
Optimizing Nested Queries with Parameter Sort Orders

Ravindra Guravannavar∗ Ramanujam H.S.† S Sudarshan

Indian Institute of Technology
Bombay

ravig@cse.iitb.ac.in

Sybase Software India
Pune

ramanujam.s@sybase.com

Indian Institute of Technology
Bombay

sudarsha@cse.iitb.ac.in

Abstract

Nested iteration is an important technique for
query evaluation. It is the default way of execut-
ing nested subqueries in SQL. Although decorre-
lation often results in cheaper non-nested plans,
decorrelation is not always applicable for nested
subqueries. Nested iteration, if implemented
properly, can also win over decorrelation for sev-
eral classes of queries. Decorrelation is also hard
to apply to nested iteration in user-defined SQL
procedures and functions. Recent research has
proposed evaluation techniques to speed up ex-
ecution of nested iteration, but does not address
the optimization issue. In this paper, we address
the issue of exploiting the ordering of nested it-
eration/procedure calls to speed up nested itera-
tion. We propose state retention of operators as
an important technique to exploit the sort order of
parameters/correlation variables. We then show
how to efficiently extend an optimizer to take pa-
rameter sort orders into consideration. We imple-
mented our evaluation techniques on PostgreSQL,
and present performance results that demonstrate
significant benefits.

1 Introduction
Complex nested queries involving several correlation
attributes, aggregates and predicates other than equality are
commonly used. With support for expensive user defined
functions that can appear in the WHERE clause predicates
and in the projection list of the SELECT clause, and the in-
troduction of the LATERAL construct in SQL99, users have
more ways of formulating correlated nested queries.

Naı̈ve nested iteration plans for such queries can be very
inefficient as the nested subquery is evaluated for every

∗Work partly done while at Aztec Software, India
†Work done while at Indian Institute of Technology, Bombay

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

distinct binding of the correlation attributes in the outer
query. De-correlation techniques have been extensively
studied [12, 6, 13, 2, 15] and applied to enable traditional
optimizers generate more efficient set oriented plans for
nested queries. However, decorrelation is not always ap-
plicable, and even if applicable may not be the best choice
in all situations since decorrelation carries a materialization
overhead.

Consider the query in Example 1. The query uses a user-
defined-function in its SELECT clause. Decorrelation tech-
niques proposed till date cannot be applied in general to
queries, such as the one in the example, where the func-
tion body contains procedural statements. The only op-
tion available may be to evaluate the function repeatedly
for each distinct binding of the parameters.

Example 1: Find the turn around time for high priority
orders. The turn around time of an order is calculated as
the maximum of the differences between the ship date and
placement date of all its line items, if the order price is <
2000 and it is calculated as the maximum of the differences
between the commit date and placement date otherwise.

SELECT o orderkey, turn around time(o orderkey,
o totalprice, o orderdate)

FROM ORDERS WHERE o orderpriority=’HIGH’;

DEFINE turn around time(@orderkey, @totalprice, @orderdate) {
IF (@totalprice < 2000)

SELECT max(l shipdate − @orderdate) FROM LINEITEM
WHERE l orderkey=@orderkey;

ELSE
SELECT max(l commitdate−@orderdate) FROM LINEITEM
WHERE l orderkey=@orderkey;

}

Our optimization technique helps produce plans that
are significantly better than naı̈ve nested iteration for such
queries. We consider the benefits of ordering the param-
eters and the cost of producing the required ordering by
the outer query block and come up with a globally optimal
plan. Note that the best parameter ordering for each query
in the function body can be different and also there can
be multiple functions invoked from the same outer query
block. Further, the cost of the plan for the outer query block
can vary significantly based on the sort order it needs to
guarantee on the parameters. Our optimization algorithm
can currently handle queries invoking multiple functions
where each function can in turn have multiple parameter-

ized queries, but without procedural iterations and nested
procedure calls. 1

Nested iteration is also a natural way of executing
SQL/XML and XQuery queries, which generate nested
structures; SQL/XML (see e.g., [3]) is a recent extension
to SQL which allows XML output to be created directly
using SQL, uses nested queries in the SELECT clause.

Recently, Graefe [8] argued for the importance of nested
iteration plans and outlined several techniques to improve
the efficiency of nested iteration. These techniques were at
the evaluation engine level, and include novel ways of han-
dling prefetching from disk. However, [8] does not con-
sider how to extend query optimizers to effectively handle
nested iteration.

Sorting of calls can reduce per-call costs of nested it-
eration significantly. For example, if a function uses a
clustering index to fetch records matching the parameter
values, calling the function with the parameters sorted in
the clustering order will eliminate or greatly reduce ran-
dom I/O. Such sorting has been used earlier in the context
of nested loops join: a hybrid indexed-nested-loops join
sorts the record ids returned by a secondary index before
fetching the actual records. In this case the nested action is
straightforward, but in general it can be much more com-
plex. For example, a function or subquery may use multi-
ple indices on different relations, or invoke other functions
or subqueries itself, making the task of finding an overall
optimal plan harder.

To our knowledge, the issue of finding an optimal plan
taking into account sort orders for parameters of subqueries
or procedures has not been addressed in the past. Having
a sort order of the parameters (across calls) that matches
the sort order of the inner query gives an effect similar to
merge join. However, the problem of optimizing nested
queries considering parameter sort orders is significantly
different from the problem of finding the optimal sort or-
ders for merge joins. The nesting of subqueries makes cer-
tain orderings impossible, whereas merge join is at liberty
to sort the inputs as it sees fit. For example, if variable B
is bound by a nested iteration that takes as parameter vari-
able A, it is not possible to get a sort order of B,A, while
A,B is possible. Further, when nested queries have mul-
tiple branches and multiple levels, a sort order that is sub-
optimal for individual query blocks may be the optimal for
the overall query. We address the problem of finding an
optimal plan taking parameter sort orders into account.

We make two primary technical contributions in this pa-
per.

• First, we show how the effect of parameter sorting
can be modeled by using state retention of operators
across calls. The state retention techniques extend the
benefits of merge join to situations where a merge

1We are working on more accurate costing by analyzing the function
body to derive the expected number of times a query in the function body
gets executed each time the function is invoked. Currently we make an
assumption that each query in the function body gets executed exactly
once.

join is not applicable. Based on the state retention
technique, we present an efficient evaluation strategy
for nested aggregate queries with equality and non-
equality correlation predicates.

• We then show how a cost-based optimizer can be ex-
tended to find an optimal plan taking parameter sort
orders into account. To do so, we introduce the notion
of interesting parameter sort orders, a new physical
property, termed Containment-Differential and cost
estimation of plans for multiple evaluations.

The naı̈ve approach of trying every possible sort order
for parameters is very expensive, since it can gener-
ate an exponential number of sort orders. We would
have to not only optimize the subqueries/procedures
for each sort order, but also find the best plans for
the outer query that can generate the parameters in
the required sort order. Most of the sort orderings
would not be beneficial to the subquery or proce-
dure. We therefore introduce a step that analyzes
subqueries/procedures to find what parameter sort or-
ders are interesting, and then try out plans that gen-
erate these sort orders. Not all sort orders are fea-
sible for parameters due to the nesting of proce-
dures/subqueries, and the optimizer takes this into ac-
count.

