared to be valid,
while ensuring that information is not leaked in situations such as
the above. Before we proceed to the characterization of conditional
validity, we need some definitions.

DEFINITION 4.2. (PA-Equivalent Database States) For given
parameter values, two database states D1 and D2 are said to be
parameterized-authorization-view equivalent, if each instantiated
authorization view returns the same result for D1 and D2.

�

Armed with this definition, we extend the notion of validity as
follows.

DEFINITION 4.3. (Conditionally Valid Query) For given pa-
rameter values, a query q is conditionally valid in a database state
D, if there is a query q′ that is written using only the instanti-
ated authorization views, and is equivalent to q (i.e. returns the
same (multi)set of answers as q) on all database states that are
PA-equivalent to D.

�



This definition of validity takes into account the database state,
unlike unconditional validity. The intuition for the above is as fol-
lows. The information in the authorization views does not define
the exact database state; as far as the user knows, the database may
be in any state that is consistent with the results of the authorization
views seen by the user; these are the states that are PA-equivalent to
the actual database state D. The query q′ is unconditionally valid
by definition, and as long as q is equivalent to q′ in all these possi-
ble states, the user can infer that the result of q can be obtained by
executing q′. Thus, we declare q to be conditionally valid.

Note that since users have access to the definitions of views that
they are authorized to use, an intelligent user could take the query
q and come up with the query q′ and infer that they would return
the same result on the current database state, based on the partial
information about the current database state available to that user.
In our model, the system makes the inference and declares q as
conditionally valid, saving the user the effort of rewriting query q

as q′.

EXAMPLE 4.4. Now we come back to Example 4.3, where the
user, say with user-id 11, wanted all CS101 grades and the autho-
rization policy provided the view Co-studentGrades. Consider the
following query.

select 1 from Registered
where student-id = ‘11’ and course-id = ‘CS101’

Suppose the above query is valid (and thus its result is visible to
the user), and its result on the current database state is non-empty.
Then, the user can infer that she is registered for CS101 and hence
that all CS101 grades will appear in her view Co-studentGrades.
Thus, she can get all CS101 grades by writing a query that selects
the CS101 grades out of the view Co-studentGrades. This query
and the given query q requesting all CS101 grades are equivalent
under all database states PA-equivalent to the current state, and thus
q is conditionally valid.

However, if either the student is not registered for CS101 or is not
authorized to know if she is registered for CS101, then there could
be PA-equivalent states where q is not equivalent to the selection
on Co-studentGrades, and (assuming no other view allows q to be
declared valid) q would be rejected as not valid.

�

The above definition of conditional validity is arguably the weak-
est definition possible, since

1. Any valid query result has to be computable as a query using
only the given authorization views, and as a result the two
queries must be equivalent at least on the current database
state, and

A query can thus be labeled as valid only if the user can infer
that some query on the authorization views is equivalent to
the given query on the current database state.

2. However, the user does not have full information about the
current database state; all the user knows about the current
database state is the information revealed by the authoriza-
tion views. Thus, the query should be permitted only if the
user could have come up with a query on the authorization
views and inferred it to be equivalent to the given query on
all PA-equivalent database states. This is exactly the defini-
tion of conditional validity.

To summarize, we define the Non-Truman access control model
as follows: the model allows a query to be executed only if the
query has been inferred to be unconditionally or conditionally valid.
Of course, if a query is unconditionally valid, it is also condition-
ally valid.

4.4 Authorization of Updates
We can extend our authorization model to handle update queries

by testing them against parameterized conditions such as those il-
lustrated below.

authorize insert on Registered
where Registered.student-id = $user-id

authorize update on Students(address)
where old(Students.student-id) = $user-id

The first condition permits a user to add a registration tuple only
if it corresponds to her course registration, while the second one
permits any student to update her address in the Students relation.

Note that we only consider queries in the rest of the paper. In
our model, checking validity of updates is a simpler task than va-
lidity checking for queries. We consider updates individually, and
checking if the insertion/deletion/update of a particular tuple is au-
thorized only requires evaluation of a (fully instantiated) predicate,
rather than the more complex inferencing required for checking
queries.

