
Holistic Optimization by Prefetching Query Results

Karthik Ramachandra
Indian Institute of Technology Bombay, India

karthiksr@cse.iitb.ac.in

S Sudarshan
Indian Institute of Technology Bombay, India

sudarsha@cse.iitb.ac.in

ABSTRACT

In this paper we address the problem of optimizing per-
formance of database/web-service backed applications by
means of automatically prefetching query results. Prefetch-
ing has been performed in earlier work based on predict-
ing query access patterns; however such prediction is often
of limited value, and can perform unnecessary prefetches.
There has been some earlier work on program analysis and
rewriting to automatically insert prefetch requests; however,
such work has been restricted to rewriting of single proce-
dures. In many cases, the query is in a procedure which does
not offer much scope for prefetching within the procedure; in
contrast, our approach can perform prefetching in a calling
procedure, even when the actual query is in a called proce-
dure, thereby greatly improving the benefits due to prefetch-
ing. Our approach does not perform any intrusive changes to
the source code, and places prefetch instructions at the ear-
liest possible points while avoiding wasteful prefetches. We
have incorporated our techniques into a tool for holistic op-
timization called DBridge, to prefetch query results in Java
programs that use JDBC. Our tool can be easily extended
to handle Hibernate API calls as well as Web service re-
quests. Our experiments on several real world applications
demonstrate the applicability and significant performance
gains due to our techniques.

Categories and Subject Descriptors

H.2.4 [Database Management Systems]: Query pro-
cessing; F.3.2 [Semantics of Programming Languages]:
Program Analysis

1. INTRODUCTION
Most applications on the Web today spend part of their

execution time on local computation and spend the rest in
accessing databases, Web services or other applications re-
motely. Typically, for any remote access, there is a con-
versation between an application server and say, a database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

in the form of a series of requests (SQL queries/HTTP re-
quests) and responses. In such applications, the time taken
for remote access is split between (a) preparing requests, (b)
transmitting them over the network, (c) actual computation
at the database, to serve the request (involving processing
and disk IO), (d) preparing responses, (e) transmitting re-
sponses back over the network.

Performing these actions synchronously results in a lot of
latency since the calling application blocks during stages (b)
through (e). Much of the effects of latency can be reduced
if these actions are overlapped with local computations or
other requests. Such overlap can be achieved by issuing
asynchronous requests in advance, while the application con-
tinues performing other tasks. In many cases, the results can
be made available by the time they are actually required,
thereby completely hiding the effect of latency. This idea
of making query results available before they are actually
needed by the application, is called query result prefetching.

Prefetching can help greatly in reducing response times.
Consider the program shown in Figure 1. The generateRe-
port method accepts a customer id (custId), a currency code
(curr), and a date (fromDate), and performs the following
tasks in sequence: (i) Retrieves information about all ac-
counts of that customer and processes them in a loop (n1 to
n5), (ii) Retrieves and processes customer information (n6

and n7), (iii) If the supplied currency code doesn’t match
the default (DEFAULT CURR), it fetches and displays the
current exchange rate between the two (n8 to n10). (iv)
The loop that processes accounts also invokes a method pro-
cessTransactions for every account, which retrieves all trans-
actions after the fromDate for processing, after retrieving
the balance as of fromDate (n11 to n15). In order to keep
the listing simple, we use methods processAccount, and pro-
cessCustomer to denote all the processing that happens on
account and customer data. We use this example through-
out the paper.

There are many opportunities for prefetching in Figure 1,
some of which are not very obvious, which are exploited by
our transformations; Figure 2 shows the transformed pro-
gram with prefetch submissions. For brevity, Figure 2 uses
symbols q1, q2 etc. to denote actual query strings, and omits
lines of code that remain unchanged.

First consider query q2, whose parameter is available at
the very beginning of generateReport. Our transformations
prefetch the query result by invoking submit(q2,custId) at
the beginning of generateReport as shown in Figure 2; sub-
mit is a non-blocking call which initiates prefetching of query
results to a cache, and returns immediately. Thereby, exe-

133

void generateReport(int custId, int curr, String fromDate){
(n1) ResultSet a=executeQuery(‘‘SELECT ∗

FROM accounts
WHERE custId=?”, custId); // q1

(n2) while(a.next()){
(n3) int accountId = a.getInt (‘‘ accountId ’’);
(n4) processAccount(a);
(n5) processTransactions(accountId, fromDate);

}

(n6) ResultSet c = executeQuery (‘‘SELECT ∗
FROM customers
WHERE custId=?”, custId); // q2

(n7) processCustomer(c);

(n8) if (curr != DEFAULT CURR){
(n9) ResultSet s=executeQuery (‘‘SELECT exchgRate

FROM exchange
WHERE src=? AND dest=?”,
{curr, DEFAULT CURR}); // q3

(n10) printExchangeRate(s, curr);
}

}

void processTransactions(int accId, String from){
(n11) int startingBalance = getBalanceAsOf(from, accId);
(n12) int balance = startingBalance;

(n13) ResultSet t=executeQuery (‘‘SELECT ∗
FROM transactions
WHERE accountId=? AND date > ?
ORDER BY date”, {accId, from}); // q4

(n14) while(t.next()){
(n15) balance = processTransaction(t, balance);

}
}

Figure 1: Program with prefetching opportunities

cution of q2 gets overlapped with the execution of the loop
starting at line n2.

Next, consider query q3, which is executed only if the
predicate in line n8 is true. Our transformations deal with
this situation by issuing a prefetch conditional on the pred-
icate in line n8.

Similarly, query q4 in the method processTransactions can
be prefetched in the method generateReport just after line
n3, which is the earliest point where its parameters are avail-
able. In this case, our transformations allow prefetch to be
done in a calling procedure. As a further optimization, we
note that the parameter accountId of q4, which becomes
available in line n3, is really a result of query q1, and q4
is executed for every row in the result of q1. Our transfor-
mations therefore combine the prefetching of q1 and q4 by
invoking the submitChain procedure as shown in Figure 2.
The procedure prefetches multiple queries, where parame-
ters of later queries come from results of earlier queries; it
initiates prefetch of a query once queries that it depends on
have been prefetched. As yet another optimization, the pro-
cedure submitChain can combine the queries into a single
prefetch query to the database.

Manually identifying the best points in the code to per-
form prefetching is hard and time consuming, because of
the presence of loops and conditional branches; it is even
harder in situations where the query is invoked in some pro-
cedure P , but to get any benefit the prefetch should be done

void generateReport(int custId, int curr, String fromDate){
submit (q2 , custId);
submitChain({q1 , q4’}, {{custId}, {fromDate}});
// q4’ denotes query q4 with its first ? replaced
// by :q1.accountId.

boolean b = (curr != DEFAULT CURR);
if(b) submit (q3 , {curr, DEFAULT CURR});

... // code unchanged (lines n1 to n7)
if (b){

... // code unchanged (lines n9, n10)
}

}

Figure 2: Program with prefetch requests

in another procedure Q which calls P . Manually inserted
prefetching is also hard to maintain as code changes occur.

Much of the earlier work on optimization has focused on
query optimization at the database, where the given query
is rewritten to the optimal form. But as can be seen from
the above scenario, optimization of the application requires
not just database query optimization, but also optimization
of database access in the application, by means of rewriting
the application code. Such optimization spanning the ap-
plication and the database has been referred to as holistic
optimization [13].