Note that the optimizer can also consider standard op-
timization techniques such as decorrelation, where ap-
plicable, and choose the best plan overall.

Our description is based on the Volcano/Cascades op-
timization framework of [9], but the underlying ideas
can be used with System R style optimizers as well.

We have implemented the state retention techniques on
the PostgreSQL database system. We present a prelimi-
nary performance study illustrating the benefits of using
our techniques.

To our knowledge, the optimization issues we tackle
have not been addressed earlier. The most closely related
work is the optimization algorithm used in Microsoft SQL
Server, which has some extensions to better handle nested
iteration [4]; however, it does not attempt to find the op-
timal plan taking parameter sort orders into consideration,
and does not consider state retention.2 Work on optimiza-
tion of generation of nested XML structures [16] is also re-
lated; however, the earlier work has concentrated on trans-
formation to outerjoins, which is a form of decorrelation.
See Section 7 for more details on how our technique differs
from earlier work.

The optimization techniques we propose have wide ap-
plicability: they can be applied to optimize correlated
nested queries in SQL WHERE and SELECT clauses, and
invocations of stored procedures/functions with parameter
bindings being generated from an outer query block. We

2For instance, SQL Server chooses plain nested iteration for the query
in Example 5 of Section 3

address the issue of set-valued functions in the SELECT
clause, used for example to generate XML, in Section 6.

The rest of this paper is organized as follows. Section 2
describes the logical representation we adopt for nested
queries and queries that invoke functions. In Section 3, we
describe our new evaluation strategies for nested queries
that are based on state retention of operators. In Section 4,
we illustrate how a Volcano style cost-based optimizer [9]
can be extended to consider the proposed techniques. In
Section 5, we present our experimental results and analy-
sis. Section 6 describes some of the possible extensions to
our work and Section 7 details related work. Finally, we
present our conclusions in Section 8.

2 Logical Representation of Nested Iteration
In a typical nested iteration plan, the inner subquery returns
a set of tuples for each binding of the correlation variable(s)
produced by the outer query block. The inner subquery can
be thought of as a function parameterized on the correlation
variables and executed repeatedly (inside an outer loop).

Example 2: This query uses a subquery in its WHERE
clause.

SELECT PO.order id
FROM PURCHASEORDER PO
WHERE PO.order date > ’2004-01-01’ AND

PO.default ship to
IN
(SELECT ship to
FROM ORDERITEM OI
WHERE OI.order id = PO.order id);

Queries that invoke expensive user-defined functions
as part of their WHERE clause predicates (Example
1) or SELECT expression list are similar to nested
queries [8]. There can be any number of queries inside
a function body and these queries can use any number
of parameters bound by the query that invokes the function.

Example 3: Functions can have more than one query in
their body along with several control flow statements, as
illustrated below.

DEFINE fn(p1, p2, . . . pn) RETURNS INTEGER AS
BEGIN

fnQ1 < p1, p2 >;
fnQ2 < p1, p2, p3 >;

OPEN CURSOR ON fnQ3 < p2, p3 >
// Assume v1, v2 are bound from the records of the cursor
LOOP

fnQ4 < p1, p2, v1, v2 >;
END LOOP
. . .
RETURN retval;

END

We adopt a variant of the Apply operator proposed in [5]
for representing correlated nested subqueries and queries
involving functions. Figure 1 depicts the Apply operator
pictorially. The Apply operator evaluates its right subex-
pression for every tuple in the result of its left subexpres-
sion. The Apply operator then evaluates a predicate in-

A

Bind expression Use expression

Parameter
bindings

Figure 1: Apply Operator with a single use subexpression

volving the tuple from the left subexpression and the re-
sult of the right subexpression. The predicate can be IN
or NOT IN that check for set membership, EXISTS or NOT
EXISTS that check for set cardinality, a scalar comparison
(=, 6=, >,≥, <,≤), or a comparison of a scalar with mem-
bers of a set relop ANY or relop ALL. The Apply operator,
instead of evaluating a predicate, can evaluate a scalar val-
ued user-defined function in the select clause. It is also pos-
sible to use the results of the right subexpression for each
tuple in the left subexpression and output a nested relation.
We return to this issue in Section 6.

We refer to the left subexpression of the Apply op-
erator as the bind expression since it binds the parame-
ters (correlation variables) and the right subexpression as
the use expression. In general, an Apply operator can
have multiple use expressions that represent multiple sub-
queries/functions nested at the same level. In a complex
multi-level nested query an expression E may use some
variables and may bind other variables. The variables that
E binds may be passed on to the use expressions of par-
ent or ancestor Apply operators; E must be in the left-most
subtree of such Apply operators. The variables that E uses
must be defined at parent or ancestor Apply operators; E
must be in a use-subtree, i.e., non-left-most subtree, of such
Apply operators.

Figure 2 shows the logical representation of the query
given in Example 2 and Figure 3 shows the representation
of a query block Qi containing a call to the function fn()
(of Example 3) in its WHERE clause or the SELECT list.

PO

πσ

σ

OI

OI.order_id = PO.order_id

A

ship_to

IN

PO.order_date >
’2004−01−01’

Figure 2: Representing Nested Queries

Qi
(Outer block)

A op

fnQ1 fnQ2
Aop

fnQ3 fnQ4

Figure 3: Query with Functions

3 Exploiting Parameter Sort Order
Graefe [8] describes how sorting of tuples produced by
the outer query block on the correlation attributes helps
in speeding up the inner query execution by providing ad-
vantageous buffer effects. A second advantage of sorting,
as proposed in the System R paper [14], is that if the re-
sults of the inner query are cached for each distinct value
of the correlation variable(s), then sorting the outer tuples
(parameters) gives space savings by allowing us to cache at
most one result at any given time.

In this section we propose additional techniques for ex-
ploiting the sort order of correlation bindings by retaining
the state of the inner query execution across multiple bind-
ings of the correlation variables. The cost of evaluating
inner query block can vary significantly depending on the
parameter sort order guaranteed by the outer query block.
Correspondingly, the cost of the outer query block can vary
significantly depending on the sort order it needs to guar-
antee on the tuples produced. A cost-based optimizer can
consider the various options available and decide on the
overall best plan. Section 4 addresses this issue.

3.1 Restartable Segment Scan

If a relation referenced in the inner query is physically
sorted on the column that appears in an equality predicate
with the correlation variable, sorted correlation bindings al-
low us to scan the inner relation exactly once across all it-
erations. We call this idea as Restartable Segment Scan and
illustrate it with Example 4.