5. TESTING FOR VALIDITY
In this section we first outline (in Section 5.1) prior work on

query rewriting using views, which can be used for checking un-
conditional validity. In Sections 5.2 through 5.4, we then give rules
for inferring unconditional and conditional validity of queries. The
inference rules are very powerful and handle the multiset semantics
of SQL. We discuss issues on completeness of validity checking, in
Section 5.5. The inference rules can be implemented as part of a
query optimizer, as detailed in Section 5.6.

For simplicity, we assume that there are no nested subqueries in
the SQL queries.

5.1 Earlier Results on Query Rewriting
The problem of query rewriting using views has received a lot

of attention in the past. Halevy [15] gives a comprehensive
survey on the topic. Amongst work on query rewriting, the work
closest to our motivation comes from query optimization, where
the rewritten query is required to be equivalent to the original one.
For example, Chaudhuri et al. [6] consider optimization of select-
project-join queries with arithmetic comparisons, using material-
ized views. Query containment algorithms that take multiset
semantics into account are discussed in [7]. Several works describe
how view matching can be added as a set of transformational rules
in a rule-based optimizer. Goldstein and Larson [12] do it on the
SQL Server optimizer, Zaharioudakis et al. [28] on IBM DB2, and
Bello et al. [3] on Oracle 8i. There has also been work on rewriting
queries when either the views or the queries contain grouping and
aggregation [14, 26, 8, 28].

However, in query optimization the goal of the rewriting algo-
rithms is not just to find such a rewriting, but also to produce an
efficient query plan for the rewritten query. Since we only use the
rewriting to test for validity, we are not concerned with executing
the rewritten query efficiently; in fact, it is the original query that
will be executed. One approach to inferring validity was proposed
by Motro [20]; we outline that approach briefly in Section 7. Our
approach is different, and in the following subsections we present
a set of rules for inferring validity.

5.2 Basic Inference Rules
We begin with some simple inference rules.

Inference Rule U1: If v is an authorization view, then the query v

is unconditionally valid.
�



Inference Rule U2: If q1, q2, ..., qn are unconditionally valid que-
ries, and E is an expression combining q1, q2, ..., qn, with no other
relation appearing in it, then E is an unconditionally valid query.

�

That is, if a query can be expressed as an operation (projection,
selection, join etc.) on top of unconditionally valid subexpressions,
the query is itself unconditionally valid. Suppose, the authorization
policy provides the view MyGrades given earlier. Then the follow-
ing are some queries that can be inferred to be unconditionally valid
using this rule (we assume that the user-id parameter value is 11).

select grade from Grades
where student-id = ‘11’

The above query can be expressed as a projection of the instantiated
authorization view MyGrades (instantiated with $user-id = 11).

select course-id from Grades
where student-id = ‘11’ and grade = ‘A’

The above query can be expressed as a selection σgrade=‘A′ on the
instantiated authorization view MyGrades, followed by a projection
on course-id.

Although conceptually simple, rule U2 is not trivial to imple-
ment, as a query may be written in one of many different equiv-
alent forms. Techniques developed for query rewriting, described
in Section 5.1, are needed to implement this rule. We address this
issue further in Section 5.6.

5.3 Inference Rules Using Integrity Constraints
Inference rule U2 allowed us to infer the validity of an expression

from the validity of subexpressions. In some cases, given that an
expression is valid, we can infer the validity of a subexpression, by
using integrity constraints as illustrated by the following example.

EXAMPLE 5.1. Consider the following authorization view.

create authorization view RegStudents as
select Registered.course-id, Students.name,

Students.type
from Registered, Students
where Students.student-id = Registered.student-id

Suppose the schema includes an additional integrity constraint
that says that each student has to register for at least one course.
Then, each tuple in the Students relation will match some tuple in
the Registered relation under the join condition, and hence, appear
in the result of this view. As a result, the projection (with duplicate
elimination) of the above view on the Students.name, Students.type
attributes will be equivalent to the following query:

q: select distinct name, type from Students

Thus, given the authorization view RegStudents, we can infer the
validity of q, in the presence of such an integrity constraint. If q

and RegStudents were written using relational algebra, q would be
a subexpression of RegStudents (with an extra duplicate elimination
step).

Note that a modified version of q with the keyword distinct dropped,
is not multi-set equivalent to a projection (with or without duplicate
elimination) on RegStudents. Suppose there are n students with a
given name John, and type FullTime, and each is registered for m

courses. Then the projection on RegStudents would have n ∗ m

copies of the tuple (John, FullTime), whereas the query q would
have only n copies. The view does not provide enough information
to retrieve the value of n. As a result, we cannot infer the validity
of the modified version of q using RegStudents.

