Query Scheduling in Multi Query Optimization

Amit Gupta*

P.S.P.L. Pune
amitg@pspl.co.in

Abstract

Complezx queries are becoming commonplace, with
the growing use of decision support systems. Deci-
sion support queries often have a lot of common sub-
erpressions within each query, and queries are often
run as a batch. Multi query optimization aims at ex-
ploiting common sub-expressions, to reduce the eval-
uation cost of queries, by computing them once and
then caching them for future use, both within individ-
ual queries and across queries in a batch,

In case cache space is limited, the total size of sub-
expressions that are worth caching may exceed avail-
able cache space. Prior work in multi query optimiza-
tion involves choosing a set of common sub-expressions
that fit in available cache space, and once computed, re-
taining their results across the execution of all queries
in a batch. Such optimization algorithms do not con-
sider the possibility of dynamically changing the cache
contents. This may lead to sub-expressions occupying
cache space even if they are not used by subsequent
queries.

The available cache space can be best utilized by eval-
uating the queries in an appropriate order and changing
the cache contents as queries are executed. We present
several algorithms that consider these factors, in order
to reduce the cost of query evaluation.

1 Introduction

Multi-query optimization is an issue of increasing
importance today. Decision support queries today are
often rather complex, involving many relations or views,
and operating on large volumes of data (particularly in
data warehouses). Such complex queries are often de-
fined as a sequence of SQL queries, involving mostly the
same set of relations. Complex queries also often in-
volve extensive use of views, such views may be referred
to multiple times in the same query. In either of the
above cases, the resultant queries may contain many
sub-expressions that are used multiple times. Rec-
ognizing the presence of common sub-expressions and

*Work done while at I.I.T. Bombay

S. Sudarshan

LLI.T. Bombay
sudarsha@cse.iitb.ernet.in

Sundar Vishwanathan

[.I.T. Bombay
sundar@cse.iitb.ernet.in

reusing sub-expression results can reduce query cost
significantly.

Multi query optimization exploits the fact that re-
sult of common sub-expressions can be cached and reused
when required, so that re-evaluation cost of common
sub-expression is saved. For practical purposes we as-
sume that the cache size is finite. Prior work in multi
query optimization either ignore the cache space con-
straints, or at best, consider the problem of choosing
the best set of shared sub-expression that will fit in the
available cache space [8, 5]. The assumption is that,
once computed, these results will be present in cache
across the evaluation of all the queries in a batch. Such
an approach may waste cache spaces: for instance, re-
sults that are never used again in a batch may remain in
the cache, whereas if the query schedule has been taken
into account, they could have been discarded and other
shared results chosen to replace them.

In this paper we present scheduling algorithms that
efficiently utilize a fixed size cache. Given an execution
plan for each query, our scheduling algorithms decide
(a) the order in which queries should be executed and
(b) which shared sub-expressions should be admitted
and discarded from cache as queries are executed. The
scheduling and cache admission and eviction decisions
are made in a cost based manner.

1.1 Motivating Example

In this section we show how an efficient ordering
of the queries can reduce the cache space required to
store results of all the shared sub-expressions of a query
batch. In other words, by properly ordering the queries,
the cache can store more shared sub-expressions, which
can speed up evaluation of the batch of queries. Let the
set of queries to be evaluated be @Q1,Q2,...Q,, and
let each pair of queries @); and @;4+1 share a common
sub-expression s; in their evaluation plans, as shown in
Figure 1.

Here, s1, 82 . .. 8,1 are the common sub-expressions.
For simplicity let us assume that result size of all s;’s
is equal to S, and let us assume that all common sub-
expressions are worth caching. A multi-query optimizer

Figure 1: @; and ;41 shares s;

would decide to cache all shared sub-expression, and to
get the full benefit, a cache space of (n —1)S would be
required. If available cache space is less than this, sev-
eral shared results would not be chosen for caching, and
would be recomputed, resulting in increased cost. But
in case queries are executed in the order (Q1,Q2...)
as shown in Figure 1, then only two of the shared sub-
expression needs to be cached at any point in the execu-
tion. Thus, a cache size of 2S5 is sufficient for answering
the queries efficiently. In other words if the available
cache space is just 25, proper scheduling can result
in the same execution cost as a much larger cache,
whereas current multi-query optimization techniques
would decide to cache only two sub-expressions, and
give a suboptimal result.