Prefetching has been used in databases and many other
areas to hide latency and make concurrent use of resources.
However, in contrast to work on prefetching query results
by [8, 15, 2] which are based on predicting query access
patterns, our work focuses on automatic rewriting applica-
tion programs to issue prefetches effectively. Manjhi et al.
[13] and our earlier work (Chavan et al. [4]) also consider
automatic rewriting of application code by means of insert-
ing prefetches (asynchronous query submissions). However,
those techniques only work within a single procedure, and
cannot work across procedure boundaries; and even within
a procedure, techniques described in this paper improve the
applicability of prefetching. Related work is discussed in
more detail in Section 7.

Our technical contributions in this paper are as follows:

1. We give a novel algorithm (in Section 4), which stat-
ically inserts prefetch instructions at the earliest pos-
sible point across procedure calls, in presence of con-
ditional branching and loops. To this end, we extend
a data flow analysis technique called anticipable ex-
pressions analysis, to analyze anticipability of queries
(Section 3). Although anticipable expressions analysis
is a known data flow analysis technique, to the best
of our knowledge there is no prior work on its use for
prefetching query results.

2. In many cases, the benefit of prefetching is limited due
to the presence of assignment statements and condi-
tional branches that precede the query execution state-
ment. We propose (in Section 5) enhancements such as
code motion, chaining, and rewriting prefetch requests
to increase benefits of prefetching.

3. We describe (in Section 6) how our techniques inte-
grate with our earlier work in this area [5, 4] thereby
increasing their applicability. We also describe the ap-

134

plicability of our work in persistence frameworks such
as Hibernate [7], and Web services.

4. We discuss (in Section 8) the design considerations of
incorporating our techniques into the DBridge tool [3]
which rewrites Java programs to perform prefetching.
We present a detailed experimental evaluation of the
proposed techniques on several real world applications.
The results of our experiments show significant perfor-
mance gains of more than 50% in many cases.

2. BACKGROUND
In this section, we provide background material on the

terminology used in the rest of the paper.

2.1 Prefetch Execution model
We assume the following execution model for prefetching:

There exists a cache of query results. This cache is keyed by
the tuple (queryString, parameterBindings), and contains a
result set. Every prefetch instruction puts its query results
into this cache. If the prefetch query execution results in
an exception, the exception is cached. Now we define the
semantics of the methods we use.

• executeQuery: This is a blocking function which
first checks if the (queryString, parameterBindings) be-
ing issued, already exists in the cache. If so, it returns
the cached results, else blocks till the results are avail-
able. If the cached result is an exception, it is thrown
at this point.

• submit: This is a non-blocking function which issues
a prefetch. It accepts a query and its parameters, sub-
mits the query for execution and returns immediately.

Additionally, we define a variant of submit called submit-
Chain, which handles chaining of prefetch requests; submit-
Chain is discussed in Section 5.2.

2.2 Data Structures used
We use the following data structures in our analysis:

2.2.1 Control Flow Graph

The Control Flow Graph (CFG) is a directed graph that
represents all paths that might be traversed by a program
during its execution [14]. In a control flow graph each node
represents a basic block (a straight-line piece of code with-
out branches). There are two specially designated nodes:
the Start node, through which control enters into the flow
graph, and the End node, through which all control flow
leaves. Additionally, for each node n, Entry(n) and Exit(n)
represent the program points just before the execution of
the first statement, and just after the execution of the last
statement of n. Directed edges represent control flow; sets
pred(n) and succ(n) denote the predecessors and successors
of a node n respectively.

CFGs are usually built on intermediate representations
such as Java bytecode. Our techniques apply to any CFG;
our implementation uses CFGs built on a representation
called Jimple, provided by the SOOT optimization frame-
work [19]. The CFG for Figure 1 is shown in Figure 3.

2.2.2 Call Graph

The call graph (also known as a call multi-graph) is a
directed graph that represents calling relationships between

methods in a program. Specifically, each node represents a
method and each edge (f , g) indicates that method f calls
method g. In addition, each edge also stores the program
point of invocation of g in f and has the mapping of formal
to actual variables. A cycle in the graph indicates recursive
method calls. We currently assume that the Call Graph is
a directed acyclic graph (DAG), as our algorithms do not
handle recursive method calls.

2.3 Data flow analysis
We now briefly describe the general framework of data

flow analysis that we use in this paper. Data flow analysis
is a program analysis technique that is used to derive infor-
mation about the run time behaviour of a program [12]. For
a given program entity e, such as an expression a ∗ b, data
flow analysis of a program involves two steps:
(i) Discovering the effect of individual program statements
on e (called local data flow analysis). This is expressed in
terms of sets Genn and Killn for each node n in the CFG

of the program. Genn denotes the data flow information
generated within node n. For eg., the set Genn contains the
expression a ∗ b if node n computes a ∗ b. Killn denotes the
information which becomes invalid in node n. For eg., the
expression a ∗ b is said to be killed in node n if n has an
assignment to a or b. The values of Genn and Killn are
computed once per node, and they remain unchanged.
(ii) Relating these effects across statements in the program
(called global data flow analysis) by propagating data flow
information from one node to another. This is expressed in
terms of sets Inn and Outn, which represent the data flow
information at Entry(n) and Exit(n) respectively.

The specific definitions of sets Genn, Killn, Inn and Outn
depend upon the analysis, and we define them for our anal-
ysis in Section 3. The relationship between local and global
data flow information is captured by a system of data flow
equations. The nodes of the CFG are traversed and these
equations are iteratively solved until the system stabilizes,
i.e., reaches a fixpoint. Data flow analysis captures all the
necessary interstatement data and control dependences about
e through the sets Inn and Outn. The results of the analysis
are then used to infer information about e.

3. QUERY ANTICIPABILITY ANALYSIS
As we saw in Figure 1, we consider programs with query

executions embedded within them, along with loops, branch-
ing, and other imperative constructs. Prefetching of queries
involves inserting query submission requests at program poi-
nts where they were not present in the original program. The
goal is to insert asynchronous query prefetch requests at the
earliest possible points in the program so that the latency of
network and query execution can be maximally overlapped
with local computation. Suppose a query q is executed with
parameter values v at point p in the program. The earliest
possible points e where query q could be issued are the set
of points where the following conditions hold: (a) all the
parameters of q are available, (b) the results of executing q

at points e and p are the same, and (c) conditions (a) and
(b) do not hold for predecessors of e. For efficiency reasons,
we impose an additional constraint that no prefetch request
should be wasted. In other words, a prefetch request for
query q with parameters v should only be inserted at earli-
est points where it can be guaranteed that q will be executed
subsequently with parameters v.

135

Detecting earliest possible points for queries in the pres-
ence of multiple query execution statements, while satisfy-
ing the above constraints, requires a detailed analysis of the
program. The presence of conditional branching, loops and
method invocations lead to complex interstatement data and
control dependences which are often not explicit in the pro-
gram. We approach this problem using a data flow anal-
ysis framework called anticipable expressions analysis and
extend it to compute query anticipability.

Anticipable expressions analysis [12] is a data flow analy-
sis technique that is used for eliminating redundant compu-
tations of expressions. It can facilitate expression motion,
which involves advancing computation of an expression to
earlier points in control flow paths. This analysis is typi-
cally used for expressions with binary operators to detect
earlier points in the program where they can be moved.

Our analysis differs from anticipable expressions analy-
sis in the following aspects: (a) our goal is the insertion
of prefetch instructions, not code motion (b) we compute
and propagate data flow information for query execution
statements as against expressions. Although anticipable ex-
pressions analysis is a known data flow analysis technique,
to the best of our knowledge, no prior work shows its use
for prefetching query results. The scope of this analysis is
intraprocedural i.e., we use this analysis to find query antic-
ipability within a procedure. (Moving of prefetches across
procedures is discussed later, in Section 4.2.) We now for-
mally define our analysis:

Definition 3.1. A query execution statement q is an-

ticipable at a program point u if every path from u to End
contains an execution of q which is not preceded by any state-
ment that modifies the parameters of q or affects the results
of q. 2

Query anticipability analysis is a data flow framework
with query execution statements being the data flow val-
ues (program entities of interest). All required data flow
information for this analysis are compactly represented us-
ing bit vectors, where each bit represents a query execution
statement. For a query execution statement q, we define the
sets (bit vectors) Genn and Killn as follows: Genn is 1 at
bit q if n is the query execution statement q. Killn is 1 at
bit q if either n contains an assignment to a parameter of q,
or performs an update to the database that may affect the
results of q. Conservatively, we assume that any update to
the database affects the results of q. This assumption can
be removed by performing a more precise interquery depen-
dence analysis [16], taking into account the indirect effects
due to views and triggers.

Query anticipability computation requires propagation of
data flow information against the direction of control flow.
The data flow information at Exit(n) (i.e., Outn) is com-
puted by merging information at Entry of all successors of
n. The data flow equations for query anticipability analysis
are:

Inn = (Outn −Killn) ∪Genn (1)

Outn =

{

φ if n is End node
⋂

s∈succ(n) Ins otherwise (2)

Equation 1 defines Inn in terms of Outn, Genn andKilln.
Outn is defined in Equation 2 by merging the In values of
all successors of n using set intersection (∩) as the merge

operator. OutEnd is initialized to be φ as query executions
are not anticipated at Exit(End). We use ∩ to capture the
notion that the query execution statement is anticipable at
Outn only if it is anticipable along every path from n to
End. Inn and Outn for all other nodes are initialized to the
universal set.

The nodes of the CFG are traversed in reverse topological
order and the values of Outn and Inn are calculated for
each node; this process is repeated until the system reaches
a fixpoint. (An example of query anticipability analysis is
discussed in detail later, in Section 4.)

For a given query execution statement q, query anticipa-
bility analysis discovers a set of anticipability paths. Each
such path is a sequence of nodes (n1, n2, ..., nk) such that:

• nk is the query execution statement q,
• n1 is either Start, or contains an assignment to some

parameter of q, or performs an update to the database,
• no other node in the path contains an execution of q,

or an assignment to any parameter of q, or an update
to the database

• q is anticipable at every node in the path.

Anticipability can be blocked by the presence of critical
edges in the CFG. A critical edge is an edge that runs from
a fork node (a node with more than one successor) to a join
node (a node with more than one predecessor). Such a crit-
ical edge is removed introducing a new node along the edge
such that the new node has no other predecessor other than
the fork node. Removal of critical edges is a standard tech-
nique used in code motion optimization [12], and it increases
anticipability atleast along one path.

In the next section, we illustrate query anticipability anal-
ysis with an example, and describe how this analysis feeds
into our prefetching algorithm, to identify earliest points for
issuing prefetches across methods.

4. PREFETCH INSERTION ALGORITHM
We now present our novel algorithm for inserting query

prefetch instructions in a program. We first describe an
algorithm to place prefetch requests at earliest points within
a procedure. Subsequently, we describe an algorithm that
inserts prefetches across procedures.

4.1 Intraprocedural prefetch insertion
We begin with the algorithm for inserting prefetch in-

structions within a procedure, which we call intraprocedural
prefetching. We make the following assumptions about the
input procedure:

• Statements have no hidden side-effects. All reads and
writes performed by a statement are captured in the
Genn andKilln sets. Importantly the reads and writes
of variables within method invocations, the effects of
global variables and shared data structures, are also
captured. This assumption is easy to verify for pro-
gram variables, but harder in presence of complex data
structures and objects with aliasing. Therefore, as
done by most optimizing compilers, a safe but less
precise analysis could be performed to verify the as-
sumption [14, 12]. This may introduce spurious de-
pendences that reduce opportunities for prefetching,
but will continue to guarantee program equivalence.

136

Figure 3: CFG for method generateReport of Fig-
ure 1

procedure InsertPrefetchRequests(CFG G)
begin
remove all critical edges by edge splitting
Q = {all query execution statements in G}
perform QueryAnticipabilityAnalysis on G w.r.t Q

for each Stmt q ∈ Q do begin
for each Node n ∈ CFG G do begin

if (Outn,q ∩ ¬Inn,q) then begin
//Case 1: data dependence barrier
appendPrefetchRequest(n, q)

else if (Inn,q ∩ ¬
⋃

m∈pred(n) Outm,q)

//Case 2: control dependence barrier
prependPrefetchRequest(n, q)

endif
endfor

endfor
end

Figure 4: Intraprocedural prefetch insertion algo-
rithm

• The parameters to the query are primitive data types
(int, float etc.) or strings. However, our techniques
can be extended to arrays and objects.

• For simplicity of notation, the query execution state-
ment is assumed to be of the form executeQuery(sql-
Query, parameterBindings) where the sqlQuery is a
string and the parameterBindings is an array of prim-
itive data types. This is a simplifying assumption and
can be easily removed to make the underlying CFG

aware of the data access API used. Our implementa-
tion works on Java programs that use JDBC API, and
hence is JDBC-API aware.

• The prefetch instruction and the query execution state-
ment execute within a single transaction; we discuss
issues in enforcing this later, in Section 8.1.

The algorithm, shown in Figure 4 accepts the CFG of a pro-
cedure as input and returns a modified CFG with prefetch
requests inserted. We illustrate its operation with the exam-
ple in Figure 1. Consider the method generateReport, which

Node Local Information Global Information
Iteration #1 Iteration #2

Genn Killn Outn Inn Outn Inn

End 000 000 000 000
n10 000 000 000 000
n9 001 000 000 001
n8 000 000 000 000
n7 000 000 000 000
n6 010 000 000 010
n5 000 000 111 111 010 010
n4 000 000 111 111 010 010
n3 000 000 111 111 010 010
n2 000 000 010 010
n1 100 000 010 110

Start 000 111 110 000

Table 1: Query anticipability analysis for method
generateReport of Figure 1

Figure 5: Barriers for prefetching

embeds 3 queries labeled q1, q2 and q3. The correspond-
ing CFG, which indicates executeQuery nodes is shown in
Figure 3. The methods processAccount, processCustomer
and printExchangeRate do not involve any updates to the
database that may invalidate the query results.

Algorithm InsertPrefetchRequests proceeds as follows: As
a preprocessing step, critical edges are removed by intro-
ducing new nodes along them as described in [12]. In our
example, the CFG remains unchanged as there are no crit-
ical edges. Then, we collect all query execution statements
in a set Q, which forms the structure of our bit vector
used for query anticipability analysis. In the example, Q =
{q1, q2, q3}.