�

We formalize the inference in the above example using the fol-

lowing rule.

Inference Rule U3a: Suppose that the following conditions are
true.

1. The following query is unconditionally valid.

q: select A from R where P

Where R is a set of relations, A is a set of constants or at-
tributes from the relations in R, and P is a predicate involv-
ing the attributes from the relations in R.

Further, there exists a disjoint partition of R into two sets of
relations Rc and Rr , a disjoint partition of A into two sets of
constants and attributes Ac and Ar, and P = Pc ∧Pr ∧Pj ,
such that:

(a) All attributes in Ac come from the relations in Rc, while
all attributes in Ar come from the relations in Rr .

(b) All attributes in the predicate Pc come from the rela-
tions in Rc, while all attributes in the predicate Pr

come from the relations in Rr .
(c) Pj is a predicate that joins attributes of relations that

come from across the two sets Rc and Rr .

2. Let

vc: select * from Rc where Pc

vr: select * from Rr where Pr

The schema has integrity constraints such that for queries vc

(“view-core”) and vr (“view-remainder”), for every tuple in
the result of vc, there is a tuple in the result of vr , such that
the join conditions expressed by Pj are satisfied by these two
tuples.

Further, the relevant integrity constraints are visible to the
user.

Then, the following query is unconditionally valid.

q′: select distinct Ac from Rc where Pc
�

The conditions of the inference rule U3a help ensure that q′ is
equivalent to a projection (with duplicate elimination) of q on the
attributes Ac, and as a result we can infer that q′ is unconditionally
valid. Note that q′ without the ‘select distinct’ may not be multi-set
equivalent to a projection (without duplicate elimination) of q on
Ac, as illustrated in Example 5.1.

EXAMPLE 5.2. Applying Rule U3a to Example 5.1, we would
have

q: RegStudents

vc: select * from Students
vr: select * from Registered
q′: select distinct name, type from Students

and the integrity constraint ensures condition 2 of Rule U3a.
�

Inference Rule U3b: Inference rule U3b is the same as U3a ex-
cept that the top level ‘select’ in query q is replaced by a ‘select
distinct’.

�

This shows that the query q in U3a gave more information to
the user than what is needed to infer the results of the query q′. A
set version of the result of q is sufficient for the same. Note that
we can infer U3a from U2 and U3b, since if we are given a query
q without a ‘distinct’ clause, we can always add the clause (using
U2), and then apply U3b.



Under some additional conditions over those in U3a, we can re-
construct the multiplicity of the tuples in q′ without the distinct
keyword. Under these conditions, q′ without the distinct keyword
can be inferred to be valid, as formalized below.

Inference Rule U3c: This inference rule is got from rule U3a by:

1. Adding an extra condition 1d: all the attributes from Rr that
appear in the predicate Pj should appear in the set Ar .

2. Adding an extra condition 3: the following query must be
unconditionally valid.

qrj : select Arj from Rr where Pr

Where, Arj is the set of all attributes from Rr that appear in
the predicate Pj .

3. Replacing the top level ‘select distinct’ in q′ by a ‘select’.
�

The extra conditions introduced by this rule ensure that the user
is able to reconstruct the multiplicity of the tuples in the view-core;
this can be done for each value of Arj by dividing the number of
tuples with that value in ΠAc∪Arj

(q) by the number of tuples with
that value in qrj .

THEOREM 5.1. (Soundness of Rules) Inference rules U1, U2,
U3a, U3b, and U3c are sound.

�

Inference rule U3a and its extensions U3b and U3c are quite
powerful, and can be combined with U2 to make complex infer-
ences as illustrated by the following examples.