As a more complicated example, consider the case
where a shared sub-expression s; is shared by @1, Q2
and (4 and queries are evaluated in the same order
(Q1,Q2, ..-Qr) and cache size is 2S5. In this case one
can either discard s; after ()2 is executed, to make
space for sz, or discard sy after (02, and retain s; until
after ()4 is executed. This decision will have to be made
in a cost-based fashion.

Multi query optimization taking into account query
scheduling involves several decisions. The first two de-
cisions are part of the job of a any multi query opti-
mizer, but the next two decisions complicate the task.

1. Choosing what plan to use for each query; the
choice for different queries is inter-related since
a choice of a particular plan for one query can
result in a subexpression that reduces the cost of
some plan for another query.

2. Choosing what common sub-expression results are
worth caching, given the cost of writing results to
the cache (particularly relevant if the cache is on
disk).

3. Deciding an efficient order of evaluation of queries.

1Tt is possible to break up even non-shared parts of a query
into smaller parts that are evaluated separately, inter-mingled
with the evaluation of parts of other queries, but we ignore this
possibility since it increases the cost of optimization while not
having any obvious benefit.

4. Choosing which common sub-expressions results
should be admitted to or discarded from the cache,
as each query is executed.

We present our approach to the overall problem in Sec-
tion 2, concentrating on the last two decisions; we call
this aspect of the problem as query scheduling.
1.2 Paper Organization

The rest of the paper is organized as follows. Section
2 describes our basic approach to the problem of query
scheduling. Section 3 lists a few assumptions to sim-
plify the problem of query scheduling. The simplified
problem and its approximation algorithm is discussed
in Section 4. In Section 5 we describe two greedy algo-
rithm for ordering the queries and later in the Section
we combine the basic idea of these algorithms to get an
efficient ordering algorithm. Related work and conclu-
sion is discussed in Section 6.

2 Overall Approach to Optimization
As problem of multiquery optimization with query
scheduling is complex, we break it in two parts.

1. In the first phase, an execution plan for the given
set of queries is computed. The execution plan
is a DAG structure that specifies the way queries
are evaluated, without specifying an order of eval-
uation. For example, the possible execution plans
for computing the expression (A X B X C) are

shown in Figure 2.
AVANEA
A A
A B A C B c

Figure 2: Possible plans of (A X B X C)

A batch of queries can have many execution plans,
and the multiquery optimizer chooses one such
plan based on its cost estimates. The cost esti-
mates can be got, heuristically, assuming infinite
cache space.

2. In the second phase, given the execution plan of
set of queries, the problem is to decide an opti-
mal order in which the queries should be evalu-
ated, and choose the nodes (sub-expressions) in
the execution plan whose results are added to or
discarded from the cache, as queries are executed.

In general, it is possible that a result can be dis-
carded before all its uses, and then recomputed,
and perhaps even cached again, for later uses.

The two phases described above are dependent on
each other, since the optimizer cannot decide an op-
timal execution plan of set of queries unless it knows
which results of sub-expression will be present in cache
when a query is evaluated. In other words, if the op-
timizer knows the content of cache at the time when a
particular query is evaluated, then it can generate an
execution plan taking the cache contents into account.
But the cache contents are not known till the end of the
second phase. On other hand the second phase needs
to know the evaluation plan of all queries.

While it is possible to combine both phases to get
an overall optimal plan, doing so would be rather com-
plex and the optimization cost is likely to be very high.
We therefore keep the phases separate, by ignoring the
cache space limitations during the first phase.

3 Simplifying Assumptions

Even after breaking up the problem into two phases,
query scheduling is still a complex problem. In this
section we list several simplifying assumptions that we
make in order to obtain query scheduling algorithms,
and later we will discuss how to relax these assump-
tions.

The assumptions made are:

1. (As mentioned earlier:) Optimization is broken
up into two phases, and the execution plans of
the queries, generated by the first phase of opti-
mization, are available for query scheduling.

2. The optimizer is given an order in which queries
are to be evaluated. (Later we will see how to
come up with such an order.)

3. The benefit of caching a common sub-expression
is independent of the cache content.

Every common sub-expression has a benefit asso-
ciated with it. The benefit of a sub-expression
is defined as the reduction in the overall evalu-
ation cost if the result of that sub-expression is
cached, taking into account the cost of storing the
result in the cache. (The reduction in cost is be-
cause one or more recomputations are replaced
by reading of the common sub-expression from
the cache.)

