
Database applications experience lot of latency due to

Network round trips to the database

Disk IO at the database

HOLISTIC OPTIMIZATION BY PREFETCHING QUERY RESULTS
Karthik Ramachandra & S. Sudarshan, IIT Bombay

The Latency ProblemThe Latency Problem

Application

Database

Disk IO and

query execution

Network time

Query

Result

Multiple queries could be issued concurrently

Allows the database to share work across multiple queries

Application performs other processing while query executes

Significantly reduces the impact of latency

Hard to identify earliest and safe points in the code to

perform prefetching

Complex interprocedural code with queries deep inside

Hard to manually maintain as code changes occur

void genAllReports(){

for (…) {

…

genReport(custId, city);

}

}

void genReport(int cId, String city) {

city = …

while (…){

…

}

rs1 = executeQuery(q1, cId);

rs2= executeQuery(q2, city);

…

}

executeQuery (): normal execute query

submit(): non-blocking call that initiates

query and returns immediately; once the

results arrive, they are stored in a cache

executeQuery(): checks the cache and

blocks if results are not yet available

Inserts prefetches at earliest possible point in the

program

Works in the presence of loops and interprocedural code

No wasted prefetches except due to exceptions

Code motion, chaining and rewriting to optimize prefetches

Applicable to JDBC, Hibernate, Web Services, and similar

data access APIs

Being implemented in the DBridge Holistic optimization tool

http://www.cse.iitb.ac.in/infolab/dbridge

Prefetching basedPrefetching based on Static analysison Static analysis
PrefetchingPrefetching Query ResultsQuery Results

ChallengesChallenges

AdvantagesAdvantages

Our SolutionOur Solution

PREFETCHING WALKTHROUGHPREFETCHING WALKTHROUGH

void genAllReports(){

for (…) {

…

genReport(custId, city);

}

}

void genReport(int cId, String city) {

submit(q1, cId);

city = …

submit(q2, city);

while (…){

…

}

rs1 = executeQuery(q1, cId);

rs2 = executeQuery(q2, city);

…

}

n2

nq: executeQuery(q,x)n3

n1: if(…)

submit(q,x)

n1: x =…

n2

nq: executeQuery(q,x)

submit(q,x)

Equivalence with original

program is preserved

All existing statements

remain unchanged

Prefetch is not wasted

1. Query 1. Query AnticipabilityAnticipability Analysis: Analysis:
Find Valid points of prefetch insertionFind Valid points of prefetch insertion

2. Identify earliest point and insert prefetch statement2. Identify earliest point and insert prefetch statement

void genAllReports(){

for (…) {

submit(q1, cId);

…

genReport(custId, city);

}

}

void genReport(int cId, String city) {

city = …

submit(q2, city);

while (…){

…

}

rs1 = executeQuery(q1, cId);

rs2 = executeQuery(q2, city);

…

}

3.3. Prefetch at the beginning of a Prefetch at the beginning of a
method can be moved to all its callersmethod can be moved to all its callers

Java/JDBC application

Intraprocedural: moderate gains

Interprocedural: substantial gains

(25-30%)

Enhanced (with rewrite): significant

gain (50% over Interprocedural)

Web Service: HTTP/JSON with

Twitter4j client

Monitors 4 keywords for new tweets

Interprocedural prefetching;

no rewrite possible

75% improvement at 4 threads

Server time constant; network overlap

leads to significant gain

1. 1. Twitter DashboardTwitter Dashboard

2. ERP Application: Impact of our techniques2. ERP Application: Impact of our techniques
void genReport(int cId){

int x = …;

while (…){

…

}

if (x > 10)

rs1 = executeQuery(q1, cId);

}

void genReport(int cId){

int x = …;

boolean b = (x > 10);

if (b) submit(q1, cId);

while (…){

…

}

if (b)

rs1 = executeQuery(q1, cId);

}

Prefetching EPrefetching Enhancementsnhancements

1. 1. Code Code Motion Motion with Strong with Strong AnticipabilityAnticipability
void report(int cId,String city){

…

c = executeQuery(q1, cId);

while (c.next()){

accId = c.getString(“accId”);

d = executeQuery(q2, accId);

}

}

void report(int cId,String city){

submitChain({q1, q2’}, {{cId}, {}});

…

c = executeQuery(q1, cId);

while (c.next()){

accId = c.getString(“accId”);

d = executeQuery(q2, accId);

}

}

submitChain({“SELECT * FROM accounts WHERE custid=?”,

“SELECT * FROM transactions WHERE accId=:q1.accId”}, {{cId}, {}});

SELECT ∗
FROM (SELECT ∗ FROM accounts WHERE custId = ?)

OUTER APPLY

(SELECT ∗ FROM transactions

WHERE transactions.accId = account.accId)

2. 2. Chaining Chaining and rewriting Prefetch requestsand rewriting Prefetch requests

Control dependence barrier:

 Transform it into a data dependence barrier by rewriting it as a

guarded statement

Data dependence barrier:

 Apply anticipability analysis on the barrier statements

 Move the barrier to its earliest point followed by the prefetch

Output of a query forms a parameter to another – commonly encountered

Prefetch of query 2 can be issued soon after results of query 1 are available.

Chained SQL queries can be rewritten into one query using known techniques

Reduces network round trips, aids in selection of set oriented query plans

Experiments (Experiments (uptoupto 75% improvement)75% improvement)

Data Dependence

Barrier

Control Dependence

Barrier

CFG of method genReport()
All query parameters should be

available, with no intervening

assignments

No intervening updates to the database

Should be guaranteed that the query will

be executed subsequently

ACM SIGMOD 2012, Scottsdale, AZ This work supported by: Microsoft Research India PhD Fellowship and
Yahoo! Key Scientific Challenges Award 2011

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)
start

n1

n2

n4

n5

n3

end

(,)

Bit vector = (q1,q2)

 = anticipable (valid)

 = not anticipable (invalid)

Contact: karthiksr@cse.iitb.ac.in

Optimizing prefetches in presence of barriers
 Using program and query transformations

 Preserving program equivalence

http://www.cse.iitb.ac.in/infolab/dbridge
mailto:karthiksr@cse.iitb.ac.in