EXAMPLE 5.3. Consider the following query.

qf : select distinct name from Students
where Students.type = ‘FullTime’

Suppose the authorization view RegStudents is available, but there
may be students who are not registered for any course. As a result
we cannot infer the validity of the query that selects names of all
students. However, suppose we have an integrity constraint that all
full-time students must have registered for a course. We can then
infer the validity of the above query, by using rules U2 and U3a, as
follows. Given the validity of RegStudents, the following selection
query on RegStudents must be valid

select distinct name from RegStudents
where Students.type = ‘FullTime’

Expanding the view, and pushing in the selection condition, we get
the following query

select distinct Students.name
from Students, Registered
where Students.student-id = Registered.student-id

and Students.type = ‘FullTime’

We can now apply Rule U3a as we did in Example 5.2, except that
vc would be

vc: select * from Students
where Students.type = ‘FullTime’

and thus infer the validity of qf .
�

EXAMPLE 5.4. As another example of the power of these rules,
suppose we have a relation FeesPaid(student-id) recording all stu-
dents who have paid the fees. Consider a query

qj : select distinct name from Students, FeesPaid
where Students.student-id = FeesPaid.student-id

and suppose that there is an integrity constraint that anyone who has
paid the fees must be registered for some course. Further suppose

that FeesPaid is visible (i.e., authorized). Let q denote the natural
join of RegStudents and FeesPaid. Using U2, we can infer that q is
valid; expanding out the view RegStudents in q, and setting

vc: select * from Students, FeesPaid
where Students.student-id = FeesPaid.student-id

vr: select * from Registered

we can infer the validity of qj using U3a (followed by a projection
on just the name attribute).

�

5.4 Inferring Conditional Validity
We now give a set of rules for inferring the conditional validity

of queries.

Inference Rule C1: If a query q is unconditionally valid, it is con-
ditionally valid in all database states.

�

Inference Rule C2: If queries q1, q2, ..., qn are conditionally valid
in a database state D, and E is an expression combining q1, q2, ..., qn

with no other relation appearing in it, then E is conditionally valid
in D.

�

The following inference rule formalizes the reasoning used in
Example 4.4.

Inference Rule C3a: Suppose in a database state D

1. The following query is conditionally valid in D.

q: select A from R where P

Where R is a set of relations, A is a set of constants or at-
tributes from the relations in R, and P is a predicate in-
volving the attributes from the relations in R. There exists a
disjoint partition of R into two sets of relations Rc and Rr , a
disjoint partition of A into two sets of attributes Ac and Ar,
and P = Pc ∧ Pr ∧ Pj such that:

(a) All attributes in Ac come from the relations in Rc, while
all attributes in Ar come from the relations in Rr .

(b) All attributes in the predicate Pc come from the rela-
tions in Rc, while all attributes in the predicate Pr

come from the relations in Rr .
(c) Pj is the predicate that joins attributes of relations that

come from across the two sets Rc and Rr .
(d) All attributes of the relations in Rc appearing in the

predicate Pj should also appear in the set Ac.

2. Consider an instantiation of all the attributes in Pj , such that
Pj is satisfied. Let this instantiation be given by predicates
Pic which instantiates all attributes in Pj that come from
Rc, and Pir , which instantiates all attributes in Pj that come
from Rr . 1

3. The following query is conditionally valid in database state
D, and produces a non-empty result on D.

vr: select distinct 1 from Rr where Pr ∧ Pir

Then, the following query is conditionally valid in D.

q′: select distinct Ac from Rc where Pc ∧ Pic
�

The conditions of the inference rule C3a help ensure that q′ is
equivalent to the following query q′′ for all database states that are
PA-equivalent to D. Note that q′′ is written using only the condi-
tionally valid query q.

q′′: select distinct Ac from q where Pic

1As a special case, if the view has only equi-joins, then (the in-
stantiation defined by) Pic uniquely determines (the instantiation
defined by) Pir



EXAMPLE 5.5. Applying the above rule to Example 4.4:
Pc = true
Pr = (Registered.student-id = ‘11’)
Pj = (Grades.course-id = Registered.course-id)
Pic = (Grades.course-id = ‘CS101’)
Pir = (Registered.course-id = ‘CS101’)

The rest of the reasoning in applying the rule is as described in Ex-
ample 4.4, leading us to infer the validity of the query select dis-
tinct * from Grades where course-id = ‘CS101’. Since the Grades
table has a primary key, the distinct keyword can be dropped.

�

We note that if the query vr in Condition 3 above can be inferred
to be non-empty regardless of the database state (e.g., based on
integrity constraints), then we can infer q′ to be unconditionally
valid using U3a.

Under some additional conditions over those in C3a, we can re-
construct the multiplicity of tuples in q′ without the distinct key-
word. The next inference rule deals with this.

