
10 Conclusion and Future WorkThis paper has presented our algorithm for providingrecoverable, high-speed mutual exclusion without OSintervention and the associated overhead. It requiresonly a \lowest common denominator" atomic instruc-tion, such as test-and-set or swap. Spin lock acquisi-tion and release is very fast; with very high probability,recovery of dead processes is also very fast.Spin locks based on test-and-set may cause an in-ordinate amount of bus activity in a shared-memorymultiprocessor since any change in a spin lock's stateinvalidates a cache entry for all processes waiting forthe spin lock. Recent research, notably [3] and [11],has provided methods in which the atomic instruc-tions are used to construct a queue of processes wait-ing for the spin lock, and each process (and thus eachprocessor) may busy-wait on a variable that no otherprocessor is reading. We intend to develop a techniqueanalogous to the one presented in this paper to recoverthese structures in case of process death.AcknowledgementsWe would like to thank Boris Lubachevsky and MarkDilman for pointing out an error in an earlier versionof the cleanup algorithm, and Phil Gibbons for dis-cussions about consistency models, and for guiding usto the right sources of information on the topic. Wewould like to thank Lloyd Tucker for providing manyhelpful comments on an earlier draft, and Robert Wil-hite for producing timing numbers on the HP 9000.References[1] A. Silberschatz and P. Galvin, Operating SystemConcepts. Addison-Wesley, 4 ed., 1993.[2] T. E. Anderson, \The performance of spin lockalternatives for shared-memory multiprocessors,"IEEE Transactions on Parallel and DistributedSystems, vol. 1, pp. 6{16, Jan. 1990.[3] J. M. Mellor-Crummey and M. L. Scott, \Al-gorithms for scalable synchronization on shared-memory multiprocessors," ACM Transactions onComputer Systems, vol. 9, pp. 21{65, Feb. 1991.[4] H. Jagadish, D. Lieuwen, R. Rastogi, A. Sil-berschatz, and S. Sudarshan, \Dali: A highperformance main-memory storage manager," inProcs. of the International Conf. on Very LargeDatabases, 1994.[5] P. Sindhu, J.-M. Frailong, and M. Cekleov, \For-mal speci�cation of memory models," Tech. Rep.CSL-91-11 [P91-00112], Xerox Corporation, Dec.1991.[6] D. E. Corporation, The Alpha Architecture Hand-book, 1992.[7] P. Bohannon, D. Lieuwen, A. Silberschatz, S. Su-darshan, and J. Gava, \Recoverable user-levelmutual exclusion," Tech. Rep. 950320-05, AT&TBell Laboratories, Mar. 1995.[8] M. Dilman and B. Lubachevsky, \Personal com-munication," 1994.

[9] B. N. Bershad, D. D. Redell, and J. R. Ellis, \Fastmutual exclusion for uniprocessors," in Procs. ofthe International. Conf. on Architectural Supportfor Programming Languages and Operating Sys-tems, pp. 223{233, Oct. 1992.[10] G. Graunke and S. Thakkar, \Synchronizationalgorithms for shared memory multiprocessors,"IEEE Computer, vol. 23, pp. 60{69, June 1990.[11] T. S. Craig, \Building FIFO and priority-queuingspin locks from atomic swap," Tech. Rep. 93-02-02, University of Washington, Feb. 1993.[12] S. Khanna, M. Sebree, and J. Zolnowsky, \Real-time scheduling in SunOS 5.0," in Winter UsenixConference 1992, 1992.[13] M. A. Eisenberg and M. R. McGuire, \Furthercomments on Dijkstra's concurrent programmingcontrol problem," Communications of the ACM,vol. 15, Nov. 1972.[14] M. Sullivan and M. Stonebreaker, \Using writeprotected data structures to improve softwarefault tolerance in highly available database man-agement systems," in Procs. of the InternationalConf. on Very Large Databases, pp. 171{179,1991.

HP-UX Semaphores on HP9000 712/60 19,000SunOS 5.3 Semaphores on Sun SS20/61 20,000Safe Spin Lock on Sun SS20/61 526,000Spin Lock on Sun SS20/61 2,128,000Figure 7: Uncontested Acquire and Release per Sec-ondin a database scenario where the actions of the pro-cess can be rolled back.) This removes the assump-tion of progress from our claim that all processes willeventually leave ViewWants, at the cost of possiblykilling a process which is making no progress in thespin lock acquisition code, even though the processmay not hold the spin lock. It may be argued thatkilling such a process is not a bad idea any way, sinceit is not making progress.It is fairly straightforward to extend the algorithmsdescribed here to the case of multiple spin locks, sinceeach process can be attempting to acquire/release atmost one spin lock at a time, though it may hold manyat any given time.8 ImplementationWe have implemented whoOwns() in the context ofDali, a main memory storage manager [4]. This allowsus to have \mostly trusted" processes which link withstorage manager code and access the database throughshared memory, yet which can die (for example bekilled) without necessitating a complete recovery ofthe database.An implementation of the code in C or C++ re-quires to use of volatile declarations to ensure that thecode optimizer does not attempt to optimize away ref-erences to global variables. We also implement severaloptimizations, including one suggested by Mark Dil-man [8] where the acquisition code �rst checks if thespin lock is busy and does not even raise the wantsag if it is busy.We tested the performance of our implementationagainst operating system semaphores and against spinlocks without the recoverability features. The resultsare shown in Figure 7. The timings are all in termsof uncontested acquire-release pairs per second. Tim-ings for contested acquisition/release would depend onthe backo� policy, which is needed for all spin locksand is orthogonal to our techniques. The performancebene�ts of our technique over system semaphores isclear.9 Related WorkSpin-locking implementations of mutual exclusionhave been extensively studied in the parallel compu-tation and operating system communities. It is widelyrecognized that spin locking (also referred to as busywaiting) is much faster than operating system pro-vided mutual exclusion for parallel computations inshared memory multiprocessor systems [1]. Even inuni-processors, spin locking (with back-o�) is recog-nized to be better than operating system spin locks in

many applications, especially when the level of con-tention is low, which is borne out by the performancenumbers in Figure 7. The scheme of [9] for implement-ing mutual exclusion is based on notifying the oper-ating system that a particular section of code mustbe restarted from the beginning if interrupted by acontext switch. Their scheme can be used to solveour problem, but requires a modi�cation to the OS,and does not extend to multi-processors. Most recentwork in high-speed mutual exclusion has centered one�ciency under various multiprocessor memory mod-els [3], [10], [11].Sun's Solaris operating system uses spin lock mu-tual exclusion within the kernel [12]. They track pro-cess ownership in order to avoid priority inversion |the current owner's priority is temporarily raised tothat of the highest priority waiting thread, to allow itto progress and release the spin lock so the higher pri-ority thread can proceed. As the only synchronizationprimitives on the SPARC architecture are a registerto memory swap and a test-and-set, they face a verysimilar problem. Their solution is to reserve a hard-ware register to indicate if a process is attempting toacquire a spin lock. All interrupt handlers begin bychecking this register, and if the owner needs to be�lled in they �ll it in before continuing with the inter-rupt. Though this takes a register completely out ofuse, it is quite fast; however, it is useless to us sincewe do not want to modify the kernel.Older, software-based approaches to mutual exclu-sion that do not rely on atomic instructions are triv-ially recoverable. For example, the standard starva-tion free software mutual exclusion algorithm, [13],uses an array of per-process state information, thusthe state of any process with respect to a given spinlock can be determined immediately by inspectingthat variable.4 Any interference with other processescan be removed by resetting the state to \uninter-ested."Why, then, do we not simply use one of these al-gorithms? The primary reason is resources. All thesealgorithms require at least time proportional to thenumber of processes to acquire an uncontested spinlock, while solutions based on synchronization hard-ware, such as ours, typically require a small constantnumber of accesses. Furthermore, these systems re-quire space proportional to the number of processestimes the number of spin locks, as opposed to the sumof the two, as with our algorithm.Process failure is often caused by software bugs,and is itself only one possible detrimental e�ect ofthese bugs. Our method provides recovery from thisparticular mode of failure, but is only one part of anoverall fault detection and tolerance strategy. For ex-ample, unintended writes into shared memory can alsobe caused by bugs; this issue is discussed in [14]. Pro-tection from such errors is orthogonal to the focus ofour work.4These algorithms were designed assuming a sequentially-consistent memory, and may need to be redesigned (perhapsby adding fence instructions) for a weakly-consistent memorysystem.

whoOwns(SafeSpinlock *L)Set Of ProcessID ViewWants;ProcessID owner;C0:L!cleanup in progress = True;hfencei /* TIME: tstart */ViewWants = ;foreach process P dohfenceiif LockAccess(P)!wants == L thenC1: ViewWants = ViewWants + fPg;C2:/* TIME: tview */C3:while ViewWants != ;owner = L!owner;C4: if owner != NO PROCESSand not IsDead(owner) thenD1: status = (HELD, owner, ALIVE);goto DONE;D2: if L!lock == 0 thenstatus = (FREE, NO PROCESS,);goto DONE;y /* Code for slow processes goes here */C5: sleep(A SHORT WHILE);C6: foreach P in ViewWantsif LockAccess(P)!wants != Lor IsDead(P) thenC7: ViewWants = ViewWants - fPg;endwhilehfencei /* Time: tempty */C8:owner = L->owner;/* Status of L now static. May be NO PROCESS */C9:if (L->lock == 1) thenD3: status = (HELD, owner, DEAD);elseD4: status = (FREE, NO PROCESS,);DONE:C10: L !cleanup in progress = False;hfencei/* TIME: t�nal */return status;end whoOwnsFigure 6: The whoOwns() Procedure

1. Suppose the algorithm observes an \informative"state of a spin lock (free or owned by some pro-cess). If the lock is observed to be free, then thisrepresents an accurate state of the lock based onthe assumption that the spin lock itself works cor-rectly. If it observes a registered owner which issubsequently seen to be alive, then that ownermust have also been alive when it owned the lock,and any observed owner was indeed an owner,since this is an underestimation of ownership.(Note that by the time the observed state is re-ported, that state may no longer exist.)2. Once the barricade, L!cleanup in progress hasbeen raised, no process not in ViewWants can getthe spin lock This eliminates scenarios involvingan in�nite stream of processes.3. ViewWants is �nite, and any process which makesprogress or dies will leave the set. Since the al-gorithm can make a decision when ViewWantsis empty, our assumption of progress guaranteesthat the algorithm will terminate.If the algorithm doesn't terminate until ViewWantsis empty, and the spin lock is still held, then it mustbe held by a dead process, since all the potential liveowners were members of ViewWants. Further, if theregistered owner is NO PROCESS, the dead processeither just acquired the spin lock and did not updateany structures, or had �nished its updates (if any) andwas on the verge of releasing it. In either case it is safeto free the spin lock.Also, Boris Lubachevsky and Mark Dilman haveused a veri�cation tool to generate an independent,mechanized proof of correctness for the case whereonly two processes are attempting to acquire the spinlock [8].7 ExtensionsThe correctness of our algorithm depends on an a lim-ited assumption of progress on the part of processes. Itis conceivable that this will not be the case, and someprocess will not make progress during this system pro-vided code, yet will not die and be cleaned up either.For example, the process could be getting no CPUtime due to operating system scheduling policies, orperhaps it was transferred to a user interrupt handlerwith an in�nite loop. We argue that it is reasonableto kill such a process and, in our case, roll back itstransaction, as some mechanism would be required inany event to deal with loss of a resource for \an unrea-sonable amount of time". Note that processes waitingfor a di�erent lock (if multiple locks are allowed) willtrivially not be part of ViewWants, as they will wanta di�erent lock.To implement this in our algorithm, a timermust be introduced which is set upon creation ofViewWants, and reset whenever a process is removedfrom ViewWants. (The timer value itself should be atunable parameter.) Code introduced at location y ofwhoOwns should, upon expiration of the timer, sim-ply pick a member of ViewWants, and kill that pro-cess. (This may seem drastic, but is quite reasonable

Lock is Free Lock is Busy

P1.wants = L (G1)

P1 finds barricade down (G2)

P1 gets Spin Lock (G10)

P1 registers ownership (G11)

P1 uses resource (User Code)

P1 deregisters ownership (R1)

P1 releases Spin Lock (R2)

P1.wants = NULL (R3)

P1.wants = L (G1)

P1 finds barricade down (G2)

P1 doesn’t get Spin Lock (G10)

P1.wants = NULL (G12)

P1 sleeps for a while

0 ?

1 ?

1 P1

1 P1

1 ?

0 ?

0 ?

lock
L−.>

owner

0 ?

lock
L−.>

owner

1 P2

Figure 5: Normal Operation of Spin Lock Acquisition and Release Code(b) ViewWants is empty, i.e., no live process re-mains that could possibly own the spin lock.If (a) occurs, a decision can be made immediatelyand an appropriate status returned. Otherwise,the cleanup routine waits a little, and retries af-ter eliminating some candidates from ViewWantsusing simple tests. If (a) does not occur, (b) even-tually occurs (based on our limited assumption ofprogress, see Section 3). Once the second condi-tion occurs, if the spin lock is held, it must beheld by a dead process. The ownership may ormay not be determined at this point, and the pro-cedure returns an appropriate status.The driver code of whoOwns takes appropriate ac-tion based on the return status, and is discussed inSection 6.1.Performance of the above code can be improved inseveral ways. First, a test to determine if the ownerof the spin lock is known3 should be done before exe-cuting the main code of the function. Second, a checkcould be added to perform a wait in line C5 only af-ter eliminating candidates as in C6. We omit theseoptimizations from the above code for simplicity ofexposition and proof.6.1 Driver Code and O/S InteractionTo avoid any problems with multiple or concurrentcleanup processes, we assume a single cleanup processwhich calls whoOwns() on the death of a process P forwhich LockAccess[P]!wants is non-null, or upon the3This test must be done carefully since reading the \owner"�eld and the call to IsDead() cannot be done as an atomic ac-tion. This can be handled by a second reading of owner ifIsDead() returns True.

complaint of a process which has timed out attemptingto acquire a spin lock.We assume that a normally exiting process deal-locates its lock access record at a point when it has�nished all spin lock accesses. The cleanup processwill eventually visit the lock access record of any deadprocess, ensuring that every record is eventually deal-located. For example, if one run of whoOwns() de-cides the spin lock is alive because it is held by a pro-cess which does not seem dead at D2, but has in factdied immediately after the cleanup process called Is-Dead(), this access record will not be cleaned up untilthe next run of the cleanup routine. We also assumethat no access records are reallocated during a run ofwhoOwns(), though this restriction is not di�cult toremove.The full version of the paper, [7], gives an exam-ple of a loop which polls for dead processes, com-bined with an example of how the information re-turned by whoOwns() can be used to return data struc-tures guarded by the spin lock to use.6.2 CorrectnessGiven that the state of a lock held by a dead processwill not change, the following theorem allows usefulrecovery routines to be built around whoOwns.Theorem 6.1 Procedure whoOwns(L) terminates andreports an ownership status of spin lock L which ac-curately reects the state of L at some point in timeafter whoOwns is called. 2We present the proof in the full version of the paper([7]), and merely present the intuition here.The correctness of the cleanup algorithm followsfrom three main points:

getLockAttempt(int myPid, SafeSpinlock *L)Register R;LockAccessRecord *ma = LockAccess(myPid);Boolean cleanup;G1:ma!wants = L;hfenceiG2:cleanup = L!cleanup in progress;G3:if cleanup thenG4: ma!wants = NULL;G5 hfenceiG6: while L!cleanup in progress dosleep a while;endwhile;G7: return BUSY;G10:R = test-and-set(L!lock);if R == 0 then // We have the mutexG11: L!owner = pid;hfenceireturn ACQUIRED;elseG12: ma!wants = NULL;hfenceireturn BUSY;end getLockAttemptFigure 3: Spin Lock Acquisition Codeinstructions denoted using hfencei. These instructionsare not required if the architecture supports sequentialconsistency, but are required under the weaker consis-tency model that we assume.A process sets its wants variable (ma!wants) toindicate a spin lock that it wishes to acquire, checksto make sure the barricade (L!cleanup in progress) isdown, and then tries to acquire the lock. If the at-tempt is successful, the process records its new own-ership (L!owner = pid) and returns. If it fails, theprocess clears its wants variable, and returns to the en-veloping routine getLock. If the barricade was found tobe up, then it waits until it is down, and again returnsfailure to getLock. The routine getLock (not shown)repeatedly calls getLockAttempt() until it succeeds,though it can easily be rewritten to time out and failafter some number of attempts, or to implement abacko� strategy. Similarly, getLockAttempt() may beaugmented with a �nite inner loop which \spins" moretightly than getLock, for multi-processor systems.5.3 Spin Lock ReleaseThe spin lock release code, given in Figure 4 is sim-ple, and clearly demonstrates the underestimationand overestimation of ownership by S!owner andma!wants respectively.5.4 Example of Normal OperationIn Figure 5 we illustrate on the left the sequence ofactions a process will undertake while successfully ac-

releaseLock(LockAccessRecord *ma)SafeSpinlock *L = ma!wants;R1:L!owner = NO PROCESS;hfenceiR2:L!lock = 0;hfenceiR3:ma!wants = NULL;end releaseLockFigure 4: Spin Lock Release Codequiring a spin lock, and on the right the sequenceinvolved in attempts which fail due to contention.Shown in boxes are the associated changes in the stateof the lock itself.On a successful acquisition, illustrated on the left,the process begins by registering its interest in thespin lock L at point G1, and checking the status of thebarricade at G2. After the test-and-set at G10, it �ndsthat it has the spin lock, and it registers its ownershipby setting the owner value of the spin lock to its ownprocess id at G11. At that point, control is returnedto the user code, which may access the protected re-source. Upon release, the reverse process is carriedout, deregistering ownership, followed by release of thespin lock, followed by deregistering interest.In a failed attempt to get the lock, illustrated tothe right, it is important to note that a check of thebarricade at point G2 or G6 is always made after reg-istering interest and before attempting to get the spinlock. Also, note that the process deregisters its in-terest in the mutex before sleeping, thus decreasingthe chance that it will need to be considered by thecleanup routine.6 The Cleanup ProcessThe cleanup process executes procedure whoOwns,which is shown in detail in Figure 6, to determine own-ership of a spin lock . At a high level, the procedurewhoOwns proceeds as follows.1. Raise the L!cleanup in progress barricade, pre-venting processes which don't currently \want"the spin lock from getting it while we are clean-ing things up (C0).2. Take an \overestimation snapshot" of processeswhich could have, or could get, the spin lockduring the cleanup period. Call this snapshotViewWants (C1).3. The main loop of the cleanup routine, C3{C7,waits for one of two conditions:(a) The state of the spin lock becomes observ-able, either because no one has it, or becausea live owner is registered (D1{D2).

spin lock acquisition or release code, it receives someCPU time to execute, and if interrupted, it returns tothe spin lock code within a �nite amount of time.)Since processes may violate this assumption, for ex-ample by having a very low priority and getting noCPU time from the operating system, we will presenta simple extension of our algorithm in Section 7 to killthese processes if the fate of the spin lock cannot beresolved in a \reasonable" amount of time.4 Overview of ApproachConsider an atomic test-and-set based implementationof a spin lock. The �rst and most obvious step intracking ownership of such a spin lock is to requirethat a successful attempt to acquire the test-and-setlatch be immediately followed by a write which storesthe new owner's identi�er (process or thread identi-�er, which we abbreviate to process id) in an \owner"�eld associated with the spin lock. Clearly, if thesetwo steps were atomic, we could always �nd out whichprocess currently owns the spin lock. However, as dis-cussed in Section 2, many common architectures can-not implement these two steps atomicly.As a �rst step toward solving this problem, we re-quire that all processes that are trying to acquire thespin lock note the name of the spin lock in which theyare interested in a per-process shared location. We callthis location the process's \wants" �eld. The collec-tion of all processes' \wants" �elds provides us with anoverestimate of the set of possible owners of the spinlock (there are zero or one owners, but an arbitrarynumber of \interested" parties). This helps establisha set of all processes that might hold the spin lock.The set of processes that want the spin lock may,however, change even as the cleanup process attemptsto determine which processes have set their \wants"�eld. To solve this problem, we introduce a ag asso-ciated with the spin lock called \cleanup-in-progress,"and require that processes do not attempt to get thespin lock if this ag is set. This ag provides a bar-rier which, when \raised", prevents any new processesfrom entering the set of potential owners deduced fromthe \wants" �eld. The cleanup-in-progress ag for aparticular spin lock is set by the cleanup process whileit attempts to resolve the ownership of that spin lock.Without this \barricade," the (remote) possibility ex-ists that one or more processes can repeatedly acquireand release the spin lock, always leaving the spin lockacquired but unregistered while its status is tested bythe cleanup process, declaring ownership only betweentests by the cleanup process. We cannot distinguishbetween this case and the death of a single processin an indeterminate state. (We explored the use of acounter that is incremented on each spin lock acquisi-tion to distinguish between the two cases. However itcomplicated the proof of correctness considerably, andwe abandoned the approach.)Given these additional tools, how do we determinewhether a dead process holds a spin lock? We start bysetting the cleanup-in-progress ag, then gathering alist of potential owners from the \wants" information.(We gather this list to avoid certain pathological sce-narios with streams of new processes.) Now it becomes

struct SafeSpinlock fint lock;ProcessID owner;int cleanup in progress;g;struct LockAccessRecord fSafeSpinlock *wants;g;Figure 2: System Data Structuresreasonable to wait until the situation resolves itself, aswe must only wait for a �nite number of processes togive up their interest in, or register their ownershipof, the lock. In all cases, a process must only advanceby a few instructions to either register ownership, ornotice that the cleanup-in-progress ag is set, and re-linquish its interest in the spin lock. A method forhandling the case where these processes fail to makeprogress is described in Section 7.5 Acquisition and Release ProtocolAfter detailing shared data needed for our scheme,the spin lock acquisition and release protocols are pre-sented. The procedure for determining ownership incase of failure is given in the Section 6.5.1 System Data StructuresOur spin lock protocol involves additional informationassociated with each process as well as additional in-formation associated with each spin lock. The for-mer is stored in a per-process \Lock Access Struc-ture." For process P , we refer to the structure asLockAccess[P]. The latter is stored with the spin lockitself.Figure 2 is an example declaration of these datastructures in a C-like syntax. In the structure Safe-Spinlock, lock refers to the actual test-and-set tar-get variable, while owner provides the \safe under-estimate" of ownership. That is, owner is set bya process to its own process id immediately afterit has gained access to the spin lock, and back toNO PROCESS immediately before releasing it. Fi-nally, cleanup in progress is a special variable that iswritten only by the cleanup process. It is used toform the barricade against new processes as describedearlier.As for LockAccessRecord, the only per-process in-formation we require is the variable, wants, which isset by a process to point to a spin lock before tryingto acquire it, and reset to NULL only after releasingit, or after a failed attempt to acquire. Thus, it is a\safe overestimate" of spin lock ownership.5.2 Spin Lock AcquisitionThe spin lock acquisition attempt routine getLockAt-tempt(), is shown in pseudo-code in Figure 3. Inden-tation indicates nesting. The labels at the left are forease of reference. Our code shows explicit use of fence

Single Port
 Memory

store
swap

load store
swap

load

P1 P2

Memory
System

Processors

Non−FIFO
Store Buffers

store
swap

load

Pn

Figure 1: SPARC Memory Consistency Modelanother processor. In a sequentially consistent sys-tem, at least one of the two reads will return 1. Withweaker levels of consistency, it may be possible forboth reads to return 0 | they could have read locallycached values for the variables, and the writes maytake some time to propagate to the other processor.Systems providing weaker levels of consistency alsoprovide explicit synchronization instructions, for ex-ample instructions that ensure that all pending writes(or cache invalidate requests) are propagated to allprocessors.Our proofs of correctness are based on the PartialStore Ordering model of memory used in the SPARCarchitecture, which is shown in Figure 1 and describedbelow. Most current generation shared memorymulti-processor systems are built on roughly the same mem-ory model. We believe that our algorithms work insome weaker memory models as well, and will explorethe issue in the full version of this paper.Figure 1, adapted from [5], illustrates several as-pects of the SPARC memory model. There is a storebu�er for each processor, that bu�ers writes that havebeen issued by the processor. The writes are prop-agated to the memory one at a time (the memoryis treated as if it were single ported), but may bepropagated in a di�erent order from the the orderin which they were issued by the processor (that is,the store bu�ers are not FIFO). In addition to loadsand store, the model also supports swap instructions,which atomically swap the values in a speci�ed registerwith a speci�ed memory location.Formally, the memory model can be de�ned interms of partial orderings of load, store and swap oper-ations as described in [5]. There is a partial ordering ofmemory operations generated by processor i (denotedby �i), and a partial ordering of memory operationsexecuted at the memory (denoted by �). Informally,the rules de�ning the partial store ordering model areas follows.Total order The store operations in memory are to-tally ordered.

Atomic swap No other write to a memory locationis allowed between the load and store parts of aswap.Termination Bu�ered writes are eventually carriedout in memory.Value The value returned by a load in processor i isthe last in the � order of stores that are beforethe load either in the � order or in �i.Load ordering Lia �i Opib) Lia � Opib where Opis any memory operation, and Lia denotes a loadfrom location a by processor i.Storage barrier Store operations from a processorthat are separated by a `storage barrier' or `fence'instruction (fence) appear in the same order in �.Same-location ordering Writes to the same loca-tion from the same processor are carried out inthe order in which they were generated (formally,Sia �i S0ia) Sia � S0ia , where Sia denotes a storeto location a from processor i).Note that in the above model, reading a word andwriting a word are each atomic. The swap instructioneasily simulates an atomic test-and-set instruction.2We use the term fence to denote the generic stor-age barrier instruction. All shared memory systemswith non sequential consistency that we are aware of(e.g. the Alpha [6]) provide such storage barrier in-structions. We use the term \integer" synonymouslywith the term \word".Our entire description is in terms of processes, butcould equally well apply to threads or light-weight pro-cesses. We assume that the identi�er of a process isa single word, so it can be written atomically. Weassume that processes are fail-safe, i.e., they do notmodify spin lock control information except throughthe provided interface code. We assume that our in-terface code is able to maintain and manipulate sharedinformation other than the spin lock itself.The main example of this additional shared infor-mation is a table with a slot allocated to each processthat may want to acquire a spin lock, where the slothas space for a process to note what spin lock it iscurrently trying to acquire. The allocation of a slot inthe table itself requires mutual exclusion on the table,which would cause a circularity if handled using ourspin locks, so a more epxensive mechanism is requiredfor this once-per-process task.For simplicity of presentation, we assume that aprocess may hold only one spin lock at one time.Our implementation, however, allows a process to holdmultiple spin locks.Finally, we assume that processes make progresswhile running spin lock acquisition and release code.(We are not assuming that our concurrency mecha-nism is starvation free, just that once a process enters2The SPARC assembly language for the version of the archi-tecture which we currently use provides a test-and-set instruc-tion (ldstub), and a swap instruction which also acts as a fenceinstruction.

which share data between processes.Operating system semaphores maintain ownershipinformation, allowing one to �nd at any time whichprocess, if any, has acquired the semaphore and not(yet) released it. The information can be used for re-covery purposes in the case when software faults resultin a process failing (halting) after having acquired asemaphore but before releasing it. Determining own-ership of semaphores is the critical �rst step to recov-ery from process failure. Given the knowledge thata dead process holds the semaphore, the software ap-plication could potentially use that information alongwith other application speci�c information to carryout appropriate recovery actions on resources guardedby the semaphore, and then release the semaphore, al-lowing other processes in the software application tocontinue normal operation. Such recovery from pro-cess failure is particularly important in systems withhigh availability requirements, since the only alterna-tive is to shut down all processes, restore to consis-tency all shared resources that may be left in an in-consistent state, reinitialize all semaphores, and thenrestart the system. An example of a system that pro-vides recovery from process failure is the Dali main-memory storage manager system [4].Unfortunately, it is di�cult to determine owner-ship of spin locks based on the commonly used atomictest-and-set or atomic swap instructions. (See Sec-tion 2.) Providing a correct and e�cient mechanismto determine ownership for spin locks is the centralissue addressed by this paper.In this paper, we present a scheme for e�ectivelydealing with the ownership problem in an environ-ment that supports the atomic test-and-set (or, equiv-alently, atomic swap) instruction. We do so by record-ing information in shared memory as part of the ac-quisition and release code. In the case of an uncon-tested acquisition, we add very little overhead to thepath length | two writes and a read.1 However, ourimplementation has the property that we can alwaysdetect ownership of a spin lock. In very rare cases,this may involve killing processes that fail to makeprogress for a long time while executing semaphoreacquisition/release code.The basic idea behind our algorithm is to take aglobal picture rather than a local one { instead of justexamining a failed process, we examine all processesthat may have wanted to acquire a spin lock, whichgives us enough information to determine ownershipof a spin lock. This is the critical novel feature ofour algorithm. Several di�culties arise in the contextof a system where a new process may be spawned atany time and subsequently attempt to acquire a spinlock. Handling such situations constitutes the bulk ofthe technical challenges in carrying out the basic idea.Further complications are introduced by the weak-memory-consistencymodels that most multi-processorarchitectures today implement, and we prove our al-gorithms works under the assumptions of a represen-1On systems supporting only a weak consistency model,these two writes also require the use of special synchronizationinstructions with a somewhat higher overhead.

tative weak memory model.The remainder of the paper is organized as follows.Section 2 describes the basic problem, and drawbacksof current solutions. Our system model is presentedin Section 3, and an overview of our approach is pre-sented in Section 4. Section 5 describes the systemcontrol information used to support crash safety andthe spin lock acquisition and release protocols. Sec-tion 6 presents our cleanup algorithm, along with someintuition about the proof of correctness. Section 7discusses extensions of our algorithm. Section 8 de-scribes our implementation and presents some timingnumbers. Section 9 discusses related work.2 Problem De�nitionDetermining the ownership of a spin lock requires thatthe process that acquired a spin lock also register it-self as the owner (by writing its process identi�er toa known location). Unfortunately, the act of acquir-ing a spin lock using the basic hardware instructiontest-and-set (or atomic swap) cannot be used to alsoatomically register ownership. At best, the atomicinstruction can be followed by a conditional branchtesting for a successful acquisition, which can be fol-lowed by an instruction writing the process id of thenew owner. If the process that is trying to acquire aspin lock is interrupted between the test-and-set andthe write, the ownership of a spin lock is left in doubtuntil the process gets to execute the write. If the pro-cess fails in this interval, the ownership of the spinlock will never become clear. Worse still, it is impos-sible to distinguish between a process that has failedat this step and a process that has not failed, buthas not yet carried out the write, either because it isservicing an interrupt, or because it has not been al-located CPU cycles. A symmetric problem can alsoarise when releasing the semaphore, since the deregis-tration and release may have to be accomplished usingseparate instructions (depending on the exact atomicinstruction used).3 System ModelWe �rst present our hardware model. We assumeone or more processors sharing memory. In multi-processor systems, read and write requests may origi-nate fromdi�erent processors, and the memory systemprocesses the requests. Memory systems used in ear-lier generations of multi-processor systems provided asequential consistency model. Under this model, allthe reads and writes handled by the memory systemcan be ordered in such a fashion that the values re-turned by a read on a memory location is exactly thelast value written to the memory location, and theoperations generated by each processor appear in thesame order in which they were generated.However, current generation multi-processor sys-tems provide weaker levels of memory consistency, inorder to improve the speed of memory accesses andallow more e�cient caching of data in each processor.In particular, suppose A and B were initially 0, and wehave the requests Write(A; 1); Read(B) from one pro-cessor, and the requests Write(B; 1); Read(A) from

Recoverable User-Level Mutual ExclusionPhilip Bohannon�Daniel LieuwenAvi SilberschatzS. SudarshanJacques GavaAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974AbstractMutual exclusion primitives based on user-level atomicinstructions (often called spin locks) have proven to bemuch more e�cient than operating-system semaphoresin situations where the contention on the semaphoreis low. However, many of these spin lock schemesdo not permit registration of ownership to be carriedout atomically with acquisition, potentially leaving theownership undetermined if a process dies (or makesvery slow progress) at a critical point in the registra-tion code. We present an algorithm which can ensurethe successful registration of ownership of a spin lock,regardless of where processes fail. Thus, our spin lockimplementation is `recoverable'. The determination ofa spin lock's ownership can potentially be used to re-store resources protected by the spin lock to consistencyand then release the spin lock. Other processes usingthe lock can then continue to function normally, im-proving fault resiliency for the application. Our algo-rithm provides very fast lock acquisition when the ac-quisition is uncontested (comparable in speed to a sim-ple test-and-set based spin lock), and we prove it workseven on the weak memory consistency models imple-mented by many modern multiprocessor computer sys-tems. Other implementations of a recoverable user-level mutual exclusion primitive are either dependenton special instructions such as compare-and-swap thatare not supported on many architectures, or are im-plemented using (variants of) the Baker's Algorithm,which is quite costly even in the case of uncontestedacquisition.1 IntroductionCurrent day computing environments provide supportfor concurrent accesses to shared memory by multi-ple processes (threads), possibly running on multipleprocessors. Such systems (hardware and/or operat-ing system) must provide synchronization constructsto allow processes to access shared data in a mutu-�A Ph.D. candidate in the Department of Computer Scienceat Rutgers University.

ally exclusive manner. One mechanism for achievingthis goal is the use of semaphores (see, e.g., [1]). Ina traditional semaphore implementation, as providedon Unix systems, semaphore operations (wait and sig-nal) are implemented as operating system kernel calls,which allows the system to take the operations intoconsideration for CPU scheduling. However, systemcalls require a context switch, which is usually quiteexpensive (equivalent to thousands of instructions) oncurrent generation processors.In a situation where contention for a shared re-source seldom occurs, one would like to avoid thecost of context switching for the purpose of provid-ing mutual exclusive access to data. This can be donethrough the use of binary semaphores implementedas spin locks (see e.g. [2, 3]). When requesting aspin lock, a process uses an atomic read-and-updatehardware instruction (e.g. test-and-set or register-memory-swap), to perform the following operationsas a single unit: check if the semaphore is free, andupdate its status to not-free. If the semaphore wasfree, the process has now acquired the semaphore;the acquisition cost is very low | a single instruc-tion | compared to a kernel call. If the semaphorewas busy, the process retries the acquisition repeat-edly until the semaphore is acquired. In a unipro-cessor, between acquisition attempts, the process in-dicates to the operating system that another processmay be scheduled on the CPU, typically by executinga sleep operation. On a multiprocessor system, if thesemaphore is held by a process on a di�erent proces-sor, the acquisition code may not even need to performthe sleep operation, but simply keep trying the acqui-sition until it succeeds. This activity is called \busywaiting" or \spinning." For semaphores with a lowdegree of contention, spin locks have been shown too�er signi�cant performance bene�ts over operatingsystem semaphores. (A semaphore acquisition is \un-contested" if, during the acquisition attempt, no otherprocess holds or tries to acquire the semaphore.) Lowcontention semaphores which are repeatedly acquiredand released are common in many software systems