The values of the sets Genn and Killn for each node are
computed first. KillStart is defined as 111 in our example
since the Start node assigns values to all parameters of the
procedure. OutEnd is initialized to φ (000), with Inn and
Outn initialized to the universal set (111 in our example)
for all other nodes. Then the fixpoint is computed as de-
scribed in Section 3. In our example, the values converge in
2 iterations. The results of performing query anticipability
analysis on Figure 1 is shown in Table 1. The table shows
only the changed values in iteration #2.

This analysis provides us with information about all points
in the procedure where queries are anticipable. However, as
stated earlier, we are interested in the earliest point where
the query is anticipable. There are two cases to consider in
order to arrive at the earliest point of anticipability, shown

137

void generateReport(int custId, int curr, String fromDate){
submit (q2, custId); // prefetch q2
submit (q1, custId); // prefetch q1

(n1) ResultSet a=executeQuery(‘‘SELECT ∗
FROM accounts
WHERE custId=?”, custId); // q1

(n2) while(a.next()){
(n3) int accountId = a.getInt (‘‘ accountId ’’);
(n4) processAccount(a);
(n5) processTransactions(accountId, fromDate);

}

(n6) ResultSet c = executeQuery (‘‘SELECT ∗
FROM customers
WHERE custId=?”, custId); // q2

(n7) processCustomer(c);

(n8) if (curr != DEFAULT CURR){
// prefetch q3
submit (q3, {curr, DEFAULT CURR});

(n9) ResultSet s=executeQuery (‘‘SELECT exchgRate
FROM exchange
WHERE src=? AND dest=?”,
{curr, DEFAULT CURR}); // q3

(n10) printExchangeRate(s, curr);
}

}

void processTransactions(int accId, String from){
submit (q4, {accId, from});

(n11) int startingBalance = getBalanceAsOf(from, accId);
(n12) int balance = startingBalance;

(n13) ResultSet t=executeQuery (‘‘SELECT ∗
FROM transactions
WHERE accountId=? AND date > ?
ORDER BY date”, {accId, from}); // q4

(n14) while(t.next()){
(n15) balance = processTransaction(t, balance);

}
}

Figure 6: Result of InsertPrefetchRequests on Fig-
ure 1

in Figure 5 with statements denoted by s1, s2, s3, and sq

and paths in the CFG denoted by dashed arrows.

Case 1: As shown in Figure 5(a), s1 prevents the prefetch
from being placed above it, due to an assignment to x. Such
barriers can be due to assignments to query parameters or
updates to the database that affect the query result. Up-
date statements can be seen as external data dependences,
where the dependence exists through the database. These
barriers are called data dependence barriers, since it is a data
dependence that prevents the prefetch to be placed before
this barrier.
More formally, if query q is not anticipable at Entry(n), but
is anticipable at Exit(n), the prefetch statement is inserted
immediately after n. This indicates that n is the initial node
of an anticipability path for q. In our example, this case
applies for queries q1 and q2 since they are not anticipable
at InStart but become anticipable at OutStart as indicated
by Table 1.

Case 2: This case is shown in Figure 5(b). Here, sq is
control dependent on s1, since the predicate evaluated at s1

determines whether or not control reaches sq. The prefetch
for q cannot be moved to s1 since the path s1 → s2 does
not issue the query subsequently. Such barriers due to condi-
tional branching (if-then-else) are called control dependence
barriers, since it is a control dependence that prevents the
prefetch from being moved earlier.
Formally, if query q is anticipable at Entry(n), and not an-
ticipable at the Exit of any of the predecessors of n, the
prefetch statement is inserted immediately before n. In our
example, this case applies for query q3, as indicated by Ta-
ble 1 at Outn8

and Inn9
.

In our algorithm, Inn,q and Outn,q represent the antici-
pability of q at Inn and Outn respectively. The procedures
appendPrefetchRequest and prependPrefetchRequest accept
a node n and a query execution statement q, prepare the
prefetch instruction for q, and insert it immediately after
or before n respectively. Note that there can be multiple
points in a program where a prefetch can be issued for a
query q as there could be multiple paths reaching q from
Start. We omit the details of running query anticipability
analysis on the method processTransactions due to lack of
space. The output of Algorithm InsertPrefetchRequests on
Figure 1 is shown in Figure 6. The CFG of method gen-
erateReport shown in Figure 3 indicates the points where
prefetch submissions are placed relative to the points where
they are in the original program. The prefetch for query q2
has been placed at the beginning of the procedure beyond
the loop. Query q3 cannot be moved before n8 as it is not
anticipable along the path n8 → End. We describe tech-
niques to move these prefetches further ahead, in Section 5.
Note that the parameters to the submit() call in Figure 6
are actual query strings, and the symbols q1, q2 etc. have
been used only as a shorthand for readability in this paper.

4.2 Interprocedural prefetching
The benefit of prefetching can be greatly increased by

moving prefetches across method invocations. For instance,
consider the query q4 in method processTransactions in Fig-
ure 1, which is executed with parameters accId and from.
The method processTransactions is invoked from generateRe-
port (line n5), and the accountId used in q4 is available right
after n3. Query q4 can be submitted for prefetch in gener-
ateReport, right after n3, thereby overlapping it with the
method processAccount. The potential benefit here is much
greater than if the prefetch could only be done in the method
where the query is executed.

We now show how to extend our algorithm to perform
interprocedural prefetching. Our algorithm can handle ar-
bitrary levels of nesting, and can move the prefetch instruc-
tion across these levels while preserving the preconditions
given in Section 3. Our algorithm currently cannot handle
recursive method calls i.e., we assume that the Call Graph
is a DAG.

The interprocedural prefetch insertion algorithm Insert-
InterproceduralPrefetchRequests is shown in Figure 7. The
input to the algorithm is the call graph of the program,
along with the CFGs of all the procedures involved. The
intraprocedural algorithm InsertPrefetchRequests is used as
a subroutine, after modifying it as follows: (i) The set Q

of query execution statements now additionally considers
prefetch requests of the form submit(sqlQuery, parameter-
Bindings) where the sqlQuery is a string and the param-
eterBindings is an array of primitive data types. (ii) Be-

138

procedure InsertInterproceduralPrefetchRequests
(CallGraph CG)
begin

rts = {Vertices of CG sorted in reverse topological order}
for each Vertex v ∈ rts do begin
// run the modified intraprocedural algorithm
InsertPrefetchRequests(cfg(v))

s = Entry(cfg(v)) // the first statement of procedure v
while isPrefetchStatement(s) do begin
remove(s,v) //remove s from procedure v
callSites = {cfg(src(e)) | e ∈ CG and dest(e) == v}
for each CFG cs ∈ callSites do begin

t = {all invocations of v in cs}

for each Stmt c ∈ t do begin
// replace formal parameters in s with their
// actual counterparts in c
replaceParameters(s, c)
prependPrefetchRequest(s, t)

endfor
endfor
s = Entry(cfg(v))

endwhile
endfor

end

Figure 7: Interprocedural prefetch insertion

fore the point of invoking appendPrefetchRequest or prepend-
PrefetchRequest, if q is a prefetch statement, it is removed
from its original point.

The key intuition behind the interprocedural algorithm is
the fact that if a prefetch can be submitted at the beginning
of a procedure, it can instead be moved to all its call sites.
The vertices of the call graph are traversed in the reverse
topological order, and InsertPrefetchRequests is invoked for
the CFG of each vertex. Then, the first statement of the
CFG is examined to see if it is a prefetch submission. If
so, then the prefetch statement is inserted just before the
method invocation of interest in all its call sites. This ad-
ditionally requires the replacement of formal parameters in
the prefetch statement, with the actual parameters in the
call site. Traversing the call graph in reverse topological or-
der ensures that no prefetch opportunities are lost, since, all
successors of a vertex v are processed before processing v.