Inference Rule C3b: This inference rule is got from rule C3a by:

1. Adding an extra condition 1(e): The instantiation defined by
Pic uniquely determines the instantiation defined by Pir (for
e.g., if Pj is an equi-join).

2. Replacing the top level ‘select distinct’ in vr by a ‘select’.

3. Replacing the top level ‘select distinct’ in q′ by a ‘select’.
�

THEOREM 5.2. (Soundness of Rules) Inference rules C1, C2,
C3a and C3b are sound.

�

5.5 Completeness of Inference Rules
Although we have given a fairly powerful set of inference rules,

they are not complete. In fact, although unconditional validity is
decidable for restricted languages, such as conjunctive queries, in
the general case it is undecidable (the question of whether a query
is identically empty can be reduced to it) (see, e.g. [15]). Thus,
we cannot expect a complete set of rules that would lead to an al-
gorithm for unconditional validity in the general case. The decid-
ability of conditional validity is open, even for conjunctive queries.
While we believe that our inference rules are likely to handle most
common queries, there will be some queries that the rules cannot
infer to be valid, even if they are valid. As a result, the queries
would be incorrectly rejected, although unlike in the case of VPD,
results of accepted queries would never be incorrect. This does
not mean that the user cannot execute such queries: the user can
rephrase the queries, rewriting them to use the authorization views
instead of the database relations. The queries would then be triv-
ially recognized as valid. Although the benefit of authorization-
transparency may be lost for such queries, it is retained for the vast
majority of simpler queries, which are successfully handled.

5.6 Validity Testing Using Inference Rules
We have given a set of inference rules which derive uncondi-

tionally and conditionally valid queries, given a set of instantiated
authorization views. We now address the problem of inferring if
a given user query q is valid in the presence of instantiated autho-
rization views v1, v2, ..., vn. This is a problem of goal-directed
inferencing. Specifically, we describe how a Volcano-based query
optimizer can be extended to perform validity tests.

5.6.1 The Volcano Query Optimizer
The Volcano query optimizer [13] is used for generating the best

evaluation plan for a given query.

Volcano works by first generating an AND-OR DAG represen-
tation of all possible evaluation plans for a given query, and then
choosing the plan with the least estimated cost. Figure 1 (a) shows
a query A � B � C, and Figure 1 (b) shows its its initial AND-OR
DAG representation. The rectangular nodes in the DAG are called
equivalence nodes, and they represent a logical expression, while
the circular nodes are called operation nodes, and they represent an
operation (like selection, projection, join).

An equivalence node may have multiple children (each of which
must be an operation node). Equivalence nodes are called OR
nodes since any of their children operation nodes may be chosen
to compute the result of the equivalence node. The queries defined
by the different choices are equivalent, i.e., they return the same re-
sult. Operation nodes are called AND nodes, since all their children
need to be evaluated in order to compute the result of the operation;
the children of an operation node must be equivalence nodes.

Given an initial query, algebraic equivalence rules, such as join
associativity and commutativity, can be applied to the initial query
DAG. Applying an equivalence rule to an operation node results
in an alternative equivalent expression, which is added as another
child of the parent equivalence node (if it is not already present).
The equivalence rules are applied repeatedly, till no new expres-
sion can be generated. The resultant DAG is called the expanded
AND-OR DAG, and it compactly represents all the alternative query
evaluation plans that can be inferred using the equivalence rules.
Figure 1(c) shows the expanded DAG for the query shown in Fig-
ure 1(a). For this example, only the join associativity transforma-
tion rule is used. Note that, disregarding join commutativity, there
are three ways of evaluating this query. For the case of join order-
ing, the AND-OR DAG is at worst exponential in the number of
relations, but represents a much larger number of query plans. For
query optimization, the AND-OR DAG based on “logical” opera-
tions such as join has to be further expanded to represent alternative
“physical” operations, such as merge-join or hash-join, which can
be used to implement the join operation. This step is irrelevant for
our purposes.

The multi-query optimization framework of [25] extends the Vol-
cano algorithm to check if a query can be rewritten using materi-
alized views (or materialized intermediate results). An important
aspect of this framework is unification of nodes. If during the ex-
pansion of a node by applying a transformation rule it is found that
the subtree generated is the same as another one in the DAG, the
two are unified. Essentially, this means that when two or more
queries are represented in a single expanded DAG, their common
subexpressions are detected and unified. Thus, if a materialized
view is equivalent to a subexpression of a query, their equivalence
nodes would get unified. The materialized view can then be used,
instead of evaluating (one of) the expressions represented by the
equivalence node. “Subsumption derivations”, which allow a se-
lection to be evaluated from a weaker selection or a coarse-grained
aggregation from a finer-grained one, are also added to the DAG.

