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Abstract

Logic programs can be evaluated bottom-up by repeatedly applying all rules, in “itera-

tions”, until the fixpoint is reached. However, it is often desirable—and in some cases, e.g.

programs with stratified negation, even necessary to guarantee the semantics—to apply

the rules in some order. We present two algorithms that apply rules in a specified order

without repeating inferences. One of them (GSN) is capable of dealing with a wide range

of rule orderings but with a little more overhead than the well-known semi-naive algorithm

(which we call BSN). The other (PSN) handles a smaller class of rule orderings, but with

no overheads beyond those in BSN.

We also demonstrate that by choosing a good ordering, we can reduce the number of

rule applications (and thus joins). We present a theoretical analysis of rule orderings and

identify orderings that minimize the number of rule applications (for all possible instances

of the base relations) with respect to a class of orderings called fair orderings. We also

show that while non-fair orderings may do a little better on some data sets, they can do

much worse on others. The analysis is supplemented by performance results.
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1 Introduction

Bottom-up evaluation of logic programs is an important issue in deductive database applications.

Algorithms that do not repeat inferences are considered desirable and said to have the non-

repetition property. Essentially the same algorithm (called the ”Semi-Naive” algorithm in the

literature, and which we call Basic Semi-Naive or BSN) has been proposed independently by

several researchers. It evaluates the fixpoint in an iterative fashion, with every rule applied once

in each iteration. Facts generated in an iteration can be used to generate other facts only in

subsequent iterations. The issue of how to apply rules in a specified order while retaining the

non-repetition property is not addressed. Rule orderings are significant for several reasons.

• First, they are sometimes required to compute the answers correctly.

For example, in programs with stratified negation, lower strata must be evaluated before

higher strata, and this simple ordering can become much more complex once we rewrite

the program using Magic Sets [22, 3, 7, 20] (which is an important technique used widely

to avoid inferences that are not “relevant” to the query).

• Second, rule ordering can result in increased efficiency.

For example, in an SCC-by-SCC evaluation of a program, rules in lower SCCs do not need

to be considered while applying rules in higher SCCs; this can improve the efficiency of

evaluation.

An important contribution of this paper is to demonstrate that ordering rules within

an SCC can also improve efficiency by further reducing the number of rule applications.

Although the orderings we consider for this purpose do not affect the number of inferences

made, the processing becomes more set-oriented, with each rule application generating

more tuples.

• Finally, rule orderings have been proposed to prune redundant derivations and to allow

the user to specify a desired semantics [12, 11, 13].

In this paper, we use regular expressions over rules to specify orderings of the application of

rules; we call these control expressions.
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In the first part of our paper, we present two fixpoint algorithms that address the issue

of how to apply rules in a specified order while retaining the non-repetition property. One of

them, General Semi-Naive (GSN), applies a rule to produce new facts, and then immediately

makes these facts available to subsequent applications of other rules (possibly in the same

iteration). The GSN algorithm can deal with a large set of control expressions, and is described

in Section 3. The other algorithm we present, Predicate Semi-Naive (PSN), can utilize facts

produced for a predicate p in the same iteration they have been derived in, although not always

in the immediately following rule application; this is described in Section 4. It handles a more

restricted set of control expressions compared to GSN, but is cheaper than GSN. Indeed, it has

no additional overheads compared to BSN.

The algorithms we describe in this paper are independent of program rewriting techniques

such as Magic Sets that also seek to reduce the number of derivations. We can apply such

techniques (and other techniques that generate control expressions on rule applications [12, 11])

on a given program, and then evaluate the resultant program using our algorithms.

In the second part of our paper, in Section 5, we study rule orderings in detail, and establish

a close connection between cycles in rule graphs (which are a variant of rule/goal graphs defined

in [4, 25]) and orderings that minimize the number of iterations and rule applications. We define

what it means for a rule ordering to preserve a simple cycle, and show that a rule ordering that

preserves all simple cycles in the rule graph (if such an ordering exists) is optimal within a

certain class of rule orderings in minimizing the number of iterations, and hence the number of

rule applications and joins.

In the third part of our paper, in Section 6, we present a performance study that underscores

the importance of utilizing facts early, and choosing a good rule ordering. The terminology used

in the rest of this paper is introduced in Section 2, and related work is presented in Section 7.

Due to space limitations, several proofs and details have been omitted. The performance

study is also presented briefly. We direct the interested reader to [21] for a version of this paper

with all proofs and additional discussion of several points.
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2 Background

2.1 Definitions

The language considered in this paper is that of Horn logic. Such a language has a countably

infinite set of variables and countable sets of function and predicate symbols, these sets being

pairwise disjoint. We adopt the Prolog convention of denoting variables by strings of characters

starting with an upper case letter (e.g. X, Y 1); function and predicate symbols are strings of

characters starting with a lower case letter. It is assumed, without loss of generality, that with

each function symbol f and each predicate symbol p is associated a unique natural number n,

referred to as the arity of the symbol; f and p are then said to be n-ary symbols. A 0-ary

function symbol is referred to as a constant.

A term in such a language is a variable, a constant, or a compound term f(t1, . . . , tn) where

f is an n-ary function symbol and the ti are terms. A tuple of terms is sometimes denoted

simply by the use of an overbar, e.g. t. A literal (or predicate occurrence) in such a language is

of the form p(t1, . . . , tn) (a positive literal) or ¬p(t1, . . . , tn) (a negative literal), where p is an

n-ary predicate symbol and the ti are terms. Predicates in such a language are also referred to

as relations.

A substitution is a mapping from the set of variables of the language under consideration to

the set of terms. Substitutions are denoted by lower case Greek letters θ, σ, ϕ, etc. A substitution

σ is more general than a substitution θ if there is a substitution ϕ such that θ = σ[ϕ] . Two

terms t1 and t2 are said to be unifiable if there is a substitution σ such that t1[σ] = t2[σ]; σ is

said to be a unifier of t1 and t2. Note that if two terms have a unifier, they have a most general

unifier (mgu) that is unique up to renaming of variables.

A clause is the disjunction of a finite number of literals, and is said to be a Horn clause if it

has at most one positive literal. A Horn clause with exactly one positive literal is referred to as

a definite clause. The positive literal in a definite clause is its head, and the remaining literals,

if any, constitute its body. Following the syntax of Prolog, definite clauses (or rules) are written

as: “ p : −q1, . . . , qn.” This is read declaratively as q1 and . . . and qn implies p. A predicate

definition consists of a set of definite clauses, whose heads all have the same predicate symbol;

a goal is a set of negative literals. We consider a logic program to be a pair 〈P, Q〉 where P is
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a set of predicate definitions and Q is the input, consisting of a query, or goal, and a (possibly

empty) set of facts for “database predicates” appearing in the program.1

We follow the convention in deductive database literature of separating the set of rules with

non-empty bodies from the set of facts, or unit clauses, which appears in P . The set of facts

is called the database. Predicates appearing in the heads of rules with non-empty bodies are

referred to as derived predicates, and predicates appearing in database facts are referred to as

base predicates. The program can be normalized to make the set of base predicates disjoint

from the set of derived predicates, and we assume that this has been done. The motivation for

separating the program from the database is that optimizations are applied only to the program,

and not to the database. This is important in the database context since the set of facts can be

very large. However, the distinction is artificial, and we may choose to consider (a subset of)

facts to be rules.

The meaning of a logic program is given by its least Herbrand model [26]. From [26], this is

equivalent to the least fixpoint semantics. A derived predicate p in a program P is said to be

safe if, given any finite extension for each of the base predicates, p has a finite extension in the

least Herbrand model of P .

We use the notion of derivation trees and derivation steps in several proofs.

Definition 2.1 Derivation tree : Given a program P with database D, derivation trees in

〈P, D〉 are defined as follows:

• Every fact h in D is a derivation tree for itself; a single node with label h.

• Let R be a rule: p: −q1, . . . , qn in P , let di, 1 ≤ i ≤ n, be facts with derivation trees Ti,

and let θ be the mgu of (q1, . . . , qn) and (d1, . . . , dn). Then the following is a derivation

tree for p[θ]: the root is a node labeled with p[θ] and R, and each Ti, 1 ≤ i ≤ n, is a child

of the root.

A derivation step for fact p[θ] consists of a rule R : p: −q1, . . . , qn, and facts di, 1 ≤ i ≤ n,

with derivation trees, such that θ is the mgu of (q1, . . . , qn) and (d1, . . . , dn). Thus, a derivation

step consists of a non-leaf node and all its children in a derivation tree. 2
1Our definitions and results can be extended to handle features such as negation, set grouping and aggrega-

tion [6].
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Note that the substitution θ is not applied to the children of p[θ] in the second part of the

above definition. Thus, a derivation tree records which set of (previously generated) facts is

used to generate a new fact using a rule, rather than the set of substitution instances of these

facts that instantiated the rule. Derivation trees are important due to the following well-known

property (see for example [18]):

Proposition 2.1 For every fact t in the least Herbrand model, there is a derivation tree with

root r, and a substitution σ such that t = r[σ], and for every fact r′ that is the root of a derivation

tree, each fact t′ that is a ground instance of r′ is in the least Herbrand model. 2
Definition 2.2 Derivation height : The height of a derivation tree is defined to be the

number of nodes in the longest path in the tree (which is always from the root to a leaf). The

derivation height of a fact is defined as the minimum among the heights of its derivation trees.2
Definition 2.3 Rule application, Evaluation : The application of a rule R, using a given

set of facts D, denoted by R(D), produces the set of all facts that can be derived in a single

derivation step, using R and only the facts in D.

We define an evaluation as a sequence of rule applications. 2
Definition 2.4 Non-repetition property : An evaluation is said to have the non-repetition

property if no derivation step is repeated in the evaluation. 2
A fact is said to have been seen by a rule R if the fact was available to an application of

R. The independent application of a set of rules {R1, . . . , Rn} on a set of facts D is defined as

R1(D) ∪ . . . ∪ Rn(D); i.e. each rule is applied once but the facts produced using a particular

rule application are not seen by any of the other rules in the set. The closure of a set of rules

R = {R1, . . . , Rn} using a given set of facts D refers to the derivation of all facts that can be

computed using the given facts, and any number of applications of the rules, i.e.

closure(R, D) = D ∪ F (D) ∪ F 2(D) ∪ F 3(D) ∪ . . .

where F (D) = R1(D) ∪ . . . ∪ Rn(D).

We also use some terminology from graph theory. A directed graph G = (V, E) (where V

is the vertex set and E is the edge set) is said to be strongly connected if every vertex in V is

reachable (using the directed edges in E) from every other vertex in V . Given a directed graph

G, a subgraph G1 of G is said to be a strongly connected component (SCC) of G if G1 is a

6



maximal subgraph in G that is strongly connected. Note that the SCCs of a directed graph G

partition the vertices of G. Define the reduction of G wrt the SCCs as the graph G′ = (V ′, E ′)

obtained with vertex set V ′ being the set of SCCs {S1, . . . , Sk} of G. An edge (Si, Sj), i 6= j,∈ E ′

if there is an edge (Vk, Vl) ∈ E, where Vk is a vertex in Si and Vl is a vertex in Sj . The reduction

G′ of G reflects the SCC structure of G, and is acyclic. An SCC S1 is said to be lower than

SCC S2 in G if there is a (non-trivial) path from S1 to S2 in G′.

Definition 2.5 Rule (predicate) graph : Given a program P with rules R = {R1, R2, . . .,

Rn}, we define the rule graph of P as the directed graph G = (R, E), where (Ri, Rj) ∈ E iff the

head of Ri unifies with a predicate occurrence in the body of Rj . We refer to SCCs in the rule

graph as Rule-SCCs.

Given a program P with predicates Pred = {p1, p2, . . . , pn}, we define the predicate graph

of P as the directed graph G = (Pred, E), where (pi, pj) ∈ E iff pi occurs in the body of a rule

defining pj . We refer to SCCs in the predicate graph as Pred-SCCs. 2
Where the distinction is not relevant, we refer to Rule-SCCs and Pred-SCCs as SCCs.

Given a program P , Pred-SCCs S1, . . . , Sm are said to be in topological order, if whenever Si

contains a predicate used in Sj , then i ≤ j.

2.2 Basic Semi-Naive Evaluation

Given a program P with an input database D, the Naive evaluation ([2]) of 〈P, D〉 proceeds

in iterations. In each iteration, each of the rules in the program is independently applied on

the set of available facts, and the set of available facts is updated at the end of the iteration.

The Naive evaluation terminates when no new facts can be computed for any of the derived

predicates of the program. The database D constitutes the initial set of available facts. This

evaluation strategy can be refined by evaluating one strongly connected component (SCC) of

the rule graph at a time, in a topological ordering of the Rule-SCCs. The Naive evaluation

of a program on a database is extremely inefficient since it repeats a lot of derivations; each

derivation step made in an application of a rule is repeated in every subsequent application of

the same rule. Example 2.1 below illustrates this.
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Iteration Derivations made

1 {R1 : anc(1,2),R1 : anc(2,3),R1 : anc(4,5)}

2 {R2 : anc(1,3),R3 : anc(1,3), R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5)}

3 {R2 : anc(1, 3), R3 : anc(1, 3), R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5)}

Table 1: Derivations in a Naive Evaluation of P

Example 2.1 Consider the following program 〈P, Q〉:

R1 : anc(X, Y ) : − par(X, Y ).

R2 : anc(X, Y ) : − par(X, Z), anc(Z, Y ).

R3 : anc(X, Y ) : − anc(X, Z), anc(Z, Y ).

par(1, 2). par(2, 3). par(4, 5)..

Query: ?-anc(1, X).

A naive bottom-up evaluation of 〈P, Q〉 would result in the derivations of anc facts as shown

in Table 1. (The rule used to derive a fact is also indicated, and new derivations are shown in

bold-face.) Only anc(1, 2) and anc(1, 3) are answers to the query. Note that each derivation

made in an iteration of naive evaluation is repeated in subsequent iterations. 2
Recall that an evaluation is said to have the non-repetition property if no derivation step is

repeated in the evaluation. A number of researchers have independently proposed an evaluation

technique that we call Basic Semi-Naive, or BSN, with the non-repetition property ([9, 19, 5,

2, 1]). Given a program P , the Basic Semi-Naive (BSN) evaluation of P proceeds a Pred-SCC

at a time in a topological ordering of the Pred-SCCs. There are essentially two components to

the BSN evaluation of a Pred-SCC.

1. The first is a rewriting of the Pred-SCC S that defines “differential” versions of predicates,

in order to distinguish facts that have been newly generated (and not yet used in inferences)

from older facts. We present below a variant of the version described in [1].

For each predicate p defined in S, we have four predicates p, pold, δpold and δpnew. For each

rule in S of the form R : p : −q1, . . . , qm, where q1, . . . qm are all non-recursive to p, the

following semi-naive rewritten rule is obtained ([1]) from R: R1 δpnew: −q1, . . . , qm. We

call such rules non-recursive semi-naive rules.

For each rule in S of the form: R : p : −p1, . . . , pn, q1, . . . , qm, where p1, . . . , pn (n > 0) are

mutually recursive to p and q1, . . . qm are not, the following n semi-naive rewritten rules
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are obtained from R:

R1 : δpnew : − δpold
1 , p2, . . . , pn, q1, . . . , qm.

R2 : δpnew : − pold
1 , δpold

2 , p3, . . . , pn, q1, . . . , qm.

...

Rn : δpnew : − pold
1 , pold

2 , . . . , pold
n−1, δp

old
n , q1, . . . , qm.

We call such rules recursive semi-naive rules.

2. The second component is a technique to apply the rewritten rules and update these dif-

ferentials, ensuring that all derivations are made exactly once.

In evaluating S, the first iteration consists of applying each of the semi-naive (both non-

recursive and recursive) rewritten rules in S. Subsequent iterations consist of applying only

the recursive semi-naive rules. The evaluation of S proceeds by iterating until no new facts

are computed for any of the predicates defined in S. After applying the semi-naive rules

in an iteration, the extensions of the semi-naive relations for each pi are updated using

Procedure SN Update below. (Note that the operators “−” and “∪” involve subsumption

checks if non-ground facts are generated.)

procedure SN Update(pi)

pold
i := pold

i ∪ δpold
i .

δpold
i := δpnew

i − pold
i .

pi := pold
i ∪ δpold

i .

δpnew
i := φ.

At every stage of the evaluation, the set of relations pold
i , for all i, has the property that

every derivation that uses only these facts has been made. This can be seen from the nature of

the δ terms in rule bodies, and the order of updates of the various semi-naive relations.

Example 2.2 Consider again the program P of Example 2.1. Using BSN, the sequence of

derivations made is shown in Table 2. Note that each derivation made in the naive evaluation

is also made in the BSN evaluation. However, the BSN evaluation does not repeat any deriva-

tions. But if a fact (anc(1, 3) in this case) is derived by two different derivations, each of these

derivations is made in the BSN evaluation.
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Iteration Derivations made

1 {R1 : anc(1,2),R1 : anc(2,3),R1 : anc(4,5)}

2 {R2 : anc(1,3),R3 : anc(1,3)}

3 {}

Table 2: Derivations in a BSN Evaluation of P

Such “redundant” derivations can be avoided by recognizing that every fact derived using

rule r2 is also derived using r3 and vice versa. Consequently, a scheme that prunes redundant

derivations ([11], for instance) could recognize this and never apply rule R3; the derivation of

R3 : anc(1, 3) is not made in such a case. Given a program that has redundant derivations, its

evaluation using BSN does not eliminate such derivations.

Rewriting the program P of Example 2.1 using Magic Sets, and evaluating the rewritten

program also results in avoiding the derivation of anc(4, 5), since this is “irrelevant” to computing

the answers to the query. Refer to [7, 20] for more details. 2
2.3 Control Expressions

Helm [12, 11] introduced the notion of control on the bottom-up evaluation of logic programs

using control expressions, and also looked at control as a way of increasing the efficiency of eval-

uation by eliminating some redundant derivations. Control expressions have also been proposed

to let the user specify a desired semantics in the presence of negation ([13]), as well as evaluate

the Magic Sets transformation of stratified logic programs ([8]). While applications of control

expressions have been considered, not much attention has been given to efficient implementation

of control expressions.

Let R1, . . . , Rn denote the rules of a program. The syntax of our control expressions is given

by the following grammar.

S → T

T → F | F + T | F ⊕ T | F · T

F → Ri | (T ) | F ∗ | F •

where S is the start symbol of the grammar.

A control expression α is a (non-deterministic) mapping D → D, where D is the set of all
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database states. (A database state is a set of facts for the base and derived predicates.) The

initial database state consists of the set of all given facts for the base predicates. The following

equations recursively define the semantics of control expressions.

1. If α = Ri, α(D) = D ∪ Ri(D).

2. If α = α1 · α2, α(D) = α2(α1(D)).

3. If α = α1 ⊕ α2, non-deterministically choose α1 or α2 and call it β1 and call the other β2.

if β1(D) 6= D, α(D) = β1(D), else α(D) = β2(D).

4. If α = α•

1, α(D) = αi
1(D), for some arbitrary choice of i ≥ 0, where α0

1(D) = D and

αj+1
1 (D) = α1(α

j
1(D)), j ≥ 0.

5. If α = α∗

1, α(D) = αi
1(D), i > 0, such that αi+1

1 (D) = αi
1(D), where α0

1(D) = D and

αj+1
1 (D) = α1(α

j
1(D)), j ≥ 0.

6. If α = α1 + α2, α(D) = α1(D) ∪ α2(D).

The semantics of the control operators that we consider are different from those considered by

Helm and we do not discuss the evaluation of Helm’s control operators in this paper.

The control expressions we use form a superset of those used by Imielinski and Naqvi [13]. It

follows from [13] that our control expressions can be used to specify the inflationary semantics

for negation ([14]). Our control expressions also form a superset of those used by Beeri et al. [8].

3 General Semi-Naive Evaluation

We now present a technique, General Semi-Naive, or GSN, evaluation, that makes facts com-

puted by an application of a rule R available to all other rule applications immediately after the

application of R, while maintaining the non-repetition property. We first look at how to apply

a single rule using the GSN technique. Then, in Section 3.3, we look at how to evaluate general

control expressions using this technique. Finally, in Section 3.4, we look at a specific form of

control expression to evaluate a program Pred-SCC by Pred-SCC, in a topological ordering of

the Pred-SCCs.
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3.1 GSN for a Rule

Consider any rule Ri in the program:

Ri : ph(t) : − p1(t1), . . . , pn(tn).

where ph, p1, . . . , pn are not necessarily distinct. Similar to BSN evaluation, the GSN evaluation

of a rule consists of two components.

1. The first is the semi-naive rewriting that defines the “differential” versions of predicates.

Associated with each rule Ri of the program, and each (non-recursive as well as recursive)

predicate pj that occurs in the body of Ri, we maintain a relation pold
j,Ri

. (Even if a

predicate occurs more than once in the body of Ri, only one copy of the relation needs to

be maintained per rule.) The set of relations pold
j,Ri

, 1 ≤ j ≤ n, has the property that every

derivation that can be made by an application of Ri using only these facts has already

been made. (In this respect, it is similar to the pold relations maintained by BSN.)

Associated with each predicate pj, we also maintain its complete extension; only one copy

of pj needs to be maintained independent of the number of rules pj occurs in. We also

have “temporary” relations δpnew
j and δpold

j associated with each derived predicate pj that

appears in the program. These δ relations are used to keep track of “new” facts; facts

which have not been seen by a rule application.

The semi-naive rewriting for GSN is obtained as follows. Each predicate pj in the body of

Ri is treated as being recursive to the head. The semi-naive rewriting described for BSN

(in Section 2.2) is modified by replacing each predicate occurrence pold
j in the body of the

semi-naive rewritten versions of rule Ri by pold
j,Ri

.

2. The second is a technique to apply the rewritten rules and update these differentials in the

order specified for rule applications, ensuring that all derivations are made exactly once.

Procedure GSN Rule below describes the application of a rule Ri on a set of facts D.

procedure GSN Rule(Ri, D)

/* All relations mentioned below are part of D. */

Let ph be the predicate defined by rule Ri.

(1) For every predicate pj in the body of Ri, δpold
j := pj − pold

j,Ri
.
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(2) δpnew
h := φ.

(3) Apply each semi-naive rewritten version of Ri

(modified as described earlier) independently.

(4) For every predicate pj in the body of Ri, pold
j,Ri

:= pj .

(5) ph := ph ∪ δpnew
h .

(6) return δpnew
h .

Example 3.1 Consider rule R3 from P in Example 2.1.

R3 : anc(X, Y ) : − anc(X, Z), anc(Z, Y ).

The semi-naive rewriting of this rule for GSN evaluation is given by:

R3′ : δancnew(X, Y ) : − δancold(X, Z), anc(Z, Y ).

R3′′ : δancnew(X, Y ) : − ancold
R3

(X, Z), δancold(Z, Y ).

Prior to the application of these rules, δancold is initialized to anc − ancold
R3

, i.e. the tuples that

have not been seen as yet by an application of R3. The relation δancnew is initialized to φ.

Application of rules R3′ and R3′′ (potentially) results in adding facts to the δancnew relation.

After the application of this rule, each fact in δancold also has been seen by R3. Consequently,

the ancold
R3

relation is updated to reflect this. The newly generated facts are also added to the

anc relation.

Example 3.2 describes the order in which rules are applied (and relations updated) in the

GSN evaluation of program P . 2
3.2 Efficient Implementation of GSN

The description of General Semi-Naive above suggests that each rule has to separately maintain

an extension for each predicate that occurs in its body and would thus appear to be inefficient

in terms of the storage used. However, it has a simple implementation in which each relation

is maintained as a list of tuples. The new facts produced by a rule application are appended

to the extension of the predicate. (In the case of generalized tuples, if a new fact subsumes an

existing fact then the existing fact may have to be deleted.)

In step (4) of GSN Rule(Ri, D), every fact in a relation pj becomes part of pold
j,Ri

. Since the

tuples in each relation pj are ordered by “time” of insertion, a pointer to the end of the extension
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of pj at step (4) has the following property: every pj fact preceding the pointer is part of pold
j,Ri

,

and every pj fact occurring after the pointer has not been seen by rule Ri yet. Hence, the

extension of each pold
j,Ri

is replaced by a pointer into the extension of pj . Similarly, we replace

the extension of each δpold
j by another pointer into the extension of pj such that the set of facts

between the pointers for pold
j,Ri

and δpold
j constitutes the extension for δpold

j . The set of facts

beyond the pointer for δpold
j constitutes the extension of δpnew

j . Thus, separate extensions of a

predicate do not have to be maintained for each rule.

Indices are important for efficiently accessing a relation during evaluation. The pointers into

the extent of a relation pj partition it based on the order of insertion of tuples. Each of the

relations pold
j,Ri

, δpold
j,Ri

and δpnew
j is the union of a contiguous set of these partitions. To index any

of these relations, we index in turn each partition that is contained in it. Since there is at most

one pointer per rule into pj, the number of partitions is bounded by the number of rules in the

program. There are two operations on pointers into the relation. The first is the creation of a

new pointer to the end of a relation, and the second is the deletion of a pointer into a relation.

In the first case a new partition is created (and is initially empty), and in the second case two

existing partitions get merged. This involves moving tuples from the indices of one partition to

the indices of the other. However, each tuple is moved in this fashion only a constant number

of times, and hence this will not increase the time complexity of evaluation. Thus, this indexing

technique can be expected to provide efficient access to tuples. (Alternatively, we could index

each of the relations pold
j,Ri

, δpold
j,Ri

and δpnew
j separately. This could result in each tuple being

indexed multiple times.)

3.3 Implementing Control Expressions Using GSN

The semantics of control expressions was described (using recursive equations) in Section 2.3.

This description also suggests a straightforward way of evaluating control expressions, as out-

lined in Procedure Simple CE(α, D) below. In this evaluation, every fact produced by a rule

application on a given database is immediately added to the database, and made available to

subsequent rule applications. Unfortunately, such an evaluation does not have the non-repetition

property, and can be extremely inefficient.

procedure Simple CE(α, D)
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/* We need to evaluate control expression α on database D. */

case

(1) α = Ri: return D ∪ Ri(D). /* the exit case */

(2) α = α1 · α2: return Simple CE(α2, Simple CE(α1, D)).

(3) α = α1 ⊕ α2:

Non-deterministically choose α1 or α2 and call it β1 and call the other β2.

if Simple CE(β1, D) 6= D, return Simple CE(β1, D)

else return Simple CE(β2, D).

(4) α = α•

1: Choose n ≥ 0 non-deterministically.

for i = 1 to n do

Let D denote the result of evaluating Simple CE(α1, D).

return D.

(5) α = α∗

1:

repeat

Let D′ denote D at this stage.

Let D denote the result of evaluating Simple CE(α1, D).

until (D = D′)

return D.

(6) α = α1 + α2: return Simple CE(α1, D) ∪ Simple CE(α2, D).

end case

Note that Procedure Simple CE is non-deterministic in that the final database state may not be

uniquely determined if the control expression contains ⊕ or •.

Since a control expression is a non-deterministic mapping, we use {Semantics(α, D)} to

denote the set of all possible database states that are results of α(D). Similarly, we use

{Simple CE(α, D)} to denote the set of all possible results of the procedure Simple CE(α, D).

Theorem 3.1 For all databases D, and control expressions α, {Simple CE(α, D)} = {Semantics

(α, D)} 2
The proof follows in a straightforward manner from the direct correspondence between each

case in the semantics of control expressions and Procedure Simple CE.
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Consider the restricted set of control expressions generated by the grammar described in

Section 2.3 without the production that uses the “+” operator. Procedure GSN CE (α, D) below

describes how we can evaluate such a control expression while preserving the non-repetition

property.

procedure GSN CE(α, D)

α is a control expression and D is an initial database.

/* D contains the pj as well as all pold
j,Ri

relations. */

case

(1) α = Ri: return D ∪ GSN Rule(Ri, D).

· · ·

/* Cases (2)-(5) remain unchanged from Simple CE(α, D). */

end case

The updates to the various differential relations (corresponding to the predicates occurring

in the head and body of rule Ri) performed by GSN Rule maintain the set of facts that have been

used by the rule Ri in previous applications of Ri. This ensures that in subsequent applications of

Ri, none of the previous derivations is repeated. Intuitively, each rule in the program individually

ensures that its applications have the non-repetition property; we prove this claim formally in

Theorem 3.2. First we need the following proposition and its corollary.

Proposition 3.1 Suppose a control expression α does not use the operator “+”. Given a

database D, any evaluation of Simple CE(α, D) performs a sequence of rule applications; each

rule application in the sequence takes as input the set of all facts derived up to the previous rule

application in the sequence. 2
The intuition behind the proof of this proposition is that each call to Simple CE either

performs a rule application, or performs a sequence of recursive calls to Simple CE, each of

which takes as input all facts derived in earlier calls. The structure of GSN CE is similar to that

of Simple CE, and hence we have the following corollary.

Corollary 3.1 Suppose a control expression α does not use the operator “+”. Given a database

D, any evaluation of GSN CE(α, D) performs a sequence of calls to GSN Rule; each call takes as

input the set of all facts derived up to the previous call in the sequence. 2
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Since GSN CE is a non-deterministic procedure, we use {GSN CE(α, D)} to denote the set

of all possible results of GSN CE(α, D).

Theorem 3.2 For all databases D, and control expressions α that have no occurrence of the

“+” operator, {GSN CE(α, D)} = {Simple CE(α, D)}. Further, evaluations of GSN CE have the

non-repetition property.

Proof: By Proposition 3.1 and Corollary 3.1, Simple CE (resp. GSN CE) evaluations of control

expressions that do not contain “+” perform a sequence of rule applications (resp. calls to

GSN Rule).

We first prove three properties of a sequence of calls to GSN Rule. Consider a particular call

to GSN Rule(Ri, D) in this sequence of calls.

P1. Before step (3) of GSN Rule, for each predicate pj occurring in the body of Ri, the set of

facts δpold
j = pj − pold

j,Ri
has not been seen by Ri.

P2. Before step (3) of GSN Rule, every derivation that could be made by an application of Ri

using only the facts in the set of relations pold
j,Ri

, for all j, has already been made.

P3. After step (3) (but before step (5) where ph is updated) of GSN Rule, every derivation that

could be made using Ri and only the facts in the set of relations pj , for all j, has been made.

We prove these by induction on the number of times GSN Rule(Ri, ) is called. Before the first

call to GSN Rule(Ri, ), pold
j,Ri

is empty for all pj in the body of Ri. The call to GSN Rule(Ri, )

computes all facts that can be derived from the given set of facts for the body predicates. Hence,

P1 and P2 are true before step (3) and P3 is true after step (3), and the basis holds.

For the induction step, assume that P1, P2, and P3 hold up to the kth call to GSN Rule(Ri, ),

and consider the k + 1th call to GSN Rule(Ri, ). Steps (4) and (5) of GSN Rule in the kth call

to GSN Rule(Ri, ), and step (1) in the k + 1th call to GSN Rule(Ri, ) ensures P1. Since P3

holds in the kth call to GSN Rule(Ri, ), step (4) guarantees that P2 holds in the k + 1th call

to GSN Rule(Ri, ). Since P2 holds in the k + 1th call to GSN Rule(Ri, ), step (1) and the

correctness of semi-naive rewriting ensures that P3 holds in the k + 1th call to GSN Rule(Ri, ).

This completes the proof of P1, P2, and P3.

The GSN evaluation of a control expression without any occurrence of the “+” operator

proceeds sequentially and does not have any parallel branches; databases never need to be

merged and, hence, for each predicate p and each rule R that uses p, the relations pold
R and δpold
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are well defined. Property P1 then ensures that no derivations using any rule R are repeated

and hence evaluations of GSN CE (for control expressions without the “+” operator) have the

non-repetition property.

Claim 1: Consider a particular evaluation of Simple CE(α, D) (where the choices, if any, due to

occurrences of the ⊕ or • operators, have been made). Then, there is an equivalent evaluation

of GSN CE(α, D).

Claim 2: Consider a particular evaluation of GSN CE(α, D) (where the choices, if any, due to

occurrences of the ⊕ or • operators, have been made). Then, there is an equivalent evaluation

of Simple CE(α, D).

The intuition behind Claims 1 and 2 is that procedures GSN CE and Simple CE have the

same recursive structure, and calls to GSN Rule make the same inferences as new inferences

made by the corresponding naive rule application. For formal proofs see [21].

This ends the proof of the theorem. 2
Evaluating control expressions that contain the “+” operator using the GSN evaluation tech-

nique presents some difficulties. Recall that the evaluation of the “+” operator involved merging

the two databases obtained by evaluating the operands of the “+” operator independently on

the input database. Merging the pold
j,Ri

relations produced by the two operands of the “+” cannot

in general be done consistently. In the special case that the two operands of a “+” operator do

not have any rule in common, we can merge the databases consistently, by merely taking the

union of the two. This handles the case of control expressions of the form (R1 +R2 +. . .+Rm)∗,

which simulate Basic Semi-Naive evaluation, as well as control expressions in the class PCE(P )

(described in Section 4.1), which can be evaluated using Predicate Semi-Naive evaluation.

3.4 GSN for a Program

Consider a program P . With each Pred-SCC S in P , we can associate all the (non-recursive and

recursive) rules defining the predicates in S. The evaluation of S consists of repeated application

of the rules associated with S, and the program P can be evaluated Pred-SCC by Pred-SCC in

a topological ordering of the Pred-SCCs of P . Procedure GSN Prog below describes such a GSN

evaluation of a program. The GSN evaluation of a single Pred-SCC is described by GSN SCC.

procedure GSN Prog(P )
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Let S1, . . . , Sm be a topological ordering of the Pred-SCCs of P .

/* S0 is assumed to contain all the base predicates. */

for j = 1 to m do GSN SCC(Sj)

procedure GSN SCC(Si)

Let the ordering of the non-recursive rules for the predicates in Si be E1
i , . . . , E

m
i .

Let the ordering of the recursive rules for the predicates in Si be R1
i , . . . , R

n
i .

if no predicate in Si has any recursive rule defining it, then

Evaluate the following control expression:

(E1
i · . . . · Em

i ) using GSN CE.

else /* at least one of the predicates in Si has a recursive rule defining it */

Evaluate the control expression

(E1
i · . . . · Em

i ) · (R1
i · . . . · Rn

i )∗ using GSN CE.

In the evaluation of a Pred-SCC S of program P , the non-recursive rules are applied once,

followed by the repeated application of the recursive rules of S. The Pred-SCC structure of P

ensures that each non-recursive rule E in S only has body predicates that are in “lower” Pred-

SCCs of P . Consequently, the facts produced by the application of any of the non-recursive

rules cannot be used by any of the other non-recursive rules in S; thus, the order of application

of the non-recursive rules in GSN SCC is irrelevant. Thus we have the following theorem (for a

formal proof, see [21]).