In reality, the benefit of an expression depends on
the cache content. For example, if a query uses
an expression) = A X B X C' and nothing is in
cache, then

Benefit(Q, O) = (computation cost of Q - cost
of reading the result of @) from cache)

On the other hand, if (A X B) is already in cache,
then Benefit(Q,A X B) = (cost of computing @

from cached result of (A X B) - cost of reading
the result of C from cache).

If cost of computing @ by evaluating (A X B X
() is more then cost of computing () by reusing
the result of (A X B) then, Benefit(C, 0) is
greater then Benefit(C, AX B).

4. Common sub-expression are cached from their
first use to their last use.

In other words, we do not consider the possibility
of discarding a result and recomputing it later.
(We relax this assumption later.)

4 Solution to the Simplified Problem

In this section we formulate the problem, considering
the assumptions made in Section 3.

Given an ordering of queries, we define an interval e
which represents a shared sub-expression F; the inter-
val is from its first computation to the time when it is
discarded from cache.

Other attributes of e are:

e s, = size of result of subexpression
e benefit, = benefit in caching F

e starting time of e = sequence number of the first
query using E in the given order (Section 3 as-
sumes that query order is given)

e ending time of e = sequence number of the last
query using F in the given order

The simplified query scheduling problem can be for-
mulated as follows:

Given a set of intervals S, where each in-
terval ¢ has a starting point sp; and ending
point ep;, a benefit b; and a size s;, and
given that the size of the cache is C, find
a set P C 9, of intervals such that for ev-
ery point in time ¢ ¥s, < C, where p € P
and p exists at time ¢ and X,cpb, is maxi-
mum. We will call this problem as the in-
terval packing problem.

Theorem 4.1 The decision version of the interval pack-
ing problem, which checks for the existence of a set with
Ypepbp =T, is NP-hard.

Proof: We show NP hardness by reducing subset sum,
which is a standard NP-complete problem, to the in-
terval packing problem.

The subset sum problem is defined as, given a set S,
of objects, where each object in S has a size associated
with it, and given a value T, is there a subset S’ of S,

such that sum of size of all the objects in S’ is equal to
T.

The subset sum problem can be reduced to interval
packing as follows. For each object p in S create an
interval ¢ having

e starting time sp; = 1

e ending time ep; = 2

e size of the interval s; = size of object p

e benefit of the interval b; = size of object p, and
e Cachesize C =T

The decision version of the interval packing prob-
lem tells us if there is a set of intervals P such that
Ybenefit, = T. The answer to the subset problem is
yes if any only if the answer to the interval packing

problem is yes. m|
4.1 Approximation Algorithm for Subset
Sum

We first describe an approximation algorithm for the
subset sum problem from [3], and later extend it to get
an approximation algorithm for the interval packing
problem. As the subset sum is a decision problem, its
approximation algorithm does not makes much sense,
so we use the optimization version of the subset sum
problem, defined as follows.

Given a set S = (a,b,¢,...) and T, find
S' € S such that, ¥s' < T and Xs' is max-
imum, where s’ € S’.

Firstly we define an addition operation on a set P =
(a,b,c,...), where a,b, .. are numbers, as

P+z=(a+z,b+z,c+m,...)

Let S = (s1,82,83,..-,8,) be the given set in the
subset sum problem, and let T be the required sum.
We begin with set Py = (0), at each step we pick
an element from the set S and add it to the set P;, as
shown below:

P = (0)

P = (P() +81)UPO = (0,31)

P, = (P1 +$2)UP1 = (0,81,82,81 +82)
P, = (P_i+s)UP,

Every element of P; which is greater than T is thrown
out of P;. P; represents set of all possible combination
of the first 7 elements of the set S. And each element

of P, represents a possible solution of subset sum prob-
lem. For example P, stores all possible combination of
a and b. So in the set P, 0 represents a null set, a
represents set containing only a, and a + b represents
set containing both a and b. The addition step is per-
formed for all the elements in the set S and P,, is com-
puted as the last set representing all the combination
of all the objects.

Now the largest element in P, gives the maximum
subset sum. (Correspondingly, if T' is present in P,
then the answer to decision version of the subset sum
problem is yes otherwise the answer is no.)

Each time a new element element is added to the P;
in the worst case it doubles its size. So the length of P;
in worst case is 2¢, thus above algorithm is exponential.
However, we can get a polynomial time approximation
algorithm by trimming P; to polynomial space, as de-
scribed below.

We denote the trimmed version of P; as L;. The
trimming procedure is applied each time a new element
in L; is added is as follows. At step i when the i**
element of S is added to L;—1 to get the set L;. All
elements in L; that are greater than T are deleted first.
Then, L; is trimmed by repeatedly deleting an z € L;
such that there is an element y € L; that satisfies

e (1-6/n)z <y <z, wherey € L;, d is a given
error constant, and n is the cardinality of S.

The condition implies that y and z in L; represent
subsets of similar sums, and keeping one is sufficient to
get an approximate solution.

The complexity of the approximation algorithm for
subset sum is O(n?) and the approximation ratio of the
algorithm is 1/(1 — §) (see [3] for details).

4.2 Approximation Algorithm for Inter-
val Packing

As we did for the subset sum problem we first de-
scribe an exponential algorithm for interval packing
problem, and then convert it to a polynomial time ap-
proximation algorithm by trimming its search space.
We define a schedule as a set of intervals that can fit in
the given cache size, i.e. a set of intervals such that at
every point in time the sum of the sizes of the intervals
that overlap the point does not exceed the cache size.

4.2.1 Exhaustive algorithm

First we sort all the intervals in non-decreasing order of
their ending time. At every step of algorithm we have
a set of schedules represented by L;. We begin with
Lo = ((¢)), which represents that only one schedule is
present in Ly and that schedule does not contains any
intervals.

At each step add an interval, in the non-decreasing
order of their ending time (the interval having least
ending time is added first and so on) to all the sched-
ules present in the set L;, as follows
Li+1 = (Lz + ith interval) U L,’

Addition of interval to a schedule may produce some
schedules which do not fit in cache, such schedules are
discarded.

The exhaustive algorithm explores all the possible
schedules and chooses the schedule with maximum ben-
efit ¥b;. The benefit Xb; for a schedule can be com-
puted by adding benefit of all the intervals present in
the schedule. The number of schedules present in L; is
exponential.

4.2.2 Polynomial time Approximation Algorithm

Just as in subset sum problem, the approximation al-
gorithm for interval packing problem trims the set of
schedules so that the number of the schedules present
in the set L; is polynomial. Again, we assume we are
given a constant 9.

For every schedule in the set L;, we store its benefit;
the benefit of a schedule is the sum of the benefits of
all the intervals present in the schedule. Let L; be the
newly created set of schedules created by adding an in-
terval to L;—; and discarding sets that do not satisfy
the cache space limit. The trimming procedure is ap-
plied to L; as follows:

1. Sort the L; in non-decreasing order of the benefit
of the schedules.

2. Divide the schedules present in L; in groups, such
that ratio of the minimum and maximum benefit
of schedules, in a group is less then (1 — §/n),
where n is number of intervals in set S (the set
of all the intervals).

Thus the number of groups present in the set is
nlog(B)/d, where B is the maximum benefit of
any schedule in L;. Derivation of this result is
same as that of the number of elements in the
trimmed set of subset sum problem described in
section 4.1.

3. L; is trimmed such that, in each group number
of schedules retained is polynomial. For this,
firstly consider the graph of space occupied by the
schedule versus time, shown in Figure 3. In this
graph we will only consider the ¢ discrete points
in the time axis, which represent the change in
the cache content when a query completes execu-
tion.

Cache Size

maxSize, (sl, t1;
2 schedule sl ! 1 (s 1)
E . maxSize, (2, t1)
ﬁ schedule s2
g i
' maxSize, (s2, t2)
kS
o
3
g 2 maxSize, (si, t2)
8
c ! !
time t1 t2

Figure 3: Graph of space occupied by schedule versus
time

We define maxzSize;(s,t) for a schedule s at time
t as the maximum cache size occupied by cached
sub-expressions after time ¢ when the queries are
executed according to schedule s. For a group,
at every point in time ¢ when an interval ends,
only the schedule s whose maxSizey(s,t) is least
at some point in time is retained and rest of the
schedules are discarded from ;.

Thus after trimming each group will have O(q)
number of schedules, where ¢ is the number of
discrete points at which an interval can end or
begin, which is twice the total number of queries.

Since we have O(n) number of groups, the total number
of schedules in the set L; after trimming will also be
polynomial. The complexity of this algorithm can be
shown to be O(n?q).