In our context, we can use authorization views in place of mate-
rialized views, and use the above technique to detect when a query
can be evaluated using the authorization views. We describe the
idea in more detail in the following subsections.

5.6.2 Implementing Basic Inference Rules
Under the basic inference rules U1 and U2 stated earlier, given

a set of authorization views V = {v1, v2, ..., vn} and a query q,
we would like to test if the query can be completely rewritten using
the available views. This is done as follows. Equivalence rules
are applied to the query to get an expanded DAG. The unexpanded
DAGs for the instantiated authorization views are unified with the
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expanded query DAG (there is no need to expand the authorization
view DAGs, i.e., apply equivalence rules to the authorization views,
to implement the basic inference rules). The root equivalence nodes
for all views are marked as valid. The following rules are applied
bottom-up to the DAG:

1. An equivalence is marked as valid if any of its children oper-
ation nodes is marked as valid.

2. An operation node is marked as valid if all its children equiv-
alence nodes are marked as valid.

If the root equivalence node of the query is marked as valid, then
the query is inferred to be unconditionally valid. Rules C1 and C2
can be implemented in the same way as U1 and U2.

Although the above algorithm is sound, it may not be able to
infer validity of some unconditionally valid queries. Given the set
of views V = {A � B, B � C}, it is possible that a query of
the form A � B � C can be rewritten completely using the views
only if we decompose the query as (A � B) � (B � C). Volcano
does not generate such query plans as adding redundant relations
in the join increases query complexity. Extending the algorithm to
handle such cases is a topic of future work.

5.6.3 Implementing Complex Inference Rules
We now consider how to implement the U3 and C3 family of

rules. Unlike the case of basic inference rules, here we want to
infer the validity of a subexpression from a complete view. In this
case, we need to apply equivalence rules to authorization views in
addition to the user query. The technique of [25] can be used to
unify the DAGs generated from the query and the views.

Inference rule U3a and U3b can be implemented as follows. Any
equivalence node marked as valid represents an unconditionally
valid query. For any such node n, we can traverse down the DAG
to a child that represents a join operation. This can be seen as the
join of a core and a remainder. We need to make sure that for each
tuple in the core, there is a matching tuple in the remainder, based
on the join condition. The most natural case when this happens is
when the remainder is a single relation and the join is a foreign key
join. In such a case, we can create a new operation node on top of
the core’s equivalence node. This operation node will project (with
duplicate elimination) only the attributes of the view core that are
visible at the node n. Finally, this operation node can be attached
to a new equivalence node marked as valid.

Inference rule U3c can be implemented by a slight modifica-
tion of the above scheme, to ensure the other conditions of U3c
are checked.

Now we come to the conditional validity rules. Any equivalence
node marked as unconditionally valid can be marked as condition-

ally valid in the current database state. We find all equivalence
nodes n that have two different parent operation nodes – one selec-
tion node (call it s) and one join node (call it j). Further, the parent
of j must have been marked as (conditionally or unconditionally)
valid, and the selection s should instantiate all the attributes that
appear in the join predicates in j. Here, the selection on top of n

represents the query q′ of inference rule C3a. The query vr can be
got by instantiating the join variables of the remainder (here, the
remainder is the other child of node j), and adding an operation
node on top that projects a ‘1’ for every tuple in this modified re-
mainder. As required by condition 3 of C3a this query should be
conditionally valid (marked as conditionally valid after unification
with the rest of the DAG) and should return a non-empty result on
the current database state.

We have implemented the basic inference rules and are currently
working out the implementation details of the complex inference
rules. We intend to carry out performance tests subsequently.

5.7 Optimizations of Validity Checking
One major concern about using the Non-Truman model is the

overhead of validity checking, especially for queries with a small
execution time. Validity checking with the basic inference rules
does not require equivalence rules to be applied to the views, and
hence does not increase the cost significantly beyond normal query
optimization. The complex inference rules do require equivalence
rules to be applied to the views, which can be somewhat expensive
in the presence of a large number of authorization views.