Theorem 3.3 Procedure GSN Prog has the non-repetition property, is sound, and if all the

predicates defined in the program are safe, is complete wrt the least fixpoint semantics. 2
We illustrate GSN Prog using an example.

Example 3.2 Consider again program P of Example 2.1.

F1 : par(1, 2). F2 : par(2, 3). F3 : par(4, 5).

R1 : anc(X, Y ) : − par(X, Y ).

R2 : anc(X, Y ) : − par(X, Z), anc(Z, Y ).

R3 : anc(X, Y ) : − anc(X, Z), anc(Z, Y ).

Facts par(1, 2), par(2, 3), and par(4, 5) are in S0. Rules R1, R2 and R3 are all in Pred-SCC S1.

A Pred-SCC by Pred-SCC evaluation of P using GSN Prog would proceed as follows.
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Iter/Rule Relation Facts in relation at end of rule application (New facts in bold-face)

0/R1 anc {R1 : anc(1,2),R1 : anc(2,3),R1 : anc(4,5)}

par {F1 : par(1, 2), F2 : par(2, 3), F3 : par(4, 5)}

parold
R1 {F1 : par(1,2),F2 : par(2,3),F3 : par(4,5)}

1/R2 anc {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5),R2 : anc(1,3)}

ancold
R2 {R1 : anc(1,2),R1 : anc(2,3),R1 : anc(4,5)}

par {F1 : par(1, 2), F2 : par(2, 3), F3 : par(4, 5)}

parold
R2 {F1 : par(1,2),F2 : par(2,3),F3 : par(4,5)}

1/R3 anc {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5), R2 : anc(1, 3),R3 : anc(1,3)}

ancold
R3 {R1 : anc(1,2),R1 : anc(2,3),R1 : anc(4,5),R2 : anc(1,3)}

2/R2 anc {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5), R2 : anc(1, 3), R3 : anc(1, 3)}

ancold
R2 {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5),R2 : anc(1,3),R3 : anc(1,3)}

par {F1 : par(1, 2), F2 : par(2, 3), F3 : par(4, 5)}

parold
R2 {F1 : par(1, 2), F2 : par(2, 3), F3 : par(4, 5)}

2/R3 anc {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5), R2 : anc(1, 3), R3 : anc(1, 3)}

ancold
R3 {R1 : anc(1, 2), R1 : anc(2, 3), R1 : anc(4, 5), R2 : anc(1, 3),R3 : anc(1,3)}

Table 3: Derivations in a GSN Evaluation of P

S1 contains only one non-recursive rule, R1. Assume the ordering of recursive rules in S1

to be R2, R3. (Alternatively, R3, R2 could be the rule order assumed, and subsequent details

worked through.) Consequently, the evaluation of S1 requires evaluation of the control expression

(R1) · (R2 · R3)∗. Table 3 describes the facts in the various relations during the GSN Prog

evaluation of P using this control expression.

Only the relevant relations that affect and are affected by the rule application are shown.

Other relations remain unchanged from the previous step. Initially, par contains {par(1, 2),

par(2, 3), par(4, 5)}, and all other relations are empty. Iteration 0 refers to the evaluation of the

control expression (R1). Subsequent iterations refer to the evaluation of the control expression

(R2 · R3)∗.

Note that the same derivations are made in the GSN evaluation of P as in the BSN evaluation

of P (Table 2). 2
We discuss the issues involved in selecting an ordering of rules in Section 5.
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4 Predicate Semi-Naive Evaluation

We now present a technique, Predicate Semi-Naive, or PSN, evaluation that has the non-

repetition property and can utilize facts produced by a rule application in the same iteration they

have been derived in, though not immediately.2 This technique maintains just one version of the

extension of each predicate and incurs no additional overheads compared to BSN evaluation.

We first look at how to evaluate a restricted set of control expressions for evaluating a program

using this technique. Then, in Section 4.2, we look at a specific form of control expression to

evaluate a program Pred-SCC by Pred-SCC in a topological ordering of the Pred-SCCs.

Similar to BSN (and GSN) evaluation, there are two components to PSN evaluation.

1. The first is the semi-naive rewriting that defines “differential” versions of predicates.

Similar to BSN evaluation, we maintain four relations p, pold, δpold and δpnew for each

predicate p defined in the program. The semi-naive rewriting is identical to the rewriting

described for BSN evaluation.

2. The second component is a technique to apply the rewritten rules and update these differ-

entials, ensuring that all derivations are made exactly once. Procedure PSN CE describes

this component for a restricted class of control expressions for a program.

4.1 Implementing Control Expressions Using PSN

Using PSN, we can evaluate a restricted class of control expressions while obtaining the non-

repetition property. For a program P , this class of control expressions is given by PCE(P ).

The class PCE(P ) : Consider a program P . The class of expressions PCE(P ) is as follows.

Let S1, . . . , Sk be any topological ordering of the Pred-SCCs of P . Then, the expression

(PCE(S1) · . . . · PCE(Sk)) is in the class PCE(P ).

The class PCE(S) : Consider a Pred-SCC S. The class of expressions PCE(S) is as follows.

Let p1, . . . , pm be some (not necessarily all) of the predicates in S. Let s1, . . . , sn be

any partitioning of the predicates p1, . . . , pm. Let E1
si
, . . . , Eai

si
be the non-recursive rules

defining predicates in si, and let R1
si
, . . . , Rbi

si
be the recursive rules defining predicates in

2Although we describe just two evaluation strategies, a gradation is possible between GSN and PSN evaluation

of SCCs, resulting in a range of evaluation strategies. Some set of predicates may be evaluated according to the

strategy used by GSN, and other predicates evaluated according to PSN. We do not elaborate further on this.
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si, 1 ≤ i ≤ n. Let Esi
stand for the control expression E1

si
+. . .+Eai

si
, and let Rsi

stand for

the control expression R1
si

+ . . .+ Rbi
si
. If none of p1, . . . , pm has any recursive rule defining

it, then the expression (Es1
) · . . . · (Esn

) is in PCE(S). If at least one of p1, . . . , pm

has a recursive rule defining it, then (Es1
+Rs1

) · . . . · (Esn
+Rsn

) · (Rs1
· . . . ·Rsn

)∗

is in PCE(S).

Procedure PSN CE(α, D) below describes the PSN evaluation of a restricted set of control

expressions, without occurrences of the “⊕” and the “•” operators. Note that the absence of

these operators means that each control expression is a deterministic mapping.

procedure PSN CE(α, D) /* Evaluate control expression α on database D. */

case

(1) α = R1 + . . . + Rn: /* the exit case */

for i = 1 to n do

Apply each semi-naive rewritten version of Ri on database D.

Let D denote the resulting database.

for every predicate pj defined by a rule in α, call SN Update(pj).

(2) α = α1 · α2:

Evaluate PSN CE(α1, D).

Let D′ denote the resulting database.

Evaluate PSN CE(α2, D
′).

(3) α = (α1)
∗:

repeat

Let D′ denote D at this stage.

Evaluate PSN CE(α1, D).