Example 4

SELECT o orderkey
FROM ORDERS
WHERE o orderdate

NOT IN
(SELECT l shipdate
FROM LINEITEM
WHERE l orderkey = o orderkey);

Suppose the LINEITEM table is stored sorted on
l orderkey column and the plan for the outer query-block
guarantees to produce the bindings for the correlation vari-
able, o orderkey, in sorted order. The clustered table scan
can stop as soon as a value greater than the value of the
correlation variable is found and restart from this point on
the next invocation, thus retaining state. This query plan
reads the outer and the inner relations exactly once and
the reads for the inner relation will be sequential. Note
that a clustered index scan, will have to access the non-leaf
pages of the index for every tuple produced by the outer
block. Further note that this plan performs better than the
plan produced by magic decorrelation [15], which, if ap-
plied in this case, requires two joins; the first one is that of
the LINEITEM relation with the filter set, which in this case
comprises of all the distinct o orderkeys from the ORDERS
relation and the second one is an anti-join of the outer rela-
tion (ORDERS) with the result of the first join.

The effect produced by employing the Restartable Seg-
ment Scan is similar to that of a merge join. However, the

Restartable Scan is applicable in situations where a merge
join cannot be directly used. For example, consider a user-
defined-function with several parameterized queries inside
its body, interspersed with other procedural constructs. If
such a function is invoked from another query that supplies
the bindings for the parameters in sorted order, a merge join
is not directly applicable since the other procedural state-
ments in the function body do not permit set-oriented exe-
cution of the queries. In this case we can use a Restartable
Scan and get the same effect as a merge join.

In general, Restartable Segment Scan is effective when
a significant portion of the inner relation(s) is accessed to
answer the query. When only a small portion of the inner
relation needs to be accessed, a nested iteration plan em-
ploying index lookup for the inner relation may be the best
option [8], provided an appropriate index is available.

3.2 Incremental Computation of Aggregates

The technique illustrated in the previous section is ap-
plicable only when the correlation predicate in the inner
subquery is an equality predicate. We now show how
the Restartable Segment Scan can be employed for non-
equality predicates, when the inner subquery has an ag-
gregate. Decorrelation is often very expensive for such
queries. Consider the SQL query shown in Example 5. The
query lists days on which the sales exceeded the sales seen
on any day in the past.

Example 5

SELECT day, sales
FROM DAILYSALES DS1
WHERE sales >(SELECT MAX(sales)

FROM DAILYSALES DS2
WHERE DS2.day < DS1.day);

A naı̈ve nested iteration plan for the above query em-
ploys a sequential scan of the DAILYSALES table for both
the outer and the inner block. Assuming the inner block
scans an average of half of the table for each outer tuple,
the cost of this plan would be tt(Bds + Nds × Bds/2) +
ts(1 + Nds), where Bds is the number of blocks occupied
by DAILYSALES table, Nds is the number of tuples in the
same table, and tt and ts are the block transfer time and
seek time respectively.

Now, suppose the DAILYSALES relation (materialized
view) is stored, sorted on the day column. If the plan for
the outer query block generates the bindings for the cor-
relation variable (DAILYSALES.day) in non-decreasing or-
der, we can see that the tuples that qualify for the aggregate
(MAX) operator’s input in the ith iteration will be a super-
set of the tuples that qualified in the (i−1)th iteration. The
MAX operator, in its state, can retain the maximum value
seen so far and use it for computing the maximum value
for the next iteration by looking at only the delta tuples.
So, the scan needs to return only those additional tuples
that qualify the predicate since its previous evaluation.

The maximum cost of this plan would be 2×Bds × tt +
2×ts, which is significantly lesser than the cost of the naı̈ve
nested iteration plan.

The technique described above is applicable for <,≤, >
and ≥ predicates and the aggregate operators MIN, MAX,
SUM, AVG and COUNT.

When there are GROUP BY columns specified along
with the aggregate, the aggregate operator has to main-
tain one result for each group. The aggregate operator can
maintain its state in a hash table; the key for the hash table
being the values for the GROUP BY columns and the value
against each key being the aggregate computed so far for
the corresponding group.

3.3 Index Scan

Clustered Index Scan: In many practical correlated
queries a clustered index is expected to exist for the inner
relation on the column that is involved in the correlation
predicate (e.g, the TPC-H min cost supplier query in Sec-
tion 5 and the queries of Examples 1 and 2). Performance
of clustered index lookups in the evaluation of correlated
nested queries can be greatly improved by producing the
outer tuples in sorted order [8]. Sorting ensures sequential
I/O and therefore permits prefetching. Also if more than
one record from the same data page are needed it is guar-
anteed that the page is accessed exactly once irrespective
of the buffer replacement policy.
Unclustered Index Scan: When the parameter values are
sorted, but access to the inner relation is through an un-
clustered index on columns used in correlation predicates,
a Restartable Unclustered Indexed Scan can be employed.
The Restartable Unclustered Indexed Scan remembers the
leaf page at which the previous scan stopped. In this case
the benefit is restricted to index access, random I/O is still
required for accessing the actual data.

However, this type of indexed scan will be beneficial
only when the predicates in the outer block do not create
many gaps in the correlation bindings produced.

4 Extensions to a Cost-Based Optimizer

In this section, we describe how a Volcano style cost-based
optimizer can be enhanced to take the interesting parame-
ter properties and state retention of physical operators into
consideration.

A correlated query block can use one or more parame-
ters whose values are bound in any of its ancestor blocks.
Further, more than one query block can be nested under the
same parent query block. For a given nested query block,
several execution plans are possible, each having its own
required parameter sort order and cost. Correspondingly,
the cost of the outer (parent) query block can vary signifi-
cantly depending on the sort order it needs to guarantee on
the tuples produced. A cost-based optimizer can consider
the various interesting sort orders and decide on the overall
best plan.

In this section, we describe how a Volcano style cost-
based optimizer can be extended to consider (a) the sort
order of correlation bindings and (b) the new physical op-
erators that exploit the ordering of correlation bindings.

4.1 Overview of the Proposed Extensions

The Volcano optimizer [9] takes an initial query (expres-
sion), a set of physical properties (such as sort order) re-
quired to be satisfied by the result of the expression and a
cost limit (the upper bound) as its inputs and returns a sin-
gle (best) execution plan for the given query. The following
method-signature summarizes the Volcano optimizer’s in-
put and output.

Plan FindBestPlan (Expr e, PhyProp p, CostLimit c);

The optimizer makes two implied assumptions:

1. The expression e does not contain any unbound pa-
rameters.

2. If the expression is evaluated multiple times the cost
gets multiplied accordingly.

The first of these assumptions will not be valid for cor-
related queries and queries with parameter bindings being
generated by the calling program. The second assumption
does not take into account buffer effects due to sorting and
the state retention techniques proposed in the previous sec-
tion. With these techniques the cost of evaluating an ex-
pression n times can be significantly lesser than n times the
cost of evaluating the expression once.

In order to consider these factors we propose a new form
of the FindBestPlan method. Our description consid-
ers parameter sort orders, but alternatives to full sorting,
such as batched bindings are considered later in Section 6.
The following method-signature summarizes the new form
of the FindBestPlan method.