We are currently working on techniques to reduce the overheads.
Among the techniques we are considering are the following. Given
a query, we can eliminate authorization views that cannot possi-
bly be of use in validating the query. Most uses of a database are
from application programs, which execute the same queries repeat-
edly, albeit with different constant values, for different users. For
ODBC/JDBC prepared statements, we can analyze the query with-
out the actual parameters when the query is prepared, and come up
with a cheap test that is used each time the query is executed (e.g.
a particular parameter value matches the current user-id). Even if
the application issues the query without explicitly using prepared
statements, the workload can be analyzed to find equivalent pat-
terns generated implicitly by the application. If the same query is
reissued multiple times in a session, we can cache the results of the
validity check (assuming no underlying data on which it depends
changes during the session).

6. EXTENSIONS
We now consider some extensions of the authorization view model

that we have proposed.



Recall access pattern views from Section 2; such views had spe-
cial parameters prefixed by $$ to indicate that queries got by instan-
tiating these to any value are all authorized. Conceptually, access
pattern views can be handled by considering the set of all instan-
tiated versions of the access pattern views, and checking validity
against this set of instantiated views.

Our inference procedures can be used by simply treating $$ pa-
rameters as constants. The queries that are inferred to be valid
would contain the $$ parameters and represent a class of queries
that are inferred to be valid. Specifically, let q be a query with $$
parameters that is inferred to be valid; any query q′ obtained by
instantiating the $$ parameters of q can correspondingly also be
inferred to be valid.

Consider a query (r � r.B=s.A s) where r is valid, and an access
pattern authorization view

select * from s where s.A = $$A.

Although we cannot see all of s, the above query can be eval-
uated by stepping through each tuple of r and finding matching
tuples of s; thus the query (r � r.B=s.A s) is valid since it can be
computed from available authorized information. The above tech-
nique for joining r and s is called a dependent join in the context of
query processing under access pattern restrictions (see e.g. [27]).
Techniques developed for query processing under access pattern
restrictions, can be used for the task of inferring validity; we omit
details.

Further, if we know that every tuple in s has a matching tuple
in r, we can easily generate all of s by projecting the above join
on the attributes of s, and we can thus infer that the query (select
distinct * from s) is also valid. Again, we omit further details.

Delegation of authorization is important in many settings. Del-
egation can be done outside of our inferencing system: we can use
any delegation specification technique to collect all available au-
thorization views, whether directly granted or delegated, and then
run our inferencing techniques on the resulting set of authorization
views.

7. RELATED WORK
Several models have been proposed in the literature for specify-

ing and enforcing access control in databases [5].
Much of the prior work on using views as the basis for access

control is not authorization-transparent. However, as mentioned
above, authorization-transparent access control models using views
have been presented earlier by Motro [20] and by Rosenthal et al.
[24, 22, 23]. They propose and motivate authorization (validity) in-
ference, show multiple applications for validity inference, and dis-
cuss benefits and difficulties of using query processing technology
to test for equivalence.

In comparison to these proposals, our novel contributions in-
clude fine-grained authorization using parameterized/access pattern
authorization views, the notion of conditional validity, our infer-
ence rules, and our techniques for implementing the inference rules
on an optimizer.

In the model proposed by Motro [20], depending on the autho-
rization, the user may get only a part of the answer to a query;
however, unlike with the Oracle VPD model, instead of just getting
a partial answer, the user also gets a description indicating in what
way the answer is partial (e.g., “only grades of user-id 11 have been
returned”). Such an answer may be preferable, in many situations,
to just rejecting a query as unauthorized.

However, the inference technique in Motro’s work uses a sepa-
rate language (domain relational calculus) for specifying authoriza-
tions; only conjunctive queries/views are handled. The inference

procedure is based on a QBE-like representation of views, mapping
the view representation to “meta-relations” and processing the meta
relations using standard relational algebra operators to perform the
inference. There is no description of how to extend the procedure
to allow, e.g., disjunction, set difference, or aggregation; in partic-
ular, set difference and aggregation can turn a partial answer into
an incorrect answer. This inferencing technique was generalized
by Motro [21] to deal with query result properties other than autho-
rization, but the above limitations remain.