Let D denote the resulting database.

until (D = D′)

end case

The Simple CE evaluation of a control expression in PCE(S) first applies the rules in (Es1
+

Rs1
) independently. All facts computed are then added to the database. This is followed by

applying the rules in (Esi
+ Rsi

) independently, adding facts computed to the database, for
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successive values of i until i = n. The Simple CE evaluation then applies the rules in Rsj

independently, adding facts computed to the database, for j = 1 . . .n, and repeats this until

nothing new is derived.

The PSN CE evaluation of a control expression in PCE(S) is very similar. It first applies

the (semi-naive versions of the) rules in (Esi
+ Rsi

), followed by an SN Update of the predicates

in the partition si, for successive values of i until i = n. The PSN CE evaluation then applies

the rules in Rsj
followed by an SN Update of the predicates in the partition sj for j = 1 . . .n,

and repeats this until nothing new is derived.

Theorem 4.1 Consider a program P , a database D, and a control expression α in the class

PCE(P ). The resulting database after evaluating PSN CE(α, D) is the same as Simple CE(α, D).

Further, evaluations of PSN CE have the non-repetition property.

Proof: (Sketch) It is easy to show that the evaluation of PSN CE(α, D) is sound, i.e., its result

is contained in the result of Simple CE(α, D).

To show that it is complete, we do the following. We first sequentially number applications

of rules in evaluations of PSN CE(α, D) as well as evaluations of Simple CE(α1, D) such that

rule applications made in parallel have the same number. Next we construct an ordering of

the facts generated in an evaluation of Simple CE(α, D) based on the numbering of the first

rule application that generated the fact. Any derivation using any rule R that is made in an

evaluation of Simple CE(α1, D) will be made (for the first time) during the first application of

R after the generation of the last (in the ordering) fact used in the derivation. We then show

by induction on the numbering of rule applications in Simple CE(α, D) (and using the semi-

naive updates performed in the evaluation of PSN CE(α, D)) that this derivation is made in an

application of R with the same number, in an evaluation of PSN CE(α, D).

To prove the non-repetition property, we show that the semi-naive updates are done in such

a fashion that a derivation as above can be made only in the rule application mentioned above.

Thus only one rule application can make any derivation. 2
For a full proof of this theorem, see [21].

4.2 PSN for a Program

Consider a program P . With each Pred-SCC S in P , we can associate all the (non-recursive

and recursive) rules defining the predicates in S. The PSN evaluation of S consists of repeated
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applications of the rules associated with S, and the program P can be evaluated Pred-SCC by

Pred-SCC in a topological ordering of the Pred-SCCs of P . Procedure PSN Prog below describes

the PSN evaluation of a program P , using a control expression in the class PCE(P ) where in

each Pred-SCC of P each predicate is in a partition by itself.

procedure PSN Prog(P )

Let S1, . . . , Sm be a topological ordering of the Pred-SCCs of P .

/* S0 is assumed to contain all the base predicates. */

for j = 1 to m do PSN SCC(Sj)

procedure PSN SCC(S)

Let the ordering of predicates in S be p1, . . . , pk.

Let E1
pi
, . . . , Eai

pi
be the non-recursive rules defining pi, and

let R1
pi

, . . . , Rbi
pi

be the recursive rules defining pi, 1 ≤ i ≤ k.

Let Epi
stand for the control expression E1

pi
+ . . . + Eai

pi
, and

let Rpi
stand for the control expression R1

pi
+ . . . + Rbi

pi
.

if no predicate in S has any recursive rule defining it, then

Evaluate the following control expression:

(Ep1
) · . . . · (Epk

) using PSN CE

else /* at least one of the predicates in S has a recursive rule defining it */

Evaluate the following control expression:

(Ep1
+ Rp1

) · . . . · (Epk
+ Rpk

) · (Rp1
· . . . · Rpk

)∗ using PSN CE.

The control expression for a program essentially implements Pred-SCC by Pred-SCC eval-

uation, with rule ordering within the loop to evaluate a Pred-SCC. It is easy to show that the

semantics of the control expression is equivalent to the fixpoint semantics of the program. From

Theorem 4.1, it follows that the evaluation of the control expression is complete, and has the

non-repetition property. Thus we have the following theorem (see [21] for a formal proof of

correctness).

Theorem 4.2 Procedure PSN Prog has the non-repetition property, is sound, and if all the

predicates defined in the program are safe, is complete wrt the least fixpoint semantics. 2
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Just as the ordering of rules could affect the performance of GSN, ordering of predicates could

affect the performance of PSN. The results of Section 5 can be used to obtain good predicate

orderings for the PSN evaluation of a program.

In a sequential evaluation of a program, PSN evaluation is always preferable to BSN eval-

uation, since it can be implemented with the same overheads per iteration, but can do better

in terms of the number of iterations. The results of Leask et al. [16], who did a performance

evaluation of BSN, PSN and some parallel implementations of BSN using total elapsed time as

a metric on a disk-based system, also indicate that PSN is the evaluation strategy of choice, in

the absence of semantic information about the data in the base relations. PSN may not be able

to utilize facts as early as GSN can, but the overheads associated with GSN could be higher,

and the choice of which strategy to choose is not always obvious.

The following example illustrates the differences between BSN, PSN, and GSN evaluation of

a program.

Example 4.1 Consider the following program P :

R1 : p(X, Y ) : − b1(X, Y ).

R2 : q(X, Y ) : − b2(X, Z), p(Z, Y ).

R3 : p(X, Y ) : − b3(X, Z), q(Z, Y ).

R4 : p(X, Y ) : − b4(X, Z), p(Z, Y ).

b1(4, 5). b2(3, 4). b3(2, 3). b4(1, 2)..

Query: ?-p(1, X).

For the above program, BSN as well as GSN and PSN would evaluate the non-recursive rule,

R1 exactly once (in the beginning) to produce p(4, 5).

Evaluating the rules (R2, R3, R4) repeatedly in this order, using GSN, would produce q(3, 5)

using R2 in the first iteration, and make it immediately available to applications of R3 and R4

in the same iteration. Rule R3 would then produce a fact p(2, 5) in the first iteration, using

which R4 would produce a fact p(1, 5) in the first iteration. Thus, the answer, p(1, 5), to the

query would be produced at the end of the first iteration itself using GSN evaluation of P .

If the predicate ordering chosen for PSN is (q, p), the rule defining q (R2) is applied first, and

the fact (q(3, 5) in the first iteration) produced would be immediately available to applications

of the rules defining p (R3 and R4) in the same iteration. Rules R3 and R4 are then applied

independently, and hence the fact produced using R3 (p(2, 5) in the first iteration) would be
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available to R4 only in the next iteration. Thus p(1, 5), the answer to the query, would be

produced at the end of the second iteration using PSN evaluation of P .

If BSN evaluation is used instead, facts produced by a rule application would not be available

to any other rule application in the same iteration. Consequently, q(3, 5) would be produced in

the first iteration, p(2, 5) in the second iteration, and p(1, 5) (the answer to the query) would

be produced only in the third iteration. 2
5 Rule Orderings that Minimize Rule Applications

Example 5.1 Let q and r be base relations. Consider the following program P :

R0 : pk(X) : − q(X).

R1 : p1(f1(X)) : − pk(X).