Plan FindBestPlan (Expr e, PhysProp p, CostLimit c
ParameterSortOrder s,int callCount);

The new FindBestPlan procedure takes two additional
parameters. The first of these, termed the parameter sort
order is a vector (a1, a2, . . . an), where ai, i = 1, . . . n
are the parameters (correlation variables) used inside e and
bound by an outer query block.

The second parameter, termed callCount, tells the num-
ber of times the expression is expected to be evaluated. The
cost of the returned plan is the estimated cost for callCount
invocations.

Note that the original Volcano algorithm is a special case
of this enhancement with the expression e having no un-
bound references (parameters), callCount being 1 and the
parameter sort order being empty.

In the remainder of this section we elaborate on the al-
gorithm for the new optimizer method. In Section 4.2 we
briefly describe the optimizer framework, and give details
in subsequent sections.

4.2 The Optimizer Framework

In this section we briefly describe the cost-based optimizer
framework over which we propose extensions to consider
the parameter sort orders.

A Volcano-style optimizer performs three main tasks.

1. Logical Plan Space Generation
In the first step the optimizer, by applying logical

transformations (such as join associativity and push-
ing down of selections through joins), generates all the
semantically equivalent rewritings of the input query.

2. Physical Plan Space Generation
This step generates several possible execution plans
for each rewriting produced in the first step. An exe-
cution plan specifies the exact algorithm to be used for
evaluating each logical operator in the query. Apart
from selecting algorithms for each logical operation
this step also considers enforcers that help in produc-
ing required physical properties (such as sort order)
on the output. The algorithms and enforcers are col-
lectively referred to as physical operators as against
the logical operators of the logical plan space.

3. Finding the Best Plan
Given the cost estimates of different algorithms that
implement the logical operations and the enforcers,
the cost of each execution plan is estimated. The goal
of this step is to find the plan with minimum cost.

An AND-OR graph representation called Logical Query
DAG (LQDAG) is used to represent the logical plan space
(all the semantically equivalent rewritings of a given
query). The LQDAG is a directed acyclic graph whose
nodes can be divided into equivalence nodes and operation
nodes; the equivalence nodes have only operation nodes
as children and the operation nodes have only equivalence
nodes as children. An operation node in the LQDAG cor-
responds to an algebraic operation, such as join (1), select
(σ) etc. It represents the expression defined by the opera-
tion and its inputs. An equivalence node in the LQDAG rep-
resents the equivalence class of logical expressions (rewrit-
ings) that generate the same result set, each expression be-
ing defined by a child operation node of the equivalence
node and its inputs. An example LQDAG is shown in Fig-
ure 4.

ABC

A B C

AB BC AC

Figure 4: A Logical Query DAG for A 1 B 1 C

Once all the semantically equivalent rewritings of the
query are generated the Volcano optimizer generates the
physical plan space by considering different algorithms for
each logical operation and considering enforcers that guar-
antee physical properties such as sort order (the logical and
physical plan space generation stages are intermixed in the
Cascades optimizer [7] and in the SQL Server optimizer [4]
which is based on Cascades). The physical plan space is
represented by an AND-OR graph called PQDAG which is a

refinement of the LQDAG. Given an equivalence node e in
the LQDAG, and a physical property p required on the result
of e, there exists an equivalence node in the PQDAG repre-
senting the set of physical plans for computing the result of
e with the physical property p. A physical plan in this set
is identified by a child operation node of the equivalence
node and its input equivalence nodes. The equivalence
nodes in a PQDAG are called physical equivalence nodes
to distinguish them from the logical equivalence nodes of
the LQDAG. Similarly the operation nodes in a PQDAG are
called physical operation nodes to distinguish them from
the logical operation nodes of the LQDAG.

The optimizer framework we used models each of the
logical operators, physical operators and transformations
as separate classes and this design permits the extensions
we propose to be easily incorporated.

4.3 Refinement of the Physical Plan Space

We redefine the equivalence of physical plans to include the
parameter sort orders required by the plans. Two plans p1
and p2 belong to the same equivalence class iff p1 and p2
correspond to the same logical expression, guarantee the
same physical properties on their output and require the
same sort order on their (input) parameters. Thus, for a
given logical expression e and physical property p, there
exists a set of physical equivalence nodes. Each equiva-
lence node in this set corresponds to a distinct required sort
order on the parameters used in e. Note that not all the pos-
sible sort orders on the parameters may be of interest. Our
algorithm to generate the physical plan space creates phys-
ical equivalence nodes for only interesting parameter sort
orders.

4.4 Physical Plan Space Generation

Given a logical equivalence node e, a set of physical prop-
erties p required on the result of e and a sort order s known
to be guaranteed on the unbound parameters in e this step
finds all the evaluation plans and represents them as an
AND-OR graph (the PQDAG). The search step then takes
the PQDAG and a call count as its inputs and finds the best
plan.

4.4.1 Alternatives for Generating Interesting Orders

We considered three alternatives for generating interesting
parameter sort orders and corresponding plans that exploit
the sort orders.
Top-Down Exhaustive Generation
Consider a query block q that uses parameters p1, . . . pn

that are bound external to q. In this approach all possible
sort orders of the parameters are enumerated exhaustively.
For each sort order the best plan for the outer block is pro-
duced first and then the inner query block(s) are optimized
with the given sort order. This approach leads to a very
large plan space as illustrated below:

Let bi be a query block at level l referencing parameters
p1, p2, . . . pn bound in its ancestor blocks. We consider the
outermost block to be at level 0. Of the n parameters used

Plan for q1 Plan for q2 Effective Required Sort Order
pq1 pq3 (p1, p2)
pq1 pq4 (p1)
pq2 pq3 (p1, p2)
pq2 pq4 null

Figure 5: Combining Plans in Bottom-up Approach

inside bi assume an average of k = n/l parameters are
bound at each level 0 to l − 1. Now, block bi will be opti-
mized d(k)l times, where d(k) = kP0 + kP1 + . . . kPk,
kPi denoting k permute i. This is a prohibitively large
number for query blocks that use large number of corre-
lation variables. Though the possible valid sort orders on a
set of parameters are many, we expect only a few of these
orders to be of interest to the nested query blocks and hence
the top-down exhaustive approach produces many redun-
dant plans.
Bottom-Up One Pass Approach
In order to avoid optimization of subexpressions for sort or-
ders not of interest the bottom-up approach first optimizes
the inner most query block producing a set of plans each
corresponding to an interesting order. The bottom-up ap-
proach can be understood by the following signature of the
Optimizer method.

PlanSet FindBestPlanSet (Expr e, PhysProp p,
CostLimit c, int callCount);

If there are multiple query blocks q1, q2, . . . qn nested
under the same parent, plans that are compatible with each
other in their required parameter sort order are combined.
For example, assume query block q1 has two plans pq1 and
pq2 requiring sort orders (p1) and null respectively. Further
assume query block q2 nested under the same parent as q1

has two plans pq3 and pq4 requiring sorts (p1, p2) and null
respectively. Now, the compatible combinations of plans
and the effective parameter sort order they require from the
parent block are as shown in Figure 5.