The use of authorization inference as the basis for security in
data warehouses is also proposed by Rosenthal et al. [24, 22, 23].
In their model, a query Q is inferred to be authorized if there is
an equivalent query Q′ which uses only authorized views; this is
identical to our model of unconditional validity. Although their au-
thorization techniques are presented in the context of distributed
data warehouses, they are applicable also to centralized settings.
However, although they give examples of inferences, no formal in-
ference procedure or rules are defined.

The Access Matrix Model [16] stores the authorizations using a
matrix that correlates subjects (like users and their applications),
objects (tables, tuples) and the authorizations held by the subjects
on the objects. Access control lists are a special implementation
of the access matrix model, which store a list of subjects and their
authorizations with each object. Theoretically, with the access ma-
trix model and access control lists, we can achieve arbitrarily fine-
grained authorizations, but in practice the matrix (or the access con-
trol list) would be extremely large, and constructing it will be a
tedious task. Also, maintaining this security information is diffi-
cult as it needs to be updated with each update of the subject list
(addition of users) and requires a new entry for every object.

Most access control list based models support a “deny-semantics”.
It is straightforward to create authorization views with negation
conditions to implement (and generalize) deny-lists. However, equiv-
alence testing may be a bit more complicated under this setting.

The Flexible Authorization Framework [19, 17] supports multi-
ple access control policies. It allows the specification of positive
and negative authorizations using Prolog-style rules. This frame-
work can represent arbitrarily fine-grained policies for access con-
trol. However, they do not address the challenges of efficiently
incorporating this inferencing scheme into a database server.

The concept of multilevel relations [9, 18] extends the standard
relational model by introducing classification labels for each tu-
ple/attribute, and specifying a class for each user as well. The clas-
sification is hierarchical (unclassified, secret, top secret, ...) and
there is an effective instance of the relation for each class - repre-
senting the version of the relation visible to the users assigned to
that class. The effective instance of a relation r is in essence a se-
cure view of r. In Denning’s technique [9], a user’s select-project-
join query is modified by replacing each relation by its secure view,
as in the Truman model that we described in Section 3. However,
multi-level models cannot provide each user with a different autho-
rization, such as access to only their own grades. Thus, they are not
useful for our target application scenarios, with fine-grained autho-
rization requirements, with large numbers of users.

Models for Role-Based Access Control (RBAC) (see, e.g., [11,
2]) do not have any inherent support for fine-grained authoriza-
tion, and thus do not directly address the problem we have tackled.
However, role-based access control can be used in conjunction with
authorization views, e.g. by granting authorization views to roles.

The inference problem in database security refers to the possi-
bility of disclosing sensitive information indirectly via inferences
that may take into account channels such as integrity constraints,
outside domain knowledge, or query correlations. The problem is



surveyed by Farkas and Jajodia in [10]. Although the inference
problem is related to ours at an abstract level, the goal underlying
the inference problem is to ensure that the users do not get enough
information to infer data that they are not allowed to see. Amongst
work on inferencing, the most closely related work is by Brodsky et
al. [4] who study the problem of inferring facts from the results of
other queries, but in the context of multi-level security. Given the
query history of a user and a current query, if it is possible to infer
a fact that is not accessible to the user (based on the multi-level se-
curity model), then the query is rejected. However, their model as
well as their inference algorithms are very different from our model
and algorithms.

8. CONCLUSIONS AND FUTURE WORK
We have addressed the problem of fine-grained access control

in databases. We asserted that current access control models do
not achieve the crucial goals that we set out with. We described
two models for fine-grained access control - the Truman and Non-
Truman models. Both models support authorization-transparent
querying. Unlike the Truman model, the Non-Truman model avoids
the pitfalls of the query modification approach and allows a great
deal of flexibility in authorization, such as authorization of aggre-
gate results. We defined the notions of unconditional and condi-
tional validity, and presented several inference rules for validity.
We outlined an approach to validity testing, based on extending an
existing query optimizer to carry out validity checking, minimizing
the extra effort required during coding as well as during validity
testing.

Future work includes implementing and testing the efficiency
and degree of completeness of our inference rules. More work is
also needed on the implementation of the complex inference rules,
on inferencing with access-pattern authorization views, and on han-
dling nested queries. We also plan to explore the use of our tech-
niques for the inferencing problem. Finally, we plan to build a soft-
ware layer that can add fine-grained authorization to an existing
database or application.
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