· · ·

Rk−1 : pk−1(fk−1(X)) : − pk−2(X).

Rk : pk(fk(X)) : − pk−1(X), r(X).

The non-recursive rule R0 is the first rule to be applied in a BSN evaluation of P . In an

iteration of a Basic Semi-Naive evaluation, all the recursive rules (i.e. R1, . . . , Rk) of the program

are applied independently. Rule Rk will be successfully applied for the first time only in the

kth iteration. However, it would be possible to successfully apply rule Rk in the first iteration

itself if the rules are applied in the order shown, i.e., (R1, R2, . . . , Rk), and the facts produced

by each rule application are immediately made available to subsequent rule applications. If the

computation of a fact using this technique (and the given ordering of rules) took n iterations,

then computation of the same fact using the BSN evaluation strategy could take up to k ∗ n

iterations.

If, instead, the rules are applied in the opposite order, i.e., (Rk, Rk−1, . . . , R1), the number

of iterations taken is the same as BSN evaluation, even if facts produced by a rule application

are made available immediately after the rule is applied. Thus we see the importance of a good

ordering of rules. 2
In this section, we provide a theoretical analysis of how the number of rule applications

(and iterations) in fixpoint algorithms, that have the non-repetition property and apply a rule

using GSN, can be reduced through the use of rule ordering. Our results are significant in that

they indicate how this number can be minimized, independent of the data in base relations,
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over a significant class of rule orderings (Section 5.3). We also present results which suggest

that only this class of rule orderings should be considered in the absence of additional semantic

information (Section 5.4).

The techniques described in this section deal with rule orderings, but can be extended, in a

straightforward fashion, to deal with predicate orderings.

5.1 Benefits of Rule Ordering

The number of inferences has been widely used as a cost metric in the evaluation of logic

programs. However, any evaluation technique that has the non-repetition property makes each

inference (that can be made) exactly once, and hence all the techniques we study are equivalent

under this criterion.

One of the advantages of bottom-up evaluation of logic programs is the increased degree

of set-oriented computation. Given that the total number of inferences made by two different

evaluation techniques is identical, the technique that performs more set-oriented computation

is expected to perform better in terms of the number of I/O operations.

Our theoretical analysis and performance results show that rule ordering can greatly reduce

the number of rule applications, and therefore the number of joins in bottom-up evaluation,

without making additional inferences. This has two benefits:

1. It reduces the overall cost due to constant per-join overheads such as initialization costs,

and per iteration overheads such as updating the various predicate extensions.

2. It increases the degree of set-orientedness. The fewer the number of rule applications

performed, the greater is the number of inferences made in a single rule application. This

increases the degree of set-orientedness, and hence decreases the number of I/O operations.

The reduction in cost due to ordering of rules is orthogonal to other techniques such as

efficient join and indexing strategies, and duplicate elimination techniques—none of these is

made inapplicable by ordering rules.

5.2 Class of Orderings Considered

Definition 5.1 Fair, static orderings : Let the rules of a Rule-SCC S be R1, . . . , Rn. A

fair, static ordering is an ordering of the form (Ri1, . . . , Rin), where i1, . . . , in is a permutation
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of 1, . . . , n. 2
We consider such orderings in Section 5.3. Such an ordering is referred to as a static ordering

since the same ordering is used in each iteration. In such static orderings no rule is applied more

often than other rules. Such orderings are referred to as fair orderings since in the absence

of any prior knowledge of the frequency with which different rules are used, or other semantic

information, we have no basis for applying some rules more often than others. In order to

compute the closure of an SCC S, using a fair ordering, we apply the rules in the given order

in each iteration, repeatedly, making the facts produced by a rule application available to all

subsequent rule applications, till no more facts can be computed. Independent applications of

rules are not considered, since making the facts produced by a rule application available to other

rule applications may significantly reduce the number of rule applications needed to compute

the fixpoint, and can never increase it in a sequential evaluation.

In Section 5.4 we consider static orderings in which some rules can be applied more often than

other rules. Such orderings are referred to as non-fair orderings. This class includes the class

of nested orderings, such as those considered by Kuittinen et al. [15]. Non-fair orderings may

perform somewhat better than fair orderings on some data sets, but, as we show in Section 5.4,

such orderings may also perform considerably worse on other data sets. Hence, in the absence

of any information about the kind of data sets, fair orderings are preferable.

We do not consider orderings where the next rule to be applied is chosen dynamically. Al-

though dynamic orderings may be better than static orderings in terms of the cost criteria

described in Section 5.1, determining which rule to apply may be difficult and involve consider-

able overheads. While dynamic orderings may be worth investigating, we do not consider them

in this paper.

5.3 Fair Orderings

Definition 5.2 Order sequence : Let O be any ordering (Ri1 , . . . , Rin). An order sequence

S = Om denotes the string formed by repeating O, m times.

We use the notation S[k], 1 ≤ k ≤ m ∗ n to denote the kth rule in S. 2
A sequence S1 of length n is said to be a subsequence of a sequence S2 of length m ≥ n, if

there exist n numbers 1 ≤ k1 < k2 < . . . < kn ≤ m, such that S1[i] = S2[ki], 1 ≤ i ≤ n. For

example, (R1, R3, R5) is a subsequence of (R1, R2, R3, R4, R5).
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Definition 5.3 Cycle preserving fair orderings : Consider an SCC S, and let the rules

in S be R = {R1, . . . , Rn}. Let G = (R, E) be the rule graph for the given SCC. Let O be any

fair ordering (Ri1 , . . . , Rin) of the rules in R. Let C be any simple cycle Rj1 , . . . , Rjm
in G.3

We say that a fair ordering O preserves a cycle C, if there is a cyclic permutation O1 of

O such that C forms a subsequence of O1. A fair ordering O on G is a cycle preserving fair

ordering if for every simple cycle C in G, O preserves C. 2
A fair ordering O that does not preserve a cycle C is said to break it. A cycle C is broken

by degree B(C, O) = i, by a fair ordering O, if i is the least number such that for some cyclic

permutation O1 of O, C is a subsequence of Oi
1. Thus a fair ordering that preserves a cycle can

be said to break it by degree one.

Not every graph has a cycle preserving ordering, and it is not hard to construct graphs that

have no cycle preserving ordering. A complete directed graph with three vertices is one such.

In order to compare rule orderings for all rule graphs, we define a relation < on the class of fair

orderings. Given two fair orderings O1 and O2 on a rule graph G, O1 < O2 if for every simple

cycle C in G, B(C, O1) ≤ B(C, O2). If we have O1 < O2 and O2 < O1, we say that the two

orderings are equivalent. The use of this relation will be seen in Section 5.3.1, where we show

in Theorem 5.2 that if O1 < O2 and the two are not equivalent, then given any database, O1

is better than O2 based on the number of iterations needed to compute the closure of an SCC.

We also show that if O1 and O2 are equivalent, the number of iterations needed by each to

compute the closure of an SCC differ by at most a data-independent constant. Thus, we show

that an ordering that preserves all cycles is optimal in the class of fair orderings, under this cost

criterion. From the definition of the relation < we have:

• Cyclic permutations of a fair ordering are equivalent under < , and

• Any two cycle preserving fair orderