
Reducing Order Enforcement Cost in Complex Query Plans

Ravindra Guravannavar∗ S Sudarshan
Indian Institute of Technology Bombay
{ravig,sudarsha}@cse.iitb.ac.in

Abstract

Algorithms that exploit sort orders are widely used to
implement joins, grouping, duplicate elimination and other
set operations. Query optimizers traditionally deal with sort
orders by using the notion of interesting orders. The number
of interesting orders is unfortunately factorial in the num-
ber of participating attributes. Optimizer implementations
use heuristics to prune the number of interesting orders, but
the quality of the heuristics is unclear. Increasingly com-
plex decision support queries and increasing use of cover-
ing indices, which provide multiple alternative sort orders
for relations, motivate us to better address the problem of
optimization with interesting orders.

We show that even a simplified version of the problem is
NP-hard and give principled heuristics for choosing inter-
esting orders. We have implemented the proposed tech-
niques in a Volcano-style optimizer, and our performance
study shows significant improvements in estimated cost.
We also executed our plans on a widely used commercial
database system, and on PostgreSQL, and found that actual
execution times for our plans were significantly better than
for plans generated by those systems in several cases.

1. Introduction

Decision support queries, extract-transform-load (ETL)
operations, data cleansing and integration often use com-
plex joins, aggregation, set operations and duplicate elimi-
nation. Sorting based query processing algorithms for these
operations are well known. Sorting based algorithms are
quite attractive when physical sort orders of one or more
base relations fulfill the sort order requirements of opera-
tors either completely or partially. Further, secondary in-
dices that cover a query1 are being increasingly used in
read-mostly environments. Query covering indices make it
very efficient to obtain desired sort orders without accessing
the data pages. These factors make it possible for sort based
plans to significantly outperform hash based counterparts.
∗Work supported by a Bell Laboratories Ph.D. fellowship.
1I.e., contain all attributes of the relation that are used in the query.

The notion of interesting orders [10] has allowed opti-
mizers to consider plans that could be locally sub-optimal,
but produce orders that are beneficial for other operators,
and thus produce a better plan overall. However, the num-
ber of interesting orders for most operators is factorial in
the number of attributes involved. This is not acceptable as
queries in the afore mentioned applications do contain large
number of attributes in joins and set operations.

In this paper we consider the problem of optimization
taking sort orders into consideration. We make the follow-
ing technical contributions:

1. Often order requirements of operators are partially sat-
isfied by inputs. For instance, consider a merge-join
with join predicate (r.c1 = s.c1 and r.c2 = s.c2). A
clustering index on r.c1 (or on r.c2 or s.c1 or s.c2) is
helpful in getting the desired order efficiently; a sec-
ondary index that covers the query has the same effect.

We highlight (in Section 3) the need for exploiting par-
tial sort orders and show how a minor modification to
the standard replacement selection algorithm can avoid
run generation I/O completely when input is known to
have a partial sort order. Further, we extend a cost-
based optimizer to take into account partial sort orders.

2. We consider operators with flexible order requirements
and address the problem of choosing good interesting
orders so that complete or partial sort orders already
available from inputs can be exploited.

• In Sections 4 we show that a special case of find-
ing optimal sort orders is NP-hard and give a
2-approximation algorithm to choose interesting
sort orders for a join tree.

• In Section 5 we address a more general case
of the problem. In many cases, the knowledge
of indices and available physical operators in
the system allows us to narrow down the search
space to a small set of orders. We formalize this
idea (in Section 5.1) through the notion of fa-
vorable orders, and propose a heuristic to effi-
ciently enumerate a small set of promising sort

orders. Unlike heuristics used in optimizer im-
plementations, our approach takes into account
issues such as (i) added choices of sort orders for
base relations due to the use of query covering
indices (ii) sort orders that partially match an or-
der requirement (iii) requirement of same sort or-
der from multiple inputs (e.g., merge based join,
union) and (iv) common attributes between mul-
tiple joins, grouping and set operations.
In Section 5.2 we also show how to integrate our
extensions into a cost-based optimizer.

3. We present experimental results (in Section 6) evaluat-
ing the benefits of the proposed techniques. We com-
pare the plans generated by our optimizer with those
of three widely used database systems and show sig-
nificant benefits due to each of our optimizations.

2. Related Work

Both System R [10] and Volcano [4] optimizers consider
plans that could be locally sub-optimal but provide a sort or-
der of interest to other operators and thus yield a better plan
overall. However, the papers assume operators have one or
few exact sort orders of interest. This is not true of oper-
ators like merge-join, merge-union, grouping and duplicate
elimination, which have a factorial number of interesting
orders, in the context of workloads with complex queries
having multiple join/grouping attributes. Heuristics such as
the PostgreSQL heuristic (described in Section 6), are com-
monly used by optimizers. Details of the heuristics are pub-
licly available only for PostgreSQL. Further, System R and
Volcano optimizers consider only those sort orders as use-
ful that completely meet an order requirement. Plans that
partially satisfy a sort order requirement are not handled. In
this paper we address these two issues.

The seminal work by Simmen et.al. [11] describes tech-
niques to infer orders from functional dependencies and
predicates applied and thereby avoids redundant sort en-
forcers in the plan. The paper briefly mentions the problem
of non-exact sort order requirements and mentions an ap-
proach of propagating an order specification that allows any
permutation on the attributes involved. Though such an ap-
proach is possible for single input operators like group-by, it
cannot be used for operators such as merge-join and merge-
union for which the order guaranteed by both inputs must
match. Moreover, the paper does not make it clear how the
flexible order requirements are combined at other joins and
group-by operators. Simmen et.al. [11] mention that the
approach of carrying a flexible order specification also in-
creases the coding complexity significantly. Our techniques
work uniformly across all types of sort-based operators and
can be easily incorporated into an existing optimizer. Work

2M X 150 bytes

rating
Table scan Table scan

(100)

sort−4
(280K)

2M X 120 bytes

(100)