This approach avoids generation of unwanted sort orders
and corresponding plans. In the above example, sort orders
such as (p2) or (p2, p1) are never generated.

The drawback of this approach is that it requires signif-
icant changes to the structure of any existing Volcano-style
optimizer due to the need for propagating multiple plans
for the same expression and then combining them suitably.
Top-Down Multi-Pass Approach
In this approach we first traverse all the blocks nested un-
der a given query block and identify the set of all interesting
parameter sort orders. For each sort order, we optimize the
outer query block and then all the nested blocks. While
generating the plans for the nested blocks we consider only
those plans that require a parameter sort order no stronger
than the one guaranteed by the outer block. This approach
combines the benefits of both the top-down exhaustive ap-
proach and the bottom-up approach. This approach consid-
ers all the interesting sort orders without exhaustive enu-
meration and requires minimal changes to any Volcano-
style optimizer. We describe this approach in subsequent
subsections.

A

B:a,b
U:null

B:c
U:a,b

B:null
U:a,c

A
B:null
U:b

e

e1

e2

e3

e21 e22

i_ords={(a,c)}

i_ords={(b)}

i_ords={(a),(a,b)}

i_ords={(a,b)}

l_ords={(a),(a,b),(b)}

l_ords={(c)}

Figure 6: Sort Order Propagation for a Multi-Level Multi-
Branch Expression

4.4.2 Generating Interesting Orders

Consider a query block q under which blocks q1, q2, . . . qn

are nested. Let the parameters bound by q be p1, p2, . . . pm.
This is represented by an Apply expression with q as the
bind input and q1, q2, . . . qn as use inputs. We first traverse
all the use inputs of the Apply operator and identify the
set i ords of interesting parameter sort orders by consider-
ing the available physical operators (algorithms) for each
logical operator in the subexpression. We consider only
those interesting orders that are valid under the given nest-
ing structure of Apply operators. The necessary and suf-
ficient condition for a sort order to be valid under a given
nesting structure is as follows:

Definition 4.1 Valid Parameter Sort Orders
A parameter sort order (a1, a2, . . . an) is valid iff
level(ai) ≤ level(aj) for all i, j s.t. i < j, where
level(ai) is the level of the query block in which ai is
bound. The level of the outer most query block is consid-
ered as 0 and all the query blocks nested under a level-i
query block have the level i + 1.

From the set i ords we then derive a set l ords consist-
ing of sort orders that are relevant to the bind input q of the
Apply operator. Note that i ords can contain some of the
parameters bound higher up in the complete query struc-
ture. Deriving l ords from i ords involves extracting the
suffix of each order ord ∈ i ords such that the suffix con-
tains only those parameters that are bound in q. Figure 6
illustrates how the parameter sort orders are propagated.
We indicate the parameters bound and parameters used at
each expression with the convention B: and U: respectively.
Consider the Apply operator at the root of e2. The set i ords
of interesting orders for e22 has a single element (a, c), i.e.,
i ords={(a, c)}. From this set we derive the set l ords as
{(c)} since c is the only parameter bound by the expres-
sion e21 that is the bind input for the Apply operator in
consideration.

A procedure to generate interesting orders, GetInter-
estingOrders, is shown in Figure 7. The procedure makes
use of an auxiliary procedure GetAncestorOrders which
takes a set of interesting orders and a node, and returns
sort orders defined by ancestors of the specified node. Pro-
cedure GetLocalOrders, shown in Figure 8, takes a set

Set<Order> GetInterestingOrders(LogEqNode e,
Map plm, int l)

If the set of interesting orders i ords for (e,plm)
is already found

return i ords
Create an empty set result of sort orders for (e,plm)
For each logical operation node o under e

For each algorithm a for o
Let sa be the sort order of interest
to a on the unbound parameters in e
If sa is a valid order under plm and sa /∈ result

Add sa to result
For each input logical equivalence node
ei of a

If (o is an Apply operator AND
ei is a use input)
newLevelMap = clone(plm)
For each variable v bound by o.bindInput

newLevelMap.add(v, l)
childOrd = GetInterestingOrders(ei,

newLevelMap, l + 1)
childOrd = GetAncestorOrders(

childOrd, o.bindInput)
Else

childOrd = GetInterestingOrders(ei,
plm, l)

result = result ∪ childOrd
return result

end proc

Set<Order> GetAncestorOrders(Set<Order> i ords,
LogEqNode e)

Initialize a ords to be an empty set of sort orders
For each ord ∈ i ords

newOrd = Empty vector;
For (i = 1; i <=length(ord); i = i + 1)

If ord[i] is NOT bound by e
append(ord[i], newOrd)

Else
break;

add newOrd to a ords
return a ords

end proc

Figure 7: Get Interesting Sort Orders

of interesting orders and a node (the left child of an apply
operator) and returns the interesting order suffixes that are
defined by the specified node.

4.4.3 Generating Plans at an Apply Operator

For each sort order o ∈ l ords and empty (null) sort or-
der we generate plans for the bind input making o as the
required physical property on the result (output) and then
generate plans for all the use expressions. We create a phys-
ical operation node a for the Apply operation depending on
the type of the Apply node. The type of the Apply node can
be IN, NOT IN, EXISTS, NOT EXISTS, <relop> ANY or
<relop> ALL depending on the predicate relating the sub-
query and the parent query block. The plans generated for
the bind and use expressions are added as the child plans
for a. Procedure ProcApplyNode (Figure 9) shows the al-
gorithm for plan generation at an Apply operator.

4.4.4 Generating Plans at a Non-Apply Operator

At each logical operator the original Volcano algorithm
considers all the available algorithms (physical operators)

Set<Order> GetLocalOrders(Set<Order> i ords,
LogEqNode e)

Initialize l ords to be an empty set of sort orders
For each ord ∈ i ords

newOrd = Empty vector;
For (i =length(ord); i > 0; i = i − 1)

If ord[i] is bound by e
prepend(ord[i], newOrd)

Else
break;

add newOrd to l ords
return l ords

end proc

Figure 8: Get Local Orders

void ProcApplyNode(LogOpNode o, ParamSortOrder s,
PhysEqNode np, Map plm, int l)

Initialize i ords to be an empty set of sort orders
// Augment the parameter-level map
newLevelMap = clone(plm)
For each variable v bound by o.bindInput

newLevelMap.add(v, l)
For each use expression u under o

uOrds = GetInterestingOrders(u,
newLevelMap, l + 1)

i ords = i ords ∪ uOrds
l ords = GetLocalOrders(i ords, o.bindInput)
For each order ord in l ords and null

leq = PhysDAGGen(o.bindInput, ord, s, plm, l)
Let newOrd = concat(s, ord)
applyOp = create new applyPhysOp(o.TYPE)
applyOp.lchild = leq

For each use expression u of o
ueq = PhysDAGGen(u, null, newOrd,

newLevelMap, l + 1)
Add ueq as a child node of applyOp

np.addChild(applyOp)
end proc

Figure 9: Process Apply Node

that implement the logical operation and guarantee the re-
quired physical properties on the result. The only change
we require to this algorithm is, while considering possible
physical operators (algorithms) for a logical operation the
parameter sort order guaranteed on the unbound parameters
must be taken into account. Only those algorithms that re-
quire a parameter sort order no stronger than the guaranteed
sort order are considered. As an example, consider a Select
logical operator σR1.a=p1

(R1), where p1 is a correlation
(outer) variable. Assume two algorithms, a plain table scan
requiring no sort order and a state retaining scan requiring
a sort order {p1} are available. Now, if the parameter sort
order guaranteed by the parent block is stronger than or
equal to {p1}, both the algorithms (physical operators) are
possible candidates. However, if the parameter sort order
guaranteed by the parent block is weaker (e.g., null), then
only the plain table scan is a possible candidate.