The basic intuition for this trimming procedure is
that we should not discard schedules from L; that can
be combined with the newly added interval to form a
high benefit schedule. And at the same time existing
schedules cannot be combined with the newly added
interval. Let a newly added interval start at the time
t (intervals are added in ascending order of their fin-
ishing time). Suppose the interval can be combined
with a schedule s, that was discarded from L; in the
trimming procedure. Then there will exist a schedule
p, whose group is same as group of s, that will have
maxSize; (p,t) less then maxSize;(s,t). So the newly
added interval can also be combined with p. As s and
p are in same group so they have almost same benefit
thus we are losing benefit of (1 — §/n)benefits (in the
worst case) by discarding s.

Let S be any schedule consisting of a subset of the
first j intervals sorted by finishing times. The following
statement can be proved by induction on j. For any
time ¢, at the end of the jth iteration, there exists

a schedule S’ saved by the algorithm, with benefit at
least (1 — £)7 times the benefit of S, such that, the
mazsize(S',t) is at most maxsize(S,t). The rest of
the steps required to prove that this algorithm is a
constant ratio algorithm are similar to the steps of the
proof for the approximation algorithm for the subset
sum problem.

The approximation ratio of this algorithm is same as
that of approximation algorithm of subset sum, namely
ﬁ We will call this approximation algorithm as A
(et represents adding intervals in ascending order of
ending time).

5 Ordering of Queries

In this section we describe another algorithm for in-
terval packing problem, which is similar to the algo-
rithm described in Section 4.2, but removes the as-
sumption that the order of queries is given. In this
section we continue to use the term interval to refer to
the cached result of a shared subexpression.

The algorithm uses a modified form of the interval
packing algorithm. In algorithm A.; for the interval
packing problem, described in Section 4.2, intervals are
added to the existing set of schedules in ascending order
of their finishing time. Consider a different approach
for the interval packing problem, in which intervals are
added to the existing set of schedules in descending
order of their starting time; we call this algorithm A ;.
Intuitively Ag; is the same as A.; (described in Section
4.2), except that instead of using maxSize;(s,t), Ag
uses maxSizes(s,t) which is defined as the maximum
size occupied by schedule s before time ¢. The rest
of the procedure for grouping and trimming the set of
schedules remains same as in A,;. Both A,; and A
are polynomial time algorithms, and behave in a similar
manner.

5.1 A Heuristic For Query Ordering

This section describes a heuristic ordering algorithm
OA.; for deciding the order in which queries should be
evaluated.

The ordering heuristic is as follows:

1. First choose a pair of queries that has the max-
imum sharing. That is, consider each pair of
queries, compute the total benefit of all common
sub-expressions shared by the pair, and choose
the pair whose common sub-expressions have the
maximum total benefit. Let ();; and Q;> be the
chosen pair.

2. Initialize the sequence Q = @;1 . Q;o; this se-
quence represents the order in which queries should
be executed.

3. At each step choose the query Q; ¢ @, such that
executing @); after all the queries in @ (in the
order specified by @) gives the maximum benefit;
that is, choose the); that maximizes

(Xqeq cost of g) + cost of Q; — cost of Q- Q;
The cost of a sequence is found using algorithm
A.;. Append Q; to the sequence Q: Q = Q-{Q;}.

Algorithm OA.; is similar to A in the following
sense. In A, intervals are added in ascending order of
their finishing time. In OA.; queries are appended to
@. Appending a query @; to Q is just like adding a set
of intervals to the existing set of schedules, one for each
common subexpression between (); and earlier queries
in @; since all the intervals are ended by (); intervals
are added, in effect, in ascending order of their finishing
time. Thus, in OA.; a set of schedule L; is tracked, and
each time a query @); is added to @, a set of intervals
is added to Lj;.

For example, let 1, Q2 and Q4 share the result of
subexpression E. Let @ = @1 Q2 Q3 represent the or-
der decided by the algorithm in previous steps. When
()4 is considered to be added to the existing schedule
which contains F as an interval ending at)o, the in-
terval corresponding to E gets extended from ()2 to
(4. Extending an interval is equivalent to adding an
interval E' from 5 to Q4, such that sizeg: is equal to
size of result of expression F, and benefitg: is equal to
the benefit of caching E from Q3 to Q4.

The time complexity of OAg;, like that of Ay is
O(n?%q), where g is the number of queries.