(50K) (40K) (40)C.Idx Scan

sort−1: (y) −−> (y, m, c, co) sort−2: (m) −−> (y, m, c, co)
sort−3: () −−> (y, m) (m, y, co, c,...)sort−4: (y, m, c, co) −−>

catalog1 catalog2

Plan Cost=530,345

2M X 100 bytes 2K X 40 bytes

sort−3
(5)

2M X 80 bytes

sort−2
(160K)

sort−1
(100)

Figure 1. A naı̈ve plan

(100)

catalog1
Table scan (50K) C.Idx Scan(40K) Cov. Idx Scan (10)

rating

sort−1: (y) −−> (m, y, co, c)
sort−3: (m) −−> (m, y)

sort−2: (m) −−> (m, y, co, c)
(m, y, co, c, ...)sort−4: (m, y, co, c) −−>

catalog2

Plan Cost=290,410

sort−1 sort−2 sort−3
(0)(100)(200K)

(100)

sort−4
(100)

Figure 2. Optimal merge-join plan

on inferring orders and groupings [11] [12] [8] [9] is inde-
pendent and complementary to our work.

3. Exploiting Partial Sort Orders

Often, sort order requirements of operators are partially
satisfied by indices or other operators in the input subex-
pressions. A prior knowledge of partial sort orders available
from inputs allows us to efficiently produce the required
(complete) sort order more efficiently. When operators have
flexible order requirements, it is thus important to choose a
sort order that makes maximum use of partial sort orders al-
ready available. We motivate the problem with an example.
Consider the query shown in Example 1. Such queries fre-
quently arise in consolidating data from multiple sources.
The join predicate between the two catalog tables involves
four attributes and two of these attributes are also involved
in another join with the rating table. Further, the order-by
clause asks for sorting on a large number of columns includ-
ing the columns involved in the join predicate.

Example 1 A query with complex join condition

SELECT c1.make, c1.year, c1.city, c1.color, c1.sellreason,
c2.breakdowns, r.rating

FROM catalog1 c1, catalog2 c2, rating r
WHERE c1.city=c2.city AND c1.make=c2.make AND c1.year=c2.year

AND c1.color=c2.color AND c1.make=r.make and c1.year=r.year
ORDER BY c1.make, c1.year, c1.color, c1.city,

c1.sellreason, c2.breakdowns, r.rating;

The two catalog tables contain 2 million records each
and have average tuple sizes of 100 and 80. We assume a
disk block size of 4K bytes and 10000 blocks (40 MB) of
main memory for sorting. The table catalog1 is clustered
on year and the table catalog2 is clustered on make. The
rating table has a secondary index on the make column with
the year and rating columns included in the leaf pages (a
covering index). Figures 1 and 2 show two different plans
for the example query. Numbers in parentheses indicate es-
timated cost of the operators in number of I/Os (CPU cost
is appropriately translated into I/O cost units). Edges are
marked with the number of tuples expected to flow on that
edge and their average size. For brevity, the input and output
orders for the sort enforcers are shown using the starting let-
ters of the column names. Though both plans use the same
join order and employ sort-merge joins, the second plan is
expected to perform significantly better than the first.

3.1. Changes to External Sort

External sorting algorithms have been studied exten-
sively but in isolation. The standard replacement selec-
tion [6] for run formation well adapts with the extent to
which input is presorted. In the extreme case, when the in-
put is fully sorted, it generates a single run on the disk and
avoids merging altogether. Larson [7] revisits run formation
in the context of query processing and extends the stan-
dard replacement selection to handle variable length keys
and to improve locality of reference (reduced cache misses).
Estivill-Castro and Wood [2] provide a survey of adaptive
sorting algorithms. The technique we propose in this sec-
tion to exploit partial sort orders is a specific optimization
in the context of multi-key external sorting. We observe
that, by exploiting prior knowledge of partial sort order of
input, it is possible to eliminate disk I/O altogether and have
a completely pipelined execution of the sort operator.
We use the following notations: We use o, o1, o2 etc. to
refer to sort orders. Each sort order o is a sequence of at-
tributes/columns (a1, a2, . . .an). We ignore the sort direc-
tion (ascending/descending) as our techniques are applica-
ble independent of the sort direction.

• ε : Empty (no) sort order

• attrs(o) : The set of attributes in sort order o

• |o| : Number of attributes in the sort order o

• o1 ≤ o2 : Order o2 subsumes order o1 (o1 is a prefix of o2)

• o1 < o2 : Order o1 is a strict prefix of o2

Consider a case where the sort order to produce is
(col1, col2) and the input already has the order (col1). Stan-
dard replacement-selection writes a single large run to the
disk and reads it back again; this breaks the pipeline and
incurs substantial I/O for large inputs. It is not difficult to

see how the standard replacement-selection can be modi-
fied to exploit the partial sort orders. Let o = (a1, a2, . . .an)
be the desired sort order and o′ = (a1, a2, . . .ak), k < n be
the partial sort order known to hold on the input. At any
point during sorting we need to retain only those tuples that
have the same value for attributes a1, a2, . . .ak. When a tu-
ple with a new value for these set of attributes is read, all the
tuples in the heap (or on disk if there are large number of tu-
ples matching a given value of a1, a2, . . .ak) can be sent to
the next operator in sorted order. Thus in most cases, partial
sort orders allow a completely pipelined execution of the
sort. Exploiting partial sort orders in this way has several
benefits:

1. Let o = (a1, a2, . . .an) be the desired sort order and
o′ = (a1, a2, . . .ak), k < n be the partial sort or-
der known to already hold on the input. We call the
set of tuples that have the same value for attributes
(a1, a2, . . .ak) as a partial sort segment. If each par-
tial sort segment fits in memory (which is quite often
the case in practice), the entire sort operation can be
completed without any disk I/O.

2. Exploiting partial sort orders allows us to output tuples
early (as soon as a new segment starts). In a pipelined
execution this can have large benefits. Moreover, pro-
ducing tuples early has immense benefits for Top-K
queries and situations where the user retrieves only
some result tuples.