To reduce the number of candidate plans we can adopt a
heuristic of considering only the physical operator(s) that
requires the strongest parameter sort order less than the
guaranteed sort order. If this heuristic is adopted in the
above example, when the parameter sort order guaranteed
from the parent block is {p1} only the state retaining scan
is considered and the plain table scan is dropped. Proce-

void ProcLogOpNode(LogOpNode o, PhysProp p,
ParamSortOrder s, PhysEqNode np,
Map plm, int l)

For each algorithm a for o that guarantees p and
requires no stronger sort order than s

Create an algorithm node oa under np

For each input i of oa

Let oi be the ith input of oa

Let pi be the physical property required
from input i by algorithm a
Set input i of oa = PhysDAGGen(oi, pi, s,

plm, l)
end proc

Figure 10: Process Logical Op Node

dure ProcLogOpNode (Figure 10) shows the algorithm for
plan generation at a Non-Apply logical operator.

4.4.5 Extended Optimization Algorithm

The top level procedure for generating the physical plan
space is given in Figure 11, and it calls the procedures de-
scribed earlier. For simplicity we omit the cost based prun-
ing from our description and return to this issue later. As a
result the callCount parameter does not appear in the algo-
rithm. We assume that physical operator(s) corresponding
to the Apply operator do not guarantee any sort orders on
the output3. Therefore if any sort order needs to be guaran-
teed on the output of the Apply operator an enforcer plan is
generated.

In the logical query DAG (LQDAG), due to the sharing
of common subexpressions, the mapping of parameters to
the level of the query block that binds it cannot be fixed
statically for each logical equivalence node. In fact, a single
logical equivalence node can get different level numbers
because of the level altering transformations such as:

R 1R.c1=S.c2 S ⇐⇒ R A⊕(σS.c2=R.c1S)

where ⊕ represents concatenation followed by dropping
of common columns. In the LHS of the above equiva-
lence rule relation S gets the same level as R, where as,
in the RHS S gets a level number higher than R. If a sub-
expression E is nested below R 1 S, it sees a different
mapping of parameters to levels depending on which of the
two forms is chosen for R 1 S. This is the reason why the
the parameter-level-map and the level number are passed
as arguments while generating the physical plan space for
a given logical equivalence node.

4.5 Search for Best Plan and Cost-Based Pruning

At the end of physical plan space generation we will have
a physical query DAG with a single root physical equiv-
alence node. The best plan for the PQDAG is computed
recursively by adding the cost of each physical operator to
the cost of the best plans for its inputs and retaining the
cheapest combination.

3Though the Apply operator passes through the physical properties of
its bind input to its output, for simplicity we do not consider it here

PhysEqNode PhysDAGGen(LogEQNode e, PhyProp p,
ParamSortOrder s, Map plm, int l)

If a physical equivalence node np exists for e, p, s
return np

Create an equivalence noce np for e, p, s
For each logical operation node o below e

If(o is an instance of ApplyOp)
ProcApplyNode(o, s, np, plm, l)

else
ProcLogOpNode(o, p, s, np, plm, l)

For each enforcer f that generates property p
Create an enforcer node of under np

Set the input of of = PhysDAGGen(e, null,
s, plm, l)

return np

end proc

Figure 11: Physical Plan Space Generation

While computing the cost we take into account the fact
that the use subexpressions of the Apply operator are eval-
uated as many times as the cardinality4 of the bind subex-
pression of the Apply operator. Each physical operator’s
cost function is enhanced to take an integer ‘n’ as the pa-
rameter and return its cost for ‘n’ invocations of the opera-
tor.

Memoization of the best plan is done against
{expression, output physical properties, input parameter
sort order, call count} This is required since the best plan
may be different for different call counts. Call counts do
not affect the physical DAG generation except by pruning
parts of the DAG.

Memoization taking call counts into account can poten-
tially increase the cost of optimization. However, if the
plan is the same for two different call counts, we can as-
sume that it would be the same for all intermediate call
counts. The same plan can then be reused for all calls with
an intermediate call count, with no further memoization re-
quired. Indeed results from parametric query optimization
[11] indicate that the number of different plans can be ex-
pected to be quite small. We can thus reduce both the num-
ber of plans stored and the number of calls which differ in
just the call count.

We apply all simple (non-nested) predicates before the
nested predicate is applied. This further reduces the num-
ber of distinct call counts with which we optimize an ex-
pression. And finally, if as a heuristic, nested calls are made
only after all other join predicates have been applied, we
will have exactly one call count for the nested expression.
Adopting this heuristic, however, may not always be a good
strategy [10, 1].
Cost-Based Pruning
We ignored cost-based pruning for simplicity in our earlier
presentation and split the physical DAG generation and the
search for the best plan into different phases. In our actual
implementation, the generation of the physical plan space
and search for the best plan take place in a single phase.
While generating the physical plan space the cost of each

4If the implementation of Apply operator is capable of caching results
of the use subexpression then, the number of distinct correlation bindings
will be used in place of cardinality

plan (with parameter sort order and call count) is calculated
and the best plan seen so far is memoized. We can then do
cost-based pruning in the same fashion as in [9].

4.6 Containment Differential

Section 3.2 showed how nested aggregate queries can ben-
efit from sorted parameter bindings. In Example 5, we
showed how a state-retaining aggregate can work in con-
junction with a restartable scan to efficiently evaluate an ag-
gregate subquery having a non-equality predicate. The ag-
gregate values computed are incrementally updated in each
invocation of the subquery, thus avoiding multiple scans
of the relation referenced in the subquery. In general, the
input to the aggregate can be the result of a parametrized
subexpression.

The state-retaining aggregate operator requires that, log-
ically, its input with the ith parameter value (in the speci-
fied parameter sort order) be a superset of the input with
the (i − 1)th parameter value; further, physically, the in-
put with the ith parameter value should be just the delta
w.r.t. to the tuples seen till the i − 1th parameter value.
In the optimizer we model this requirement on the input
of the state-retaining aggregate operator as a new physical
property termed containment differential. A state-retaining
aggregate is applicable only when its input satisfies the con-
tainment differential property for a specified parameter sort
order, that is, it returns only the differential tuples when
invoked with successive parameter values.