In our example of Figure 1, the modified intraprocedural
algorithm is first run on processTransactions, which brings
the prefetch submission of query q4 to the beginning of the
method as shown in Figure 6. Then the call graph is looked
up and the prefetch instruction is prepended to the method
invocation on line n5 of generateReport. As part of this, the
parameters accId and from in processTransactions are re-
placed by accountId and fromDate in generateReport. Sub-
sequently, the run of the modified intraprocedural algorithm
on generateReport moves the prefetch of q4 to the point im-
mediatly after line n3, as shown in Figure 8. Also, the in-
traprocedural algorithm inserts prefetch requests for queries
q1 and q2 at the beginning of generateReport, as described
in Section 4.1, and indicated in Figure 3. Therefore, queries
q1 and q2 can be moved to call sites of generateReport.

4.3 Discussion
We presented two algorithms for statically inserting pre-

fetch instructions. Algorithm InsertPrefetchRequests uses

void generateReport(int custId, int curr, String fromDate){
submit (q2, custId); // prefetch q2
submit (q1, custId); // prefetch q1

boolean b = (curr != DEFAULT CURR);
if(b) submit (q3, {curr, DEFAULT CURR});

(n1) ResultSet a=executeQuery(‘‘SELECT ∗
FROM accounts
WHERE custId=?”, custId); // q1

(n2) while(a.next()){
(n3) int accountId = a.getInt (‘‘ accountId ’’);

submit (q4, {accountId, fromDate});//prefetch q4
(n4) processAccount(a);
(n5) processTransactions(accountId, fromDate);

}
(n6) ResultSet c = executeQuery (‘‘SELECT ∗

FROM customers
WHERE custId=?”, custId); // q2

(n7) processCustomer(c);

(n8) if (b){
(n9) ResultSet s=executeQuery (‘‘SELECT exchgRate

FROM exchange
WHERE src=? AND dest=?”,
{curr, DEFAULT CURR}); // q3

(n10) printExchangeRate(s, curr);
}

}

Figure 8: Output of InsertInterprocedural-
PrefetchRequests on Figure 1 (with code motion)

query anticipability analysis and inserts prefetch instruc-
tions at the earliest points within a procedure, in the pres-
ence of conditional branching, loops and other intraprocedu-
ral constructs. Algorithm InsertInterproceduralPrefetchRe-
quests combines this analysis and inserts prefetch instruc-
tions at the earliest possible points in the whole program,
across method invocations. Our algorithms ensure the fol-
lowing: (i) No prefetch request is wasted. A prefetch is in-
serted at a point only if the query is executed with the same
parameter bindings subsequently. (ii) All existing state-
ments of the program remain unchanged. These algorithms
only insert prefetch requests at specific program points and
hence they are very non-intrusive. (iii) The transformed
program preserves equivalence with the original program.

The presence of conditional exits due to exceptions may
result in query execution not being anticipable earlier in the
program. Since such exits are rare, we can choose to ignore
such exits when deciding where to prefetch a query, at the
cost of occassional wasted prefetches. We chose this as the
default option in our implementation.

5. ENHANCEMENTS
We now discuss three enhancements to our prefetching al-

gorithm to increase the benefits of prefetching. For instance,
consider query q3 in Figure 6, where the prefetch submission
just precedes the query invocation, which would not provide
any performance benefit. The enhancements described in
this section allow the prefetch to be done earlier, allowing
better performance. The enhancements are based on equiv-
alence preserving program and query transformations.

139

void submitChain(queries, params)
where

• queries: Array of query strings

• params: Array of arrays of parameters for the queries,
other than chaining parameters.

Figure 9: The submitChain interface

submitChain ({‘‘ SELECT ∗ FROM accounts
WHERE custId=?”,

‘‘ SELECT ∗ FROM transactions
WHERE accountId = :q1.accountId

AND date > ?”},
{{custId},{fromDate}});

Figure 10: Chaining for q1 and q2 of Figure 8

5.1 Transitive code motion
The goal of prefetching is to hide the latency of query ex-

ecution (due to network and disk IO) by overlapping them
with local computations or other requests. In terms of the
CFG, this means that the longer the length of the paths
from the prefetch request P to the query execution state-
ment Q, the more the overlap, and the more beneficial the
prefetch. The distance between P and Q can be increased
by transitively applying the code motion optimization.

In Section 4.1, we described data and control dependence
barriers that prevent the prefetch from being inserted earlier
(Figure 5). We now present a technique to increase the ben-
efits of prefetching in presence of these barriers. Whenever a
barrier is encountered, we perform the following transforma-
tions: (i) If a control dependence barrier is encountered, that
control dependence is transformed into a data dependence
using ‘if-conversion’ [11], or equivalently by transforming
them to guarded statements as discussed in [5]; in either
case, the control dependence barrier gets transformed into
a data dependence barrier. (ii) If a data dependence barrier
(assignment to a query parameter) is encountered, we transi-
tively apply anticipability analysis on barrier statements and
move them to their earliest possible point, and recompute
the anticipability of the query. Such transitive movement of
the barrier statement can allow the prefetch to be performed
earlier.

We illustrate transitive code motion with q3 in Figure 6 as
an example. Here, a control dependence barrier due to the
predicate (currCode != DEFAULT CURR) is encountered.
This is transformed into a data dependence using a variable
b to hold the value of the predicate. Now, an anticipability
analysis of the predicate reveals that it could be placed at
the beginning of the method, and a guarded prefetch sub-
mission is placed just after it. The output of transitive code
motion on Figure 6 is shown in Figure 8. Among existing
lines of code, only line n8 is transformed to use the variable
b. For lack of space we omit formal analysis and details of
algorithms to perform transitive code motion for prefetch-
ing. We note however that transitive code motion has been
partially implemented in the code used in our experiments.

5.2 Chaining Prefetch requests
A commonly encountered situation in practice is the case

where the output of one query feeds into another. This is an

SELECT ∗
FROM (SELECT ∗ FROM accounts WHERE custId = ?)

OUTER APPLY
(SELECT ∗ FROM transactions
WHERE transactions.accountId = account.accountId

AND date > ?)

Figure 11: Prefetch query rewrite for Figure 10

example of a data dependence barrier, as described in Sec-
tion 5.1, where the dependence arises due to another query.
For example say a query q1 forms a barrier for submission
of q2, but q1 itself has been submitted for prefetch as the
first statement of the method. As soon as the results of q1
become available in the cache, the prefetch request for q2
can be issued. This way of connecting dependent prefetch
requests is called chaining.

According to our execution model, the prefetch requests
are asynchronously submitted. In this model, chaining can
be visualised as a sequence of events and event handlers. A
handler (or multiple handlers) is registered for every query.
As soon as the results of a query are available, an event is
fired, invoking all the handlers that subscribe to this event.
These event handlers (which can be thought of as callback
functions) pick up the results and issue prefetch submissions
for subsequent queries in the chain. The event handlers
themselves raise events which in turn trigger other handlers,
which goes on till the chain is complete.

Such a chain is set up as follows: Suppose we have a set
of queries (q1, q2, ..., qk), such that qi forms a barrier for
qi+1. Let the set pi denote the results of qi that form the
parameters to qi+1. Let p0 denote the parameters for q1.
Now, at the point of prefetch of q1, we initiate this chain of
prefetches by registering handlers for each query. The set pi
(which we call as the set of chaining parameters) is passed
to the handler that executes query qi+1. We encapsulate
all these details using a simple interface in order to preserve
readability. The program is rewritten to use the API method
submitChain() whenever a query result is found to be a data
dependence barrier. This makes the rewrite straightforward.
The signature and semantics of the submitChain method are
shown in Figure 9. Chaining parameters (i.e. parameters
that come from the result of an earlier query) are represented
as :qi.attrname, in the query string itself.

This kind of chaining can be extended to iterative exe-
cution of queries in a loop, where the following conditions
hold: (i) the parameters of the query in the loop (say qloop)
are from the results of a previous query that is outside the
loop (say qouter), (ii) the loop iterates over the all the tuples
in the results of qouter, (iii) qloop is unconditionally executed
in every iteration of the loop. Such cases are commonly
encountered in practice. For instance, queries q1 and q2
in Figure 8 satisfy these conditions. Once the dependence
between q2 and q1 are identified, along with the chaining pa-
rameter, the submitChain API method is invoked as shown
in Figure 10. Once the first query in the chain executes, the
second query is issued for all the accountId values returned
by the first query.

5.3 Rewriting Prefetch requests
Chaining by itself can lead to substantial performance

gains, especially in the context of iterative query execu-

140

tion whose parameters are from a result of a previous query.
Chaining collects prefetch requests together, resulting in a
set of queries with correlations between them. Such queries
can be combined and rewritten using known query decorre-
lation techniques [17]. In order to preserve the structure of
the program, the results of the merged rewritten query are
then split into individual result sets and stored in the cache
according to the individual queries.

Figure 11 shows the rewritten query for queries in the
chain of Figure 10, using the OUTER APPLY syntax of SQL
Server. This kind of query rewrite has been done earlier in
[17, 5, 2] etc. by the use of the LEFT OUTER LATERAL

or OUTER APPLY operators. Rewriting not only reduces
round trips of query execution, but also aids the database in
choosing better execution plans. The resulting code achieves
the advantages of batching without having to split the loop.
In some cases it can perform better than batching, since the
overhead of creating a parameter batch [5] is avoided.

6. DISCUSSION
We now consider how our transformation can work in con-

junction with existing transformation techniques, and with
Hibernate and Web services.

6.1 Integration with loop fission
In our earlier work (Guravannavar et. al. [5] and Chavan

et. al. [4]) we had proposed program transformation meth-
ods to exploit set oriented query execution or asynchronous
submission to improve performance of iterative execution of
parameterized queries. Both asynchronous query submis-
sion and batching depend on the loop fission transforma-
tion which is effective within a procedure, but not effective
in optimizing iterative execution of procedures containing
queries. For example, consider a query which is executed in
method M , which is invoked from within a loop in method
N . Performing loop fission to enable batching (or asyn-
chronous submission) requires one of the following transfor-
mations to M : (i) a set-oriented (or asynchronous) version
of M , (ii) fission of method M into two at the point of query
execution, (iii) inlining ofM in N . All these transformations
are very intrusive and complex.

Our prefetching algorithm can be used as a preprocess-
ing step to apply the loop fission transformation as follows:
Consider the case where a query execution is deeply nested
within a method chain, with a loop in the outermost method.
Algorithm InsertInterproceduralPrefetchRequests brings the
prefetch statement up the method call hierarchy into the
method with the loop whenever possible. At this point,
if the preconditions for prefetch chaining and rewrite (Sec-
tion 5.2) are not satisfied, the loop fission transformation
can be applied as described in [5] or [4]. Also, loop fission
is not applicable if the query execution is part of a cycle
of true dependencies [5], and is very restricted in the pres-
ence of exception handling code. In many such cases, our
techniques are applicable and beneficial.

6.2 Hibernate and Web services
A lot of real world applications are backed by persistence

frameworks such as Hibernate [7], or by data sources ex-
posed through Web services (eg. Amazon, Twitter etc.).
Programs that use Hibernate rarely contain SQL queries di-
rectly embedded in application code. They invoke the API

methods of Hibernate, which in turn generate the necessary

SQL queries using the O/R mapping information provided
in configuration files or annotations. Web services are typi-
cally accessed using APIs that wrap the HTTP requests and
responses defined by the Web service.

Although we describe our algorithms in the context of
programs that embed SQL queries, the algorithms are more
generic and applicable for a wider class of applications. To
apply our techniques for such applications effectively, (i)
our CFG has to be aware of the data access API in order
to place prefetches appropriately, and (ii) there has to be
runtime support to issue asynchronous prefetches for these
data access methods. For example, querying in Hibernate is
primarily done either by the use of HQL (Hibernate Query
Language), or by the QBC (Query by Criteria) API, apart
from native SQL queries. With some analysis, these API

methods can be incorporated into our CFG before we run
our prefetch insertion algorithm.

Our implementation currently supports prefetching thro-
ugh asynchronous submission for JDBC API, a subset of the
Hibernate API and the Twitter API, used in our experme-
nts. Some databases and Web services provide asynchronous
APIs for data access. Our transformation techniques can be
tailored to use these APIs for prefetching.

7. RELATED WORK
The idea of prefetching has been used in many areas of

computer science. Prefetching has long been supported for
device IO in operating systems, especially when it is sequen-
tial. Databases internally use prefetching extensively to im-
prove performance of query processing. Sequential scans can
be speeded up to a large extent by prefetching as shown by
Smith [18]. Even if the access pattern is not strictly sequen-
tial, it exhibits spatial locality in many cases, and prefetch-
ing is achieved by fetching blocks or pages at a time.

There has been earlier work where the prefetch is not
based on physical layout and spatial locality, but on request
patterns. Fido [15] recognizes patterns of object references
in order to predict future references, but does not apply to
queries. Haas et. al. [6] propose an approach which allowed
a query to prefetch (return) extra attributes that would have
been fetched by a subsequent query. The Scalpel system [2]
detects patterns in request streams of client applications
during a training phase, and generates rules which are used
for prefetching at runtime. In contrast to the above sys-
tems, our approach has no overhead of training since it is
based on static analysis, never performs wasteful prefetches,
and can exploit code motion to prefetch at an earlier point.

More recently, approaches based on static analysis have
been proposed to address problems with similar goals. Man-
jhi et. al. [13] consider prefetching of query results by em-
ploying non-blocking database calls. For every query, they
place a copy of all variable initializations that the query uses
directly or indirectly (through some other variable) at the
beginning of the program. Next, they put a non-blocking-
execute function call for the query after all these variable
initializations. However, as we demonstrate in this paper,
this problem requires a detailed analysis of the program.
Firstly, placing copies of all variable initializations at the
beginning of the program may not only duplicate many com-
putations, but worse, it can lead to incorrect behaviour in
the presence of side effects, global variables, and conditional
assignments. Secondly, they do not consider interprocedu-
ral prefetch, which restricts the benefits of their algorithm.

141

Our work guarantees correctness and places prefetches at
the earliest possible point across method calls.