3. Sorting each partial sort segment independently, re-
duces the number of comparisons significantly. Note
that we empty the heap every time a new segment starts
and hence insertions into heap will be faster. In gen-
eral, independently sorting k segments each of size n/k
elements, has the complexity O(k ∗ n/k log(n/k)) =
O(n log(n/k)) as against O(n log(n)) for sorting all n
elements. Further, while sorting each partial sort seg-
ment comparisons need to be done on fewer attributes,
(ak+1, . . .an) in the above case.

Our experiments (Section 6) confirm that the benefits of
exploiting partial sort orders can be substantial and yet none
of the systems we evaluated, though widely used, exploited
partial sort orders.

3.2. Optimizer Extensions for Partial Sort Orders

In this section we assume order requirements of opera-
tors are concrete and only focus on incorporating partial sort
orders. We deal with flexible order requirements in subse-
quent sections. We use the following notations:

• o1 ∧ o2 : Longest common prefix between o1 and o2

• o1 + o2 : Order obtained by concatenating o1 and o2

• o1 − o2 : Order o′ such that o2 + o′ = o1 (defined only when
o2 ≤ o1)

• coe(e, o1, o2) : The cost of enforcing order o2 on the result of
expression e which already has order o1

• N(e) : Expected size, in number of tuples, of the result of
expression e

• B(e) : Expected size, in number of blocks, of the result of
expression e

• D(e, s) : Number of distinct values for attribute(s) s of ex-
pression e (= N(Πs(e)))

• cpu cost(e, o) : CPU cost of sorting result of e to get order o

• M : Number of memory blocks available for sorting

The Volcano optimizer framework [4] assumes an algo-
rithm (physical operator) either guarantees a required sort
order fully or it does not. Further, a physical property en-
forcer (such as sort) only knows the property to be enforced
and has no information about the properties that hold on its
input. The optimizer’s cost estimate for the enforcer thus
depends only on the required output property (sort order).
In order to remedy these deficiencies we extended the opti-
mizer in the following way: Consider an optimization goal
(e, o), where e is the expression and o the required output
sort order. If the physical operator being considered for
the logical operator at the root of e guarantees a sort or-
der o′ < o, then the optimizer adds a partial sort enforcer
enf to enforce o from o′. We use the following cost model
to account for the benefits of partial sorting.

coe(e, ε, o) =
{

cpu-cost(e, o) if B(e) ≤ M
B(e)(2dlogM−1(B(e)/M)e+ 1) otherwise

If e is known to have the order o1, we estimate the cost of
obtaining an order o2 as follows:
coe(e, o1, o2) = D(e, attrs(os)) ∗ coe(e′, ε, or), where os =

o2 ∧ o1, or = o2 − os and e′ = σp(e), where p equates
attributes in os to an arbitrary constant. Intuitively, we con-
sider the cost of sorting a single partial sort segment inde-
pendently and multiply it by the number of segments. Note
that we assume uniform distribution of values for attrs(os).
Therefore, we estimate N(e′) = N(e)/D(e, attrs(os)) and
B(e′) = B(e)/D(e, attrs(os)). When the actual distribution
of values is available, a more accurate cost model that does
not rely on the uniform distribution assumption can be used.

4. Choosing Sort Orders for a Join Tree

Consider a join expression e = e1 Z e2, where e1, e2 are
input subexpressions and the join predicate is of the form:
(e1.a1 = e2.a1 and e1.a2 = e2.a2 . . . and e1.an = e2.an). Note
that, w.l.g., we use the same name for attributes being com-
pared from either side and we call the set {a1, a2, . . . , an} as
the join attribute set. In this case, the merge join algorithm

R3 R6R5

<c,d>
{c,d}

1 2

Total benefit of the optiaml solution=8

<c,d,a,b,e>
{a,b,c,d,e}

<c,k,a,b>
{a,b,c,k}

<c,e,i,j>
{c,e,i,j}

<c,k,l,m>
{c,k,l,m} {c,d,h,n}

<c,d,h,n>
{f,g,p,q}

<f,g,p,q>

R1 R2 R7 R8R4

2 0

21

Figure 3. Optimal sort orders (a special case)

has potentially n! interesting sort orders on inputs e1 and e2
2.

The specific sort order chosen for the merge-join can have
significant influence on the plan cost due to the following
reasons: (i) Clustering and covering indices, indexed ma-
terialized views and other operators in the subexpressions
e1, e2 can make one sort order much cheaper to produce than
another. (ii) The merge-join produces the same order on its
output as the one selected for its inputs. Hence, a sort order
that helps another operator above the merge-join can help
eliminate a sort or just have a partial sort. In this section
we show that a special case of the the problem of choosing
optimal sort orders for a tree of merge-joins is NP-Hard and
provide a 2-approximate algorithm for the problem. In the
next section, we describe our heuristics for a more general
setting of the problem in which we make use of the pro-
posed 2-approximate algorithm.

4.1. Finding Optimal Sort Orders is NP-Hard

Consider a join expression e = R1 Z R2 Z R3 . . .Rn

and a specific join order tree for the expression. Consider
a special case where all base relations and intermediate re-
sults are of the same size and no indices built on the base
relations. Now, the problem of choosing optimal sort or-
ders for each join requires us to choose permutations of join
attributes such that we maximize the length of longest com-
mon prefixes of permutations chosen for adjacent nodes.
Figure 3, shows an example and an optimal solution un-
der the model where the benefit for an edge is the length of
the longest common prefix between the permutations cho-
sen for adjacent nodes and we maximize the total benefit.
The join attribute set for each join node is shown in curly
braces besides the node. Permutations chosen in the opti-
mal solution are indicated with angle brackets and the num-
ber on each edge shows the benefit for that edge. Below we
state the problem formally.

2We assume merge-join requires sorting on all attributes involved in the
join predicate. We do not consider orders on subsets of join attributes since
the additional cost incurred at merge-join matches the benefit of sorting a
smaller subset of attributes.

Problem 1 Let T be a binary tree of order n, with vertex
set V(T) and edge set E(T). Each node vi (i = 1, . . .n)
is associated with an attribute set si. Find a sequence of
permutations p1, p2 . . . pn, where pi is a permutation of set
si, such that the benefit function F is maximum.

F =
∑

∀viv j∈E(T)

|pi ∧ p j|

Theorem 4.1 Problem 1 is NP-hard. �

The known NP-Hard problem SUM-CUT [1] is re-
ducible to Problem 1. A formal proof can be found in the
technical report [5].

4.2. A 2-Approximate Algorithm

An efficient dynamic programming based algorithm to
find the optimal solution (under the benefit model presented
in the previous section) for Problem 1 exists when the tree is
a path. Note that left-deep and right-deep join plans result in
paths. We present the solution for paths in brief and make
use of the same in the 2-approximation for binary trees. The
detailed algorithm can be found in [5].

Consider a path v1, v2, . . . vn, where each vertex vi has
an associated attribute set si. The optimal solution for any
segment (i, j) of the path, OPT(i, j) =max{ OPT(i, k)+OPT(k+
1, j) + c(i, j) } over all i ≤ k < j, where c(i, j) is the number of
common attributes for the segment (i, j).

For binary trees we propose an approximation with ben-
efit at least half that of an optimal solution. We split the tree
into two sets of paths, Po and Pe. Po has the paths formed
by edges at odd levels and Pe has those formed by edges
at even levels, Figure 4 shows an example. We obtain an
optimal solution for each of the two sets of paths. Let the
the optimal solutions for the two sets of paths be S o and
S e and the corresponding benefits be ben(S o) and ben(S e).
Let the set of edges included in Po and Pe be denoted by
Eo and Ee respectively. Consider an optimal solution S T

for the whole tree. In the optimal solution, let the sum of
benefits of all edges in Eo be odd-ben(S T) and that of edges
in Ee be even-ben(S T). Note that ben(S o) ≥ odd-ben(S T)
and ben(S e) ≥ even-ben(S T). Since the total benefit of the
optimal solution ben(S T) = odd-ben(S T) + even-ben(S T),
we have ben(S o) + ben(S e) ≥ ben(S T). Hence at least one
of ben(S o) or ben(S e) is ≥ 1/2 ben(S T). There may be ver-
tices not included in the chosen solution, e.g., the even level
split in Figure 4 does not include the root and leaf nodes.
For these left over vertices arbitrary permutations can be
chosen.

5. Optimization Exploiting Favorable Orders

The benefit model we presented in the previous section
and the approximation algorithm do not take into account

Paths of odd levels Paths of even levels

Figure 4. A 2-approximation for binary trees

indices and size of relations or intermediate results. More-
over, we assumed that the join order tree is fixed. In this sec-
tion we present a two phase approach for the more general
problem. In phase-1, which occurs during plan generation,
we exploit the information of available indices and prop-
erties of physical operators to efficiently compute a small
set of promising sort orders to try. We formalize this idea
through the notion of favorable orders. Phase-2, is a plan
refinement step and occurs after the optimizer makes its
choice of the best plan. In phase-2, the sort orders cho-
sen by the optimizer are refined further to reap extra benefit
from the attributes common to multiple joins. Phase-2 uses
the 2-approximate algorithm of Section 4.2

5.1. Favorable Orders

Given an expression e, we expect some sort orders (on
the result of e) to be producible at much lesser cost than
other sort orders. Available indices, indexed materialized
views, specific rewriting of the expression and choice of
physical operators determine what sort orders are easy to
produce. To account for such orders, we introduce the no-
tion of favorable orders. We use the following notations:

• cbp(e, o) : Cost of the best plan for expression e with o being
the required output order

• oR : The clustering order of relation R

• idx(R) : Set of all indices over R

• o(I) : Order (key) of the index I

• 〈s〉 : An arbitrary order (permutation) on attribute set s

• o ∧ s : Longest prefix of o such that each attribute in the
prefix belongs to the attribute set s

• schema(e) : The set of attributes in the output of e

We first define the benefit of a sort order o w.r.t. an ex-
pression e as follows:

benefit(o, e) = cbp(e, ε) + coe(e, ε, o) − cbp(e, o)

Intuitively, a positive benefit implies the order can be ob-
tained with lesser cost than a full sort of unordered result.
For instance, the clustering order of a relation r will have
a positive benefit for the expression σp(r). Similarly, query
covering secondary indices and indexed materialized views
can yield orders with positive benefit. We call the set of all
orders, on schema(e), having a positive benefit w.r.t. e as
the favorable order set of e and denoted it as ford(e).

ford(e)= { o: benefit(o, e)> 0 }

5.1.1 Minimal Favorable Orders

The number of favorable orders for an expression can be
very large. For instance, every order having the clustering
order as its prefix is a favorable order. A minimal favorable
order set of e, denoted by ford-min(e), is the minimum size
subset of ford(e) such that, for each order o ∈ ford(e), at
least one of the following is true:

1. o belongs to ford-min(e)
2. ∃ o′ ∈ ford-min(e) such that o′ ≤ o and cbp(e, o′) +

coe(e, o′, o) = cbp(e, o) Intuitively, if the cost of ob-
taining order o equals the cost of obtaining a partial
sort order o′ followed by an explicit sort to get o, we
include only o′ in the ford-min

3. ∃ o′′ ∈ ford-min(e) such that o ≤ o′′ and cbp(e, o′′) =
cbp(e, o) Intuitively, if an order o′′ subsumes order o
and has the same cost, we include only o′′ in ford-min

Conditions 2 and 3 above, ensure that when a relation
has an index on o, orders that are prefixes of o and orders
that have o as their prefix are not included unnecessarily.
We define favorable orders of an expression w.r.t. a set of
attributes s as: ford(e, s)= {o ∧ s: o ∈ ford(e)} Intuitively,
ford(e, s) is the set of orders on s or a subset of s that
can be obtained efficiently. Similarly, the ford-min of
an expression w.r.t. a set of attributes s is defined as:
ford-min(e, s)= {o ∧ s : o ∈ ford-min(e)}

5.1.2 Heuristics for Favorable Orders

Note that the definition of favorable orders uses the cost
of the best plan for the expression. However, we need to
compute the favorable orders of an expression before the
expression is optimized and without requiring to expand the
logical or the physical plan space. Further, the size of the
exact ford-min of an expression can be prohibitively large
in the worst case. In this section, we describe a method of
computing approximate ford-min, denoted as afm, for SPJG
expressions. We compute the afm of an expression bottom-
up. For any expression e, afm(e) is computable after the afm
is computed for all of e’s inputs.

1. e = R, where R is a base relation or materialized view.
We include the clustering order of R and all secondary
index orders such that the index covers the query.
afm(R) = {o : o = oR or o = o(I), I ∈ idx(R) and I
covers the query}

2. e = σp(e1), where e1 is an arbitrary expression.
afm(e) = {o : o ∈ afm(e1) }

3. e = ΠL(e1), where e1 is any expression. We include
longest prefixes of input favorable orders such that the
prefix has only the projected attributes.
afm(e) = {o : ∃o′ ∈ afm(e1) and o = o′ ∧ L}

4. e = e1 Z e2 with join attribute set S = {a1, a2, . . .an}.
Noting that nested loops joins propagate the sort order
of one of the inputs (outer) and merge join propagates
the sort order chosen for join attributes, we compute
the afm as follows. First, we include all sort orders in
the input afms. Next, we consider the longest prefix of
each input favorable order having attributes only from
the join attribute set and extend it to include an arbi-
trary permutation of the remaining join attributes.
afm(e1 Z e2) = T

⋃

{o : o′ ∈ T
⋃

{ε} and o =
o′ ∧ S + 〈S−attrs(o′ ∧ S)〉}, where T =afm(e1)

⋃

afm(e2)

Note that, for the join attributes not involved in an
input favorable order prefix (i.e., S−attrs(o′ ∧ S)),
we take an arbitrary permutation. An exact ford-min
would require us to include all permutations of such
attributes. In the post-optimization phase, we refine
the choice made here using the benefit model and al-
gorithm of Section 4.2.

5. e =L GF(e1)
afm(e) = {o : o′ ∈ afm(e1)

⋃

{ε} and o = o′ ∧ L +
〈L−attrs(o′ ∧ L)〉}
Intuitively, for each input favorable order we identify
the longest prefix with attributes from the projected
group-by columns and extend the prefix with an arbi-
trary permutation of the remaining attributes.

Computing afms requires a single pass of the query tree.
At each node of the query tree the only significant operation
performed is computation of longest common prefix (o∧ s).
Although in the worst case the number of such operations is
exponential in the number of joins (see [5] for details), in
practice we have found it to be quite small even for complex
queries (Section 6.3).

5.2. Overall Optimizer Extensions

We make use of the approximate favorable orders during
plan generation (phase-1) to choose a small set of promis-
ing interesting orders. We describe our approach taking
merge join as an example but the approach is applicable
to other sort based operators. In phase-2, which is a post-
optimization phase, we further refine the chosen sort orders.

5.2.1 Plan Generation (Phase-1)

Consider an optimization goal of expression e = el Z er

and required output sort order o. When we consider merge-
join as a candidate algorithm, we need to generate sub-goals
for el and er with the required output sort order being some
permutation of the join attributes.

Let S be the set of attributes involved in the join predi-
cate. We consider only conjunctive and equality predicates.
We compute the set I(e, o) of interesting orders as follows:

1. Collect the favorable orders of inputs plus the required
output order
T (e, o) =afm(el, S)

⋃

afm(er, S)
⋃

o ∧ S , where
afm(e, S) = {o′ ∧ S : o′ ∈ afm(e)}

2. Remove redundant orders
If o1, o2 ∈ T (e, o) and o1 ≤ o2, remove o1 fromT (e, o)

3. Compute the set I(e, o) by extending each order in
T (e, o) to the length of |S |; the order of extra attributes
can be arbitrarily chosen
I(e, o) = {o : o′ ∈ T (e, o) and o = o′ + 〈S −attrs(o′)〉}

We then generate optimization sub-goals for el and er

with each order o′ ∈ I(e, o) as the required output order
and retain the cheapest combination.
A Note on Optimality: If the set I(e, o) is computed using
the exact ford-mins instead of afms, we claim that it must
contain an optimal sort order (a sort order that produces the
optimal merge join plan in terms of overall plan cost). The
detailed proof of this claim can be found in [5].
An Example: Consider Example 1 of Section 3. For
brevity, we refer to the two catalog tables as ct1 and ct2,
the rating table as rt and the columns with their starting let-
ters. The afms computed as described in Section 5.1.2 are
as follows: afm(ct1) = {(y)}, afm(ct2) = {(m)}, afm(rt) =
{(m)}, afm(ct1 Z ct2) = {(y, co, c,m), (m, co, c, y)},
afm((ct1 Z ct2) Z rt) = {(y,m), (m, y)} For
(ct1 Z ct2) Z rt we consider two interesting sort orders
{(y,m), (m, y)} and for ct1 Z ct2 we consider the four or-
ders {(y, co, c,m), (m, co, c, y), (y,m, co, c), (m, y, co, c)}. As
a result the optimizer arrives at plan shown in Figure 2.

5.2.2 Plan Refinement (Phase-2)

During the plan refinement phase, for each merge-join node
in the plan tree, we identify the set of free attributes, the
attributes which were not part of any of the input favorable
orders. Note that for these attributes we had chosen an arbi-
trary permutation while computing the afm (Section 5.1.2).
We then make use of the 2-approximate algorithm for trees
(Section 4.2) and rework the permutations chosen for the
free attributes.

Formally, let pi be the permutation chosen for the join
node vi. Let qi be the order such that qi ∈ afm(vi.left-input)
∪ afm(vi.right-input) and |pi ∧ qi| is the maximum. Intu-
itively, qi is the input favorable order sharing the longest
common prefix with pi. Let fi =attrs(pi − (pi∧qi)); fi is the
set of free attributes for vi.

We now construct a binary tree where each node ni cor-
responding to join-node vi is associated with the attribute
set fi. The orders for the nodes are chosen using the 2-
approximate algorithm; the chosen order for free attributes
is then appended to the order chosen during plan generation
(i.e., pi ∧ qi) to get a complete order.

(a,b,c,h)

R1 R2 R3 R4

(a,(a,d,h) e,h)
(a,h,d)

(a,h,b,c)

(a,h,e)

Figure 5. Post-Optimization Phase

The reworking of the orders will be useful only if the
adjacent nodes share the same prefix, i.e., pi ∧ qi was the
same for adjacent nodes. This condition however certainly
holds when the inputs for joins have no favorable orders.

Figure 5 illustrates the post-optimization phase. Assume
all relations involved (R1 . . .R4) are clustered on attribute a
and no other favorable orders exist. i.e., afm(Ri) = {(a)}, for
i = 1 to 4. The orders chosen by the plan generation phase
are shown besides the join nodes with free attributes being
in italics. The reworked orders after the post-optimization
phase are shown underlined.

6. Experimental Results

We performed experiments to evaluate the benefits our
techniques. For comparison, we use PostgreSQL (v. 8.1.3)
and two widely used commercial database systems (we call
them SYS1 and SYS2). All tests were run on an Intel P4
(HT) PC with 512 MB of RAM. We used TPC-H 1GB
dataset and additional tables as specified in the individual
test cases. For each table, a clustering index was built on the
primary key. Additional secondary indices built are speci-
fied in the test cases. All relevant statistics were built and
the optimization level for one of the systems, which sup-
ports multiple levels of optimization, was set to the highest.

6.1. Modified Replacement Selection

The first set of experiments evaluate the benefits of mod-
ified replacement selection (MRS) as compared to the stan-
dard replacement selection (SRS) when the input is known
to be partially sorted.

External sort in PostgreSQL employs the standard re-
placement selection (SRS) algorithm suitably adapted for
variable length records. We modified this implementation
to exploit partial sort orders available on the input.
Experiment A1: The experiment consists of an ORDER
BY of the TPC-H lineitem table on two columns (l suppkey,
l partkey).

Query 1 ORDER-BY on lineitem
SELECT l suppkey, l partkey FROM lineitem
ORDER BY l suppkey, l partkey;

A secondary index on l suppkey was available that cov-
ered the query (included the l partkey column)3. On all

3On systems not supporting indexes with included columns, we used a
table with only the desired two columns, clustered on l suppkey

 0

 10

 20

 30

 40

 50

SYS2SYS1Postgres

Ti
m

e
(in

 s
ec

)

Default Sort
Exploiting Partial Sort

Figure 6. Exp A1

600

500

400

300

200

100

init
10M9M8M7M6M5M4M3M2M1M1

T
im

e
(in

 s
ec

)

Number of tuples produced

#distinct(c1)=10,000

SRS
MRS

Figure 7. Output Rate

three systems, the order by on (l suppkey, l partkey) took al-
most the same time as an order by on (l partkey, l suppkey)
showing that the sort operator of these systems did not ex-
ploit partial sort orders effectively. We compared the run-
ning times with our implementation that exploited partial
sort order (l suppkey) and the results are shown in Figure 6.

On SYS1 and SYS2 we simulated the partial sorting us-
ing a correlated rank query (as we did not have access to
their source code). The subquery sorted the index entries
matching a given l suppkey on l partkey and the subquery
was invoked with all suppkey values so as to obtain the de-
sired sort order of (l suppkey, l partkey).

By avoiding run generation I/O and making reduced
comparisons, MRS performs 3-4 times better than SRS.
Experiment A2: The second experiment shows how MRS
is superior in terms of its ability to produce records early
and uniformly. Table R3 having 3 columns (c1, c2, c3) was
populated with 10 million records and was clustered on
(c1). The query asked an order by on (c1, c2). Figure 7
shows the plot of number of tuples produced vs. time with
cardinality of c1 = 10, 000.

MRS starts producing the tuples without any delay after
the operator initialization where as SRS produces its first
output tuple only after seeing all input tuples. By producing
tuples early, MRS speeds up the pipeline significantly and
also helps Top-K queries.
Experiment A3: The third experiment shows the effect of
partial sort segment size on sorting. 8 tables R0 . . .R7, with
identical schema of 3 columns (c1, c2, c3) were each popu-
lated with 10 million records and average record size of 200
bytes. Each table was clustered on (c1). Table Ri had 10i tu-
ples for each value of c1, resulting in a partial sort segment
size of 200 × 10i bytes. Thus R0 had c1 as unique and sort
segment size of 200 bytes and R7 had the same value of c1
for all 10 million records leading to a sort segment size of
2GB. The query asked for an order by on (c1, c2). The run-
ning times with default and modified replacement selection
on PostgreSQL are shown in Figure 8.

When the partial sort segment size is small enough to
fit in memory (up to 10MB or 50K records), SRS produces

 100

 1000

2G (max)200M20M2M200K20K2K200 (min)

tim
e

(in
 s

ec
)

sort segment size in bytes

select * from R order by c1, c2; (R pre−sorted on c1)

20

Size of Relation=10 million
Tuple Size=200 bytes
Sort Memory=10MB

278 299
371 382 403

1173

1316 1618

28

50

98

166
207

391

999

1725

SRS(Total time)
MRS(Total time)
SRS(Sort time)
MRS(Sort time)

Figure 8. Effect of Partial Sort Segment Size

a single sorted run on disk and does not involve merging
of runs. The modified replacement selection (MRS) gets
the benefit of avoiding I/O and reduced number of compar-
isons. When the partial sort segment size becomes too large
to fit in memory, we see a sudden rise in the time taken
by SRS. This is because replacement selection will have to
deal with merging several runs. MRS however deals with
merging smaller number of runs initially as each partial sort
segment is sorted separately. As the partial sort segment
size increases, the running time of MRS rises and becomes
same as that of SRS at the extreme point where all records
have the same value for the prefix.
Experiment A4: To see the influence of MRS on a
query having other operators, we considered a query that
asked for counting the number of lineitems for each sup-
plier, part pair. Two indices, lineitem(l suppkey) and
partsupp(ps suppkey), each of which included other re-
quired columns supplied the required sort order partially.

Query 2 Number of lineitems for each (supplier, part) pair

SELECT ps suppkey, ps partkey, ps availqty, count(l partkey)
FROM partsupp, lineitem
WHERE ps suppkey=l suppkey AND ps partkey=l partkey
GROUP BY ps suppkey, ps partkey, ps availqty
ORDER BY ps suppkey, ps partkey;

The query took 63 seconds to execute with SRS and 25
seconds with MRS, both on Postgres. The query plan used
in both cases was the same - a merge join of the two rela-
tions on (suppkey, partkey) followed by an aggregate.

6.2. Choice of Interesting Orders

We extended our Volcano-style cost based optimizer,
which we call PYRO, to consider partial sort orders and
choose good interesting sort orders for merge joins and
aggregation. We compare the plans produced by the ex-
tended implementation, which we call PYRO-O, with those
of Postgres, SYS1 and SYS2.
Experiment B1: For this experiment we used Query 3
given below, which lists parts for which the outstanding or-
der quantity is more than the stock available at the supplier.

Merge Join
(partkey, suppkey)

Hash Aggregate

Filter

Sort
(partkey)

Sort
(partkey, suppkey)

Sort
(partkey, suppkey)

Covering Index Scan
lineitem

Covering Index Scan
partsupp

Merge Join
(suppkey, partkey)

Group Aggregate

Filter

Sort
(partkey)

Partial Sort

(suppkey)
(suppkey, partkey)

(suppkey)
(suppkey, partkey)

Partial Sort

Covering Index Scan
lineitem

Covering Index Scan
partsupp

(a) Default Plan (Postgres) (b) Plan Generated by PYRO−O

Figure 9. Plans for Query 3

Query 3 Parts Running Out of Stock

SELECT ps suppkey, ps partkey, ps availqty, sum(l quantity)
FROM partsupp, lineitem
WHERE ps suppkey=l suppkey AND ps partkey=l partkey AND

l linestatus=’O’
GROUP BY ps availqty, ps partkey, ps suppkey
HAVING sum(l quantity) > ps availqty ORDER BY ps partkey;

Table partsupp had clustering index on its primary key
(ps partkey, ps suppkey). Two secondary indices, one on
ps suppkey and the other on l suppkey were also built on
the partsupp and lineitem tables respectively. The two sec-
ondary indices covered all attributes needed for the query.
Figures 9 shows the plans chosen by Postgres and PYRO-
O. SYS1 chose a hash-join plan by default. When a merge-
join plan was forced with an optimizer hint, SYS1 selected
a plan similar to that of Postgres, except that it avoided the
sort of partsupp by using the clustering index. The default
plan on SYS2 was same as the merge-join plan of SYS1.

All plans except the hash-join plan of SYS1 and the plan
produced by PYRO-O use an expensive full sort of 6 mil-
lion lineitem index entries on (partkey, suppkey). Further,
Postgres uses a hash aggregate where a sort-based aggre-
gate would have been much cheaper as the required sort
order was available from the output of merge-join (note
that the functional dependency {ps partkey, ps suppkey} →
{ps availqty} holds).

We compared the actual running time of PYRO-O’s plan
with those of Postgres and SYS1 by forcing our plan on the
respective systems. Figures 10 and 11 show the details. It
was not possible for us to force our plan on SYS2 and make
a fair comparison and hence we omit the same. The only
surprising result was the default plan chosen by SYS1 per-
formed slightly poorer than the forced merge-join plan. In
all cases, the forced PYRO-O plan performed significantly
better than the other plans. The main reasons for the im-
provement were the choice of a good sort order, and the use
of a partial sort of lineitem index entries instead of a full
sort. The final sort on partkey was not very expensive as

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Query 4Query 3

tim
e

(in
 s

ec
)

Running Time on PostgreSQL

Default Plan
PYRO−O Plan

Figure 10. Postgres

 0

 5

 10

 15

 20

 25

 30

Query 4Query 3

tim
e

(in
 s

ec
)

Running Time on SYS1

Default Plan
Default MJ Plan

PYRO−O Plan

Figure 11. SYS1

(c4, c5, c1)
Sort Partial Sort

(c4, c5,

(c4, c5, c3)
Merge FO Join

Sort
(c4, c5, c3)

R1
Table Scan

R2
Table Scan

(c4, c5, c1)
Merge FO Join

Sort
(c4, c5, c3)

(c4, c5, c1)
Merge FO Join

(c4, c5, c1)
Sort

(c4, c5, c1)
Sort

(c3, c4, c5)
Merge FO Join

(c3, c4, c5)
Sort

R3
Table Scan

(c3, c4, c5)
Sort

R1
Table Scan

(a) On SYS1 and Postgres

R3
Table Scan

 c1)

(b) On PYRO−O

R2
Table Scan

Figure 12. Plans for Query 4

only a few tuples needed to be sorted.
For Query 3 the plan generation phase (phase-1) was suf-

ficient to select the sort orders and phase-2 does not make
any changes. We shall now see a case for which phase-1
cannot make a good choice and the sort orders get refined
by phase-2.
Experiment B2: This experiment uses Query 4, shown be-
low, which has two full outer joins with two common at-
tributes between the joins.

Query 4 Attributes common to multiple joins

SELECT * FROM R1 FULL OUTER JOIN R2
ON (R1.c5=R2.c5 AND R1.c4=R2.c4 AND R1.c3=R2.c3)
FULL OUTER JOIN R3
ON (R3.c1=R1.c1 AND R3.c4=R1.c4 AND R3.c5=R1.c5);

The tables R1, R2 and R3 were identical and each pop-
ulated with 100,000 records. No indexes were built. As
shown in Figure 12(a), both SYS1 and Postgres chose sort
orders that do not share any common prefix. The plan cho-
sen by PYRO-O is shown in Figure 12(b). In the plan cho-
sen by PYRO-O, the two joins share a common prefix of
(c4, c5) and thus the sorting effort is expected to be signif-
icantly less. SYS2, not having an implementation of full
outer join, chose a union of two left outer joins. The two
left outer joins used to get a full outer join used different
sort orders making the union expensive, illustrating a need
for coordinated choice of sort orders.
Experiment B3: In this experiment we compare our ap-
proach of choosing interesting orders, PYRO-O, with the

 100

 1000

Q6Q5Q4Q3

no
rm

al
iz

ed
 p

la
n

co
st

PYRO
PYRO−O−

PYRO−P
PYRO−O
PYRO−E

Figure 13. Q3-Q6

 1

 10

 100

 1000

 0 2 4 6 8 10 12
op

tim
iz

at
io

n
tim

e
(in

 m
s)

number of attributes involved

PYRO−P
PYRO−O
PYRO−E

Figure 14. Scalability

exhaustive approach, and a heuristic used by PostgreSQL.
Postgres uses the following heuristic: for each of the n at-
tributes involved in the join condition, a sort order begin-
ning with that attribute is chosen; in each order, the remain-
ing n− 1 attributes are ordered arbitrarily. We implemented
Postgres’ heuristic in PYRO along with the extensions to
exploit partial sort orders and call it PYRO-P. The exhaus-
tive approach, called PYRO-E, enumerates all n! permuta-
tions and considers partial sort orders. In addition, we also
compare with PYRO, which chooses an arbitrary sort order,
and a variation of PYRO-O, called PYRO-O− that consid-
ers only exact favorable orders (no partial sort). Figure 13
shows the estimated plan costs. Note the logscale for y-
axis. The plan costs are normalized taking the plan cost
with exhaustive approach to be 100. In the figure, Q3 and
Q4 are Query 3 and Query 4 of Experiments B1 and B2. Q5
and Q6 were two real-world analytical queries and can be
found in the technical report [5]. For Q3 and Q4, as very
few attributes were involved in the join condition, Postgres’
heuristic along with extensions to exploit partial sort orders,
produced plans which were close to optimal. However, for
more complex queries the heuristic does not perform as well
since it makes an arbitrary choice for secondary orders.

6.3. Optimization Overheads

The optimization overheads due to the proposed exten-
sions were negligible. During plan generation, the number
of interesting orders we try at each join or aggregate node
depends on the number of indices that are useful for an-
swering the query and is not dependent on the number of
join attributes. In most real-life cases this number is fairly
small. Figure 14 shows the scalability of the three heuris-
tics. For the experiment a query that joined two relations
on varying number of attributes was used. Though PYRO-
P and PYRO-O take the same amount of time in this ex-
periment, in most cases, the number of favorable orders is
much less than the total number of attributes involved and
hence PYRO-O generates significantly fewer interesting or-
ders than PYRO-P.

The plan-refinement algorithm presented in Section 4.2
was tested with trees up to 31 nodes (joins) and 10 attributes

per node. The time taken was negligible in each case. The
execution of plan refinement phase took less than 6 ms even
for the tree with 31 nodes.

Both the optimizer extensions and the extension to
external-sorting (MRS) were fairly straight forward to im-
plement. The optimizer extensions neatly integrated into
our existing Volcano style optimizer.

7. Conclusion

We addressed the issue of choosing interesting sort or-
ders. We showed that even a simplified version of the
problem is NP-hard and proposed principled heuristics for
choosing interesting orders. Our techniques take into ac-
count important issues such as partially matching sort or-
ders and operators that require matching sort orders from
multiple inputs. We presented detailed experimental results
to demonstrate the benefits due to our techniques.

Unlike merge-join and order-by, operators such as
group-by and duplicate elimination actually need grouped
but not necessarily sorted input; sorting is just one way
of providing grouped input. Extending our techniques to
grouped input property is a topic of future work.

Acknowledgments

The NP-hardness result and 2-approximation are joint work with
Ajit A. Diwan and Ch. Sobhan Babu. We thank C. Santosh Kumar
for implementing the extensions to external sorting in Postgres.

References
[1] J. Diaz, J. Petit, and M. Serna. A Survey of Graph Layout

Problems. ACM Comput. Surv., 34(3), 2002.
[2] V. Estivill-Castro and D. Wood. A survey of adaptive sorting

algorithms. ACM Comput. Surv., 24(4), 1992.
[3] G. Graefe. Query Evaluation Techniques for Large

Databases. ACM Comput. Surv., 25(2), 1993.
[4] G. Graefe and W. McKenna. The Volcano Optimizer Gener-

ator: Extensibility and Efficient Search. In ICDE, 1993.
[5] R. Guravannavar, S. Sudarshan, A. A. Diwan, and C. S.

Babu. Reducing Order Enforcement Cost in Complex Query
Plans. Technical Report. arXiv:cs.DB/0611094.

[6] D. Knuth. The Art of Programming, Vol. 3 (Sorting and
Searching). Addison-Wesley, 1973.

[7] P.-Å. Larson. External sorting: Run formation revisited.
IEEE Trans. Knowl. Data Eng., 15(4), 2003.

[8] T. Neumann and G. Moerkotte. A Combined Framework for
Grouping and Order Optimization. In VLDB, 2004.

[9] T. Neumann and G. Moerkotte. An Efficient Framework for
Order Optimization. In ICDE, 2004.

[10] P. G. Selinger, M.M.Astrahan, D.D.Chamberlin, R.A.Lorie,
and T.G.Price. Access Path Selection in a Relational
Database Management System. In Proceedings of ACM SIG-
MOD Conference, 1979.

[11] D. Simmen, E. Shekita, and T. Malkemus. Fundamental
Techniques for Order Optimization. In Proceedings of ACM
SIGMOD Conference, 1996.

[12] X. Wang and M. Cherniack. Avoiding Sorting and Grouping
In Processing Queries. In VLDB, 2003.