Note that unlike the sort order physical property, where
a plan that guarantees some sort order can be used in a place
where no sort order is expected, a plan that satisfies the
containment differential property can be used only when
the containment-differential property is expected from the
parent operator.

5 Experimental Results
To evaluate the benefits of our approach we measured the
performance of our evaluation plans and compared them
against nested iteration with indexing and decorrelated
plans. Note that these plans were manually generated (hard
coded). We used PostgreSQL for prototyping the new phys-
ical operators and obtaining the actual execution costs. The
state retaining table scan and aggregate algorithms were
newly coded and the query plans employing these were
constructed with hard coding and bypassing the PostgreSQL
optimizer. The experiments were run on a single CPU Intel
Pentium III 850MHz machine with 256 MB of memory.

5.1 Algorithms Considered

We considered three algorithms: nested iteration(NI),
magic decorrelation(MAG) [15] and nested iteration with
state retention(NISR). In the case of Nested Iteration (NI) a
suitable index was assumed to be present and used. When-
ever a relation was assumed to be sorted the NI plan always
used a clustered index. The plans employing magic decor-
relation were manually composed with the supplementary
table materialized. While performing the decorrelation of

NOT IN queries we assumed the availability of sort-merge
anti-join. When an implementation of anti-join is not avail-
able, decorrelation is not applicable and only nested itera-
tion with indexing will be a candidate to compare with the
plan generated by our algorithms.

PostgreSQL did not automatically decorrelate any of the
queries we considered and it always used a simple nested
iteration plan. Hence, the results noted for the Nested It-
eration (NI) algorithm also act as the baseline PostgreSQL
measures.

5.2 Experiments and Analysis

We used TPC-H 1GB dataset. The tables used for our ex-
periments and the number of tuples in each table are shown
in Figure 12. We used four queries for our experiments and
the results are summarized in Figures 13 through 16.

Name orders lineitem part
Tuples 1,500,000 600,000 200,000

Name supplier partsupp dailysales
Tuples 10,000 800,000 2,500

Figure 12: Tables used for the Experiments

Query 1 : The first query lists all the orders none of whose
line items have the shipping date same as the order’s place-
ment date. This query is a small variation of the query
shown in Example 4 of Section 3. To be able to apply
magic decorrelation for Query 1, we translated the NOT IN
predicate to an IN predicate (due to the non-availability of
an anti-join implementation). Figure 13 shows the perfor-
mance results on Query 1. Magic decorrelation performs
poorly for Query 1 because there are no outer predicates
and no duplicates. This leads to a large redundant join in
the plan produced by magic decorrelation. Indexed nested
loops join performs significantly better but is still less effi-
cient than nested iteration with state retention. This is due
to the overhead of index lookup. This overhead is signif-
icant even though most of the index pages above the leaf
level are cached in memory. A sort-merge anti-join imple-
mentation if present and used would perform exactly same
as NISR and hence we have not consider it here explicitly.
However, note that a sort-merge anti-join cannot be used if
the correlated query block is part of a procedure or function
where as NISR can be used in this case.

Query 2 : This query (not part of TPC-H) lists the days on
which the sales exceeded the maximum daily sales seen in
the past. This query, shown in Example 5 of Section 3,
is a nested aggregate query with a non-equality correla-
tion predicate. As Figure 14 shows, nested iteration with
state retention completely outperforms magic decorrelation
and plain nested iteration for this query. Due to the pres-
ence of a non-equality correlation predicate the cost of both
magic decorrelation and plain nested iteration increase very
rapidly with the increase in the number of outer block tu-
ples. Nested iteration with state retention performs a single
scan of the inner and the outer relations as described in Sec-
tion 3.2.

0

5

10

15

20

25

(secs)

NI MAG NISR

T
i

m
e

Algorithms Considered

14.03

24.03

11.28

Figure 13: Query 1

0

5

10

15

20

25

30

35

40

(secs)

NI MAG NISR

T
i

m
e

Algorithms Considered

19.01

36.91

0.08

Figure 14: Query 2

0

1

2

3

4

5

6

7
8

(secs)

NI MAG NISR

T
i

m
e

Algorithms Considered

3.43

2.21

7.19

(a) With all outer predicates

0

5

10

15

20

25

30

35

(secs)

40

NI MAG NISR

T
i

m
e

Algorithms Considered

38.25

32.05
28.62

(b) Dropping ‘p size=15’

Figure 15: Query 3

Query 3 : The third query is a modified version of the TPC-
H min cost supplier query shown below.

SELECT s sname, s acctbal, s address, s phone
FROM PARTS, SUPPLIER, PARTSUPP
WHERE s nation=’FRANCE’ AND p size=15 AND

p type=’BRASS’ AND p partkey=ps partkey
AND s suppkey=ps suppkey AND
ps supplycost =

(SELECT min(PS1.ps supplycost)
FROM PARTSUPP PS1, SUPPLIER S1
WHERE p partkey=PS1.ps partkey AND
S1.s suppkey=PS1.ps suppkey AND
S1.s nation=’FRANCE’);

Figure 15(a) shows that for Query 3, magic decorrela-
tion performs the best because of the high selectivity of the
outer predicates. There were only 108 distinct tuples satis-
fying the outer predicates. Restart scan performs poorly in
this case as the entire relation is scanned where only small
fraction of it was required. A cost-based query optimizer
would therefore choose the magic decorrelation plan for
this query. When we dropped the predicate ”p size=15”
NISR performs better as shown in Figure 15(b).

Query 4 : The fourth query is a query with UDF shown in
Example 1 of Section 1. For this query, we compare only
NI with NISR since decorrelation techniques are not directly
applicable. Figure 16 shows that NISR performs signifi-
cantly better than NI; this is because the inner (lineitem)
relation is scanned at most 2 times with NISR, whereas NI
performs an indexed lookup of the inner relation for each
tuple in the outer relation.

6 Extensions

This section describes some of the possible extensions that
can be implemented over the proposed techniques.

0

1

2

3

4

5

6

7
(secs)

NI NISR

T
i

m
e

Algorithms Considered

5.41

2.16

Figure 16: Query 4

Sorting in Batches: Our optimization algorithm can be
easily extended to the case where the parameters (corre-
lation bindings) are not completely sorted but are sorted in
smaller batches. Sorting smaller batches avoids writing in-
termediate runs to the disk [8]. We can handle batched
binding by creating a new physical operator BatchedAp-
ply. Since correlation bindings are sorted in batches, the
optimizer uses the batch size as the callCount for the inner
subquery and multiplies the cost of the inner subquery by
the number of batches expected. The BatchedApply oper-
ator can sort its input bindings, and the sort order can be
used when optimizing the inner subquery.
Caching of Results: Caching of results can be handled by
creating a physical operator CachedApply which caches the
results of earlier calls. The call count for the inner sub-
query is then the number of distinct parameter values. The
amount of space for caching is determined by the sort or-
der of the parameters, with unsorted parameters requiring
all results to be cached.
Set Valued Functions in the SELECT Clause: Set valued
functions and nested queries in the SELECT clause are very
useful for efficiently publishing relational data as XML. Our
optimization algorithm can be used unchanged for such
functions and queries. However, to support such set valued
functions/queries in the SELECT clause the Apply operator
needs to be extended in the following way. For each tu-
ple in the outer block (bind expression) the Apply operator
should collect the results of the inner block (use expression)
and output a nested-relational result or tagged XML.

7 Related Work

Nested queries have been studied quite extensively; how-
ever, most of the emphasis so far has been on decorrela-
tion techniques [12, 6, 13, 2, 15]. Decorrelation techniques
try to rewrite a given nested query into a form that does
not use the nested subquery construct. Decorrelation tech-
niques allow an optimizer to consider alternative set ori-
ented plans such as merge join or hash join for evaluating a
nested query and in most cases these methods perform bet-
ter than the naı̈ve nested iteration method. The techniques
we proposed to speed up nested iteration are orthogonal to
decorrelation and a cost-based optimizer should consider
both decorrelated evaluation as well as the improved nested
iteration methods while choosing the best plan. In fact, in
this paper we show the cases where the improved nested
iteration methods can perform significantly better than the
plans generated by decorrelation techniques proposed.

Techniques for improving the performance of nested
iteration have been proposed by Selinger et.al. [14] and
Graefe [8]. In the System R paper [14] Selinger et.al. pro-
pose the idea of caching the inner subquery result for dis-
tinct values of correlation variables and sorting the outer
tuples which allows caching of only one result of the in-
ner query at any point in time. Graefe [8] emphasizes the
importance of nested iteration plans and discusses asyn-
chronous I/O, caching and sorting outer tuples as tech-
niques that can improve the performance of nested itera-
tion.

The techniques we propose in this paper for improving
the nested iteration method augment the techniques pro-
posed in [14] and [8]. Sorting in System R is purely to
ensure the cached result can be kept in memory (only one
cached result need be retained). Graefe [8] describes sort-
ing of outer tuples to produce advantageous buffer effects
in the inner query plan, where as we propose different eval-
uation strategies possible with the knowledge of the order
of correlation bindings. Both [14] and [8] do not discuss
the changes required in the optimizer to consider these op-
tions and generate an overall best plan. Database systems
such as Microsoft SQL Server consider sorted correlation
bindings and the expected number of times a query block
is evaluated with the aim of efficiently caching the inner
query results when duplicates are present and to appropri-
ately estimate the cost of nested query blocks. To the best
of our knowledge, the state-retention techniques and op-
timization of multi-branch, multi-level correlated queries
considering parameter sort orders have not been proposed
or implemented earlier.

The Microsoft SQL Server query optimizer (which is
also based on Volcano), has an extension to the find-
Best procedure (their equivalent to our FindBestPlan pro-
cedure), which passes it “context” information [4]. The in-
formation in the context includes the parameters, their sort
order, number of rows required, and number of expected
executions. The parameter sort order and number of ex-
pected executions information is used to cost plans appro-
priately, taking cache effects in index lookups into account,
and to decide what results to materialize. The number of
rows required is orthogonal to nested iteration, and is used
for top-K queries and for EXISTS subqueries. The same
subtree may be optimized under different contexts; how-
ever, further details are not available to us. As far as we are
aware they cannot infer and use interesting sort orders for
parameters, and they do not handle state retention.

8 Conclusions and Future Work

We revisited nested iteration plans for correlated queries
and showed how the sort order of correlation bindings can
be exploited to produce plans that can be significantly faster
than the corresponding set oriented plans. Our techniques,
being based on the tuple iteration semantics, are more gen-
eral in terms of their applicability compared to the decorre-
lation techniques. We showed how the proposed techniques
can be extended to efficiently evaluate queries involving ex-

pensive user-defined functions. We addressed the issues
involved in extending a Volcano-style cost-based optimizer
to take into account the proposed evaluation techniques.
We presented a performance study based on an actual im-
plementation of our execution techniques, which demon-
strates significant benefits. We believe our extensions can
be added to existing execution engines and optimizers in
a straightforward manner, and are thus of practical use for
existing database systems.

Having shown that our proposed execution techniques
can give significant execution cost benefits, we are now in
the process of implementing our optimizer extensions. Fu-
ture work includes studying the performance of our opti-
mization algorithm. We expect the overheads of our algo-
rithm to be quite small, since it considers only interesting
sort orders, and the cost of finding interesting sort orders is
itself quite low, linear in the size of PQDAG.

References
[1] S. Chaudhuri and K. Shim. Optimization of Queries with

User-defined Predicates. In VLDB, 1996.
[2] U. Dayal. Of Nests and Trees: A Unified approach to Pro-

cessing Queries That Contain Nested Subqueries, Aggre-
gates, and Quantifiers. In VLDB, 1987.

[3] A. Eisenberg and J. Melton. Advancements in SQL/XML.
In SIGMOD Record 33(3), 2004.

[4] C. A. Galindo-Legaria and C. Fraser, Nov. 2004. Personal
Communication.

[5] C. A. Galindo-Legaria and M. M. Joshi. Orthogonal Opti-
mization of Subqueries and Aggregation. In ACM SIGMOD,
2001.

[6] R. A. Ganski and H. K. T. Wong. Optimization of Nested
SQL Queries Revisited. In ACM SIGMOD, 1987.

[7] G. Graefe. The Cascades Framework for Query Optimiza-
tion. In Data Engineering Bulletin 18 (3), 1995.

[8] G. Graefe. Executing Nested Queries. In 10th Conference
on Database Systems for Business, Technology and the Web,
2003.

[9] G. Graefe and W. McKenna. The Volcano Optimizer Gen-
erator: Extensibility and Efficient Search. In ICDE, 1993.

[10] J. M. Hellerstein. Practical Predicate Placement. In ACM
SIGMOD, 1994.

[11] A. Hulgeri and S. Sudarshan. AniPQO: Almost non-
intrusive parametric query optimization for non-linear cost
functions. In VLDB, 2003.

[12] W. Kim. On Optimizing an SQL-like Nested Query. In ACM
Transactions on Database Systems, Vol 7, No.3, 1982.

[13] M. Muralikrishna. Optimization and Dataflow Algorithms
for Nested Queries. In VLDB, 1989.

[14] P. G. Selinger, M.M.Astrahan, D.D.Chamberlin, R.A.Lorie,
and T.G.Price. Access Path Sselection in a Relational
Database Management System. In ACM SIGMOD, 1979.

[15] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex Query
Decorrelation. In ICDE, 1996.

[16] J. Shanmugasundaram et al. Efficiently Publishing Rela-
tional Data as XML Documents. In VLDB, 2000.