We define another algorithm OA g, which is just like
OA.;, but it adds the new query at the beginning of
the existing schedule. Thus, algorithm OA; parallels
algorithm A .

Now we combine algorithms QA ;; and QA ; to form
algorithm OA as described below. The algorithm takes
as parameter a value 4.

1. Choose the pair of the queries that, if executed
together, have the maximum benefit. This proce-
dure is similar to the first step of algorithm OA ;.

2. Choose a query ()p, which when executed at the
end or beginning of the existing schedule gives
the largest benefit.

3. Add the chosen query to all schedules present in
L;, where L; is the list of all the schedule. New
schedules (created after adding a query) are in-
serted to the list L;, and L; is then trimmed by
following procedure:

(a) Evaluate the benefit (described in 4.1) of
every schedule. Divide the schedules into

groups such that, ratio of the minimum and
maximum benefit of the schedule in a group
is less than (1 — §/n), n is the number of
shared sub-expression.

(b) In each group a schedules s is retained if it

5.3 Generalized Ordering Algorithm

One of the assumptions that we made in Section
3 was, if the result of the expression e is cached and
later discarded from the cache then it will never be
cached again. This assumption can be removed by

has least value of mazxSize; (s,t) or maxSizes(s, tkeeping many intervals for one shared sub-expression

at some point in time t. And rest of the
schedules are discarded.

4. A new query can only be added at the end of
a schedule s € L; which has the least value of
mazxSizei(s,t), at some time ¢. On other hand,
a new query can only be added at the beginning
of a schedule s present in L; that has least value
of mazSizes(s,t), at some time t.

5. Repeat from Step 2 until all the queries are cho-
sen.

5.2 Analysis of algorithm OA

At each iteration of OA, a query is picked and it is
added at the beginning or at the end of the existing
schedules. So now for a particular order of evaluation
of queries there can be many schedules, and also there
can be many schedules belonging to different evaluation
orders of the queries. Let us assume that at the i*” step
Q; is chosen to be executed next, then the search space
of OA will be as shown in Figure 4.

Q
/ \ after adding Q

Q. Q, Q.Q,

AT

Q,0,0, Q0,0 900 QQQ

2i combinations of ordering

Figure 4: Tree representing the order of the queries

But note that OA is not an exponential algorithm,
since the set of schedules is trimmed each time a query
is added to it. The trimming procedure does not con-
sider order of evaluation of queries (of the schedule)
when trimming L;. The basic reason for not consider-
ing order of queries in trimming procedure is that in
the future queries will only be added to the start and
end of the schedule, so all the schedules (corresponding
to different query orders) can be treated as the same.
The trimming procedure makes sure that the number
of schedules tracked is polynomial.

as a candidate for getting admitted in cache. Inter-
vals belonging to the same sub-expression should have
different start and end points and be non-overlapping.
As our algorithm is a cost based algorithm, it will en-
sure that two intervals belonging to the same shared
sub-expression are not present in schedule in the same
time.

In algorithm OA.;, each time a query @ is added at
the end of schedule, an interval e (which represents the
shared expression E, which is used by @y,) is extended
to the point where @y is added. But now, to add a
query to the schedule, the following steps are performed

1. Let s be the schedule in which @Q, is to be added

and let (Qe1, Qe2, Qe3, - - - s Qen, @) be the queries
that use result of E, as shown in Figure 5.

Let Q.p be the last query in the schedule s that
uses E. Adding @y to s implies adding following
intervals to s

o Interval from Q. to Qx

e Interval from Q.(+1) to Qg

e Interval from Q.(») to Q

2. After adding a query to all the schedules we trim
the list of schedules by the procedure as described
in Section 4.2.

Thus when we add a query to a set of schedules, in the
worst case the number of schedules in the set becomes ¢
times what it was earlier, where ¢ is the number of the
queries. But the trimming procedure again makes sure
that the size of set of schedules is polynomial. Given a
particular order of the queries, it becomes a constant
ratio approximation algorithm. In the similar manner
we can modify algorithm OA so that it can decide to
cache shared results that were discarded from the cache
earlier.