In our earlier work (Guravannavar et. al. [5] and Cha-
van et. al. [4]), we proposed program transformation meth-
ods to exploit set oriented query execution or asynchronous
submission to improve performance of iterative execution of
parameterized queries. Although batching reduces round-
trip delays and allows set-oriented execution of queries, it
does not overlap client computation with that of the server,
as the client completely blocks after submitting the batch.
Also, batching may not be applicable altogether when there
is no set-oriented interface for the request invoked. As dis-
cussed in Section 6.1, both [5] and [4] depend on loop fission
which is very intrusive for interprocedural code; the tech-
niques proposed here do not depend on loop fission, although
as discussed in Section 6.1 the two approaches can be used
together for maximum benefit.

8. SYSTEMDESIGNANDEXPERIMENTAL

RESULTS
In this section we briefly discuss some system design con-

siderations, and then present an experimental evaluation.

8.1 System Design
The techniques we propose can be used with any language

and data access API. We have implemented these techniques,
with Java as the target language, as part of the DBridge
holistic optimization tool [3]. Our system has two compo-
nents:
(i) A runtime library (Prefetch API) for issuing prefetch
requests and managing the cache. This currently works with
JDBC [9], a subset of Hibernate [7] API, and the Twitter [20]
API. It uses the Executor framework of the java.util.concur-
rent package for thread scheduling and management. Obvi-
ously, using threads with separate connections to the data-
base is not transaction safe, as it can only guarantee read
committed level of isolation. However, higher levels of iso-
lation can be achieved by either (a) using the asynchronous
operation support provided by some databases (eg. MS SQL
Server), or (b) using the Java Transaction API (JTA), if the
underlying database allows multiple connections to work on
a single transaction, or (c) on systems which support snap-
shot isolation, by sharing the same snapshot between con-
nections (not currently suported by any system we know of,
but this feature has been proposed for PostgreSQL). Also,
in our current implementation, the cache is a simple hash
map, with eviction under program control.
(ii) A source-to-source program transformer, which in-
serts prefetch API calls at appropriate points in a program.
The transformer currently works with JDBC calls but can
be easily extended for other data access APIs. Our prefetch
insertion implementation operates on the CFG and the call
graph of the input program, which is provided by the SOOT

optimization framework [19]. SOOT uses an intermediate
representation called Jimple and provides the CFG, the data
dependence information and also a framework for perform-
ing fixed point iteration required for query anticipability
analysis. Our implementation inserts prefetch instructions
in Jimple code, which is then translated back into Java.
Since our techniques cause minimal changes to the input
program (mostly only insertion of prefetch method invoca-
tions), the readability of the transformed code is preserved.

 0

 5

 10

 15

 20

 0 2 4 6 8 10

T
im

e
 (

in
 s

e
c
)

No. of items

Database: SYS1
Threads: 10

Original Program
Program with Prefetch

Figure 12: Experiment 1: Auction System (JDBC)

 1

 10

 100

 1000

 10000

1 10 100 1000

T
im

e
 (

in
 s

e
c
;
lo

g
 s

c
a
le

)

No. of iterations

Database: PostgreSQL

Improvement: 20−30%

3440.6
2398

312.3
239.3

31.3
24.3

3.27
2.6

Without Prefetch
With Prefetch

Figure 13: Experiment 2: Bulletin Board (Hiber-
nate)

8.2 Experimental Results
We evaluate the benefits and applicability of the proposed

techniques using four applications - two publicly available
benchmarks for database applications, one real world com-
mercial ERP application, and another real world application
using a Web service. We have performed the experiments
with two widely used database systems - a commercial sys-
tem we call SYS1, and PostgreSQL. The database servers
were run on 64 bit Intel Core-2 2.4 GHz machines with 4
GB of RAM. The Java applications were run from a remote
machine with a similar processor and memory configuration,
connected to the database servers over a 100Mbps LAN.

8.2.1 Experiment 1: Auction Application

We consider a benchmark JDBC application called RU-
BiS [10] that represents a real world auction system modeled
after ebay.com. The application has a nested loop structure
in which the outer loop iterates over a set of items, and loads
all the review comments about it. The inner loop iterates
over this collection of comments, and for each comment loads
the information about the author of the comment. Finally
the outer loop executes an aggregate query to maintain au-
thor and comment counts. The comments table had close to
600,000 rows, and the users table had 1 million rows. In this
experiment, we only perform intraprocedural prefetching of
the aggregate query. As a result, the prefetch instruction
is placed before the inner loop, thereby achieving overlap of
this loop. We consider the impact of our transformation as
we vary the number of iterations of the outer loop, fixing

142

 0

 50

 100

 150

 200

 250

 300

100 500 1000 5000 10000

T
im

e
 (

in
 s

e
c
)

Number of iterations

Original Program
Intraprocedural prefetch (Intra)
Interprocedural prefetch (Inter)

Enhanced prefetch (Enhanced)

Figure 14: Experiment 3: ERP System (JDBC)

 0

 2

 4

 6

 8

 10

Original 1 2 4 8 16

T
o
ta

l
T

im
e
 (

in
 s

e
c
)

Number of threads

Web service: Twitter

Server time
Original Program

Program with Prefetch

Figure 15: Experiment 4: Twitter (Web Service)

the number of threads at 10. Figure 12 shows the perfor-
mance of this program before and after the transformation
on SYS1. The x-axis denotes the number of items that are
processed (the iterations of the outer loop), and the y-axis
shows the total time taken. We observe that we consistently
achieve about 50% improvement in the total time taken.

8.2.2 Experiment 2: Bulletin Board Application

RUBBoS [10] is a benchmark bulletin board-like system
inspired by slashdot.org. For this experiment we consider
the scenario of listing the top stories of the day, along with
details of the comments made against them, using the Hiber-
nate API for data access. The program loads the top stories,
and iterates on each to load the details. Finally, it loads the
comments on those stories. All these operations happen in
different methods of a class. There were close to 10000 sto-
ries and more than 1.5 million comments in the database.
We have manually inserted the prefetch requests according
to the interprocedural prefetch insertion algorithm, since our
implementation currently transforms only JDBC calls. How-
ever, we have extended our runtime API to handle a subset
of the Hibernate API, to issue asynchronous prefetches. We
consider the impact of prefetching as we vary the number
of iterations, fixing the number of thread at 5. Figure 13
shows the results of this experiment in log scale on Post-
greSQL. The y-axis denotes the end-to-end time taken (in
seconds; log scale) by the program to execute. The actual
values of the time taken are displayed along with the plot.
The reduction in time taken ranges from 20% to 30%.

8.2.3 Experiment 3: ERP Application

We consider a popular commercial opensource Java ERP

application called Adempiere [1],that uses JDBC. We con-
sider the scenario of calculating taxes on orders with line
items. Initially all the line items for an order are loaded
(using a query q1) by invoking a method passing in the or-
derId. Then, for each item, a method is invoked to compute
tax. This method loads the taxable amount and the type
of tax applicable (using query q2), and returns the tax for
that item. Finally, the tax for the order is computed by
aggregating the taxes of all its line items. Here query q2
is present inside a method that is invoked from within a
loop. The lineitems table had 150,000 rows. In this exper-
iment, we analyze the impact of each of the techniques we
present in this paper. First, we run the original program.
Then we incrementally apply our techniques, namely Intra
(intraprocedural prefetching Section 4.1), Inter (interproce-
dural prefetching Section 4.2), and finally Enhanced which
includes code motion and query rewrite (Section 5). (For
this experiment, code motion did not provide any benefits,
so the benefit is purely due to query rewrite.) Query rewrite
is currently done manually.

The results of this experiment on PostgreSQL are shown
in Figure 14. The y-axis denotes the end to end time taken
for the scenario to execute, which includes the application
time and the query execution time. We measure the time
taken for orders with number of line items (and thus the
number of iterations) varying between 100 to 10000. We ob-
serve that the Intra approach provides only moderate gains.
Inter provides substantial gains (between 25-30%) consis-
tently. The reason for the improvement is that prefetches
of q1 and q2 were moved to the calling methods, achieving
more overlap. However, the use of the Enhanced approach
leads to much bigger gains (about 50% improvement over
Inter). Enhanced is able to achieve such gains as it re-
duces roundtrips by merging the two queries. This program
was also a good example of how the Intra and Inter rewrit-
ing brought prefetch requests together, which then allowed
query rewrite to merge the queries.

8.2.4 Experiment 4: Twitter Dashboard

In this experiment, we consider an application that moni-
tors a few keywords (4 in our example), and fetches the latest
tweets about those keywords from Twitter [20], a realtime
information network. The public information in Twitter can
be accessed using an API using JSON over HTTP. The appli-
cation, written in Java, uses the Twitter4j library to connect
to Twitter, and fetch the latest tweets with the necessary
keywords.

We have extended our runtime prefetching library to work
with Twitter requests, and manually inserted the prefetch
instructions in the input program according to our interpro-
cedural algorithm. The results of this experiment are shown
in Figure 15. Since the Twitter requests are now prefetched
asynchronously, they overlap with each other and hence save
a lot of the network round trip delay. The actual time taken
at the Twitter servers are also reported along with the re-
sponse, and have been shown in Figure 15 as “Server time”.
The remaining time includes network latency and local com-
putation time. Observe that the server time is almost the
same for each case, but the total time taken decreases and
reaches the minimum when we use 4 threads. At this point,
we achieve more than 75% improvement in the total time

143

Applicable Algorithm
Query executions Intra Inter Enhancements

100 32 63 16

Table 2: Applicability of prefetching

taken. As we increase the number of threads beyond 4,
the total time taken increases. As our example monitors
4 keywords, there is an overhead to maintaining additional
threads and Twitter connections. Since this experiment was
conducted on the live Twitter API on the Internet, the ac-
tual time taken can vary with network load. However, we
expect the relative improvement of the transformed program
to remain the same. This experiment shows the applicability
of our techniques beyond database query submission.

8.2.5 Applicability of prefetching

In order to evaluate the applicability of our prefetching
techniques, we again consider Adempiere [1] (used in Exper-
iment 8.2.3). We have analyzed a subset of the Adempiere
source code to find out how many query execution state-
ments can be prefetched using our techniques, and to what
extent. (Finding the actual time benefits in these cases due
to prefetching is an area of future work.) The results of the
analysis are presented in Table 2. Out of 100 query exe-
cution statements, 32 were such that only intraprocedural
prefetching was possible. In 63 cases, we were able to move
prefetches across methods. The enhancements was appli-
cable in 16 cases. Prefetching was not possible in 5 cases.
Overall, our techniques are able to issue prefetches for 95%
of the queries. The 32 cases where we were not able to
move prefetches to calling methods were mainly due to con-
ditional execution of queries, which prevents interprocedural
prefetching.

Time Taken for Program Transformation: Although
the time taken for program transformation is usually not a
concern (as it is a one-time activity), we note that, in our
experiments the transformation took very little time (less
than a second) for programs with about 150 lines of code.

9. CONCLUSION AND FUTUREWORK
We propose a program analysis based approach to au-

tomatically detect opportunities for prefetching query re-
sults in database applications. The algorithms presented in
this paper significantly improve performance by prefetching
across procedure calls, while avoiding wasteful prefetches.
We also propose enhancements that transform programs and
queries to increase applicability as well as benefits of prefetch-
ing. Although we present our techniques in the context of
database queries, they are more general in applicability. We
present a detailed experimental study, conducted on real
world and benchmark applications, that show performance
gains of more than 50% in many cases.

As part of future work, firstly, we plan to complete our
implementation to handle all the API methods of Hibernate,
and to provide extensibility features enabling easy addition
of any Web service API. We also plan to implement a more
sophisticated cache manager, supporting standard replace-
ment policies as well as invalidation of cached results. We
also plan to make the decision of which calls to prefetch,
and the program point where it needs to be placed in or-
der to maximize benefit, in a cost based manner. Also, our

prefetching algorithm currently moves the prefetch instruc-
tion to call sites only if it can be pushed to the entry of a
method. However, in many cases, there could be assignment
statements that only the query depends on, which could also
be moved to call sites along with the prefetch. This requires
our code motion algorithm to be extended for the interpro-
cedural case.

Acknowledgements: The work of Karthik Ramachandra
was supported by Microsoft Research India PhD Fellowship
and Yahoo! Key Scientific Challenges Program award.

10. REFERENCES
[1] Adempiere http://www.adempiere.org/.

[2] I. T. Bowman and K. Salem. Semantic prefetching of
correlated query sequences. In ICDE, 2007.

[3] M. Chavan, R. Guravannavar, K. Ramachandra, and
S. Sudarshan. Dbridge: A program rewrite tool for
set-oriented query execution. In ICDE, pages
1284–1287, 2011.

[4] M. Chavan, R. Guravannavar, K. Ramachandra, and
S. Sudarshan. Program transformations for
asynchronous query submission. In ICDE, 2011.

[5] R. Guravannavar and S. Sudarshan. Rewriting
procedures for batched bindings. Proc. VLDB Endow.,
1(1):1107–1123, 2008.

[6] L. M. Haas, D. Kossmann, and I. Ursu. Loading a
cache with query results. In VLDB, 1999.

[7] Hibernate http://www.hibernate.org.

[8] A. Ibrahim and W. R. Cook. Automatic prefetching
by traversal profiling in object persistence
architectures. In Proc. of the ECOOP, 2006.

[9] Java Database Connectivity (JDBC) API
http://java.sun.com/products/jdbc/overview.html.

[10] ObjectWeb Consortium-JMOB (Java middleware
open benchmarking).

[11] K. Kennedy and K. S. McKinley. Loop distribution
with arbitrary control flow. In Procs. ACM/IEEE
conference on Supercomputing, pages 407–416, 1990.

[12] U. Khedker, A. Sanyal, and B. Karkare. Data Flow
Analysis: Theory and Practice. CRC Press, Inc., 1st
edition, 2009.

[13] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry,
and A. Tomasic. Holistic Query Transformations for
Dynamic Web Applications. In ICDE, 2009.

[14] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[15] M. Palmer. Fido: A cache that learns to fetch. In
VLDB, pages 255–264, 1991.

[16] S. Parthasarathy, W. Li, M. Cierniak, and M. J. Zaki.
Compile-time inter-query dependence analysis. In
IEEE Symp. on Parallel and Distr. Processing, 1996.

[17] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex
Query Decorrelation. In ICDE, 1996.

[18] A. J. Smith. Sequentiality and prefetching in database
systems. ACM Trans. Database Syst., 3:223–247, Sept.
1978.

[19] Soot: A Java Optimization Framework
http://www.sable.mcgill.ca/soot.

[20] Twitter http://www.twitter.com.

144