6 Related Work

There had been work on multiple-query optimiza-
tion in past. Early work had concentrated on exhaus-
tive algorithms[11, 4]. The multi-query optimization
problem has been addressed in [2, 4, 12]. These papers
discuss the problem of searching an efficient execution
plan for evaluation of a batch of queries. In this report

T e
1
1
1
1
1
1
1
]

Qe1 Qe Qp1) e
L—1 schedule

Qe(p+1)

New intervals to be added

interval present in the schedule

Figure 5: Adding a query to a schedule

we have considered the problem of multi-query opti-
mization with space constraints. None of the related
work addresses the issue of query scheduling with a
fixed size cache.

The problem of materialized view and index selec-
tion given a fixed size cache is considered in [5, 6],
but here the decision is static, based on a workload of
queries, and does not change as queries are evaluated.
These algorithms find the best set of sub-expressions to
materialize (cache for the execution of all the queries),
for optimizing a workload consisting of both queries
and updates. The multi-query optimization problem
differs from the above since it can assume absence of
updates, and all queries are given as a batch.

The problem of dynamic caching of query results is
considered in [10, 7, 9], where the issue is to dynami-
cally choose what to cache, based on the current access
pattern of the queries. Query optimization with effi-
cient update of cached results is also discussed in [9].
All these address the case where the future queries are
not known, and queries have to be evaluated as they
are received. In contrast, we deal with a case where an
entire batch of queries is available, and we can reorder
the queries as required.

The problem of expression DAG scheduling has been
discussed in [1]. But that paper only consider schedul-
ing of a particular kind of DAG structure with some
assumptions such as fixed result size, which is simpli-
fied case of the general problem of query scheduling.

7 Conclusion

In this paper we have addressed the problem of query
scheduling in multiquery optimization, which has not
been addressed earlier. We made several assumptions

to simplify the problem, and gave approximation algo-
rithms for the case when the order of queries is given.
Later we presented two greedy heuristics for choosing
the execution order of queries, and merged the two
heuristics to form a combined heuristic.

We showed how to relax some of the assumptions.
However, in this paper we continued to assume that the
benefits of a subexpression do not depend on what else
has been cached. Finding approximation algorithms
without making this assumption is an interesting di-
rection for future work. Finding an approximation al-
gorithm, rather than just a heuristic, for the case when
the query order is not given is another direction of fu-
ture work. Another area of future work lies in imple-
menting our algorithms and heuristics and comparing
them with the optimal choice on some sample bench-
marks.

References
[1] Sandip K. Biswas and Sampath Kannan. Minimiz-
ing space usage in evaluation of expression trees.
In Int’l Conf. on Foundations of Software Tech-
nology and Theoretical Computer Science, 1995.

[2] C. M. Chen and N. Roussopolous. The implemen-
tation and performance evaluation of the adms
query optimizer. In Extending Database Technol-
ogy, March 1994.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[4] Ahmet Coser, Ee-Peng Lim, and Jaideep Srivas-
tava. Multiple query optimization with depth-first

[9]

[11]

branch-and-bound and dynamic query optimiza-
tion. In Intl. Conf. on Information and Knowledge
Management, 1993.

H Gupta. Selection of views to materialize in a
data warehouse. In Intl. Conf. on Database The-
ory, 1997.

V. Harinarayan, A. Rajaraman, and J Ullman.
Implementing data cubes efficiently. In SIGMOD
Intl. Conf on Management of Data, 1996.

Arthur M. Keller and Julie Basu. A predicate
based caching scheme for client-server database ar-
chitecture. VLDB Journal, 5(1):35-47, 1996.

Prasan Roy, S. Seshadri, S. Sudarshan, and Sid-
desh Bhobe. Efficient and extensible algorithms
for multi query. In SIGMOD Intl. Conf. Manage-
ment of Data, 2000.

Nicholas Russopoulos and Yannis Kotidis. Dyna-
mat : A dynamic view management system for
warehouse. In SIGMOD Intl. Conf on Manage-
ment of Data, 1999.

Peter Scheuermann, Junho Shim, and Radek Vin-
gralek. WATCHMAN: A data warehouse intel-
ligent cache manager. In Proceedings of VLDB
Conference, pages 51-61, 1996.

Kyuseok Shim, Timos Sellis, and Dana Nau. Im-
provements on a heuristic algorithm for multiple-
query optimization. Data and Knowledge Engi-
neering, 12:197-222, 1994.

Subbu N. Subramaniam and Shivkumar
Venkataraman. Cost based optimization of
decision support queries using transient views.
In SIGMOD Intl. Conf on Management of Data,
1998.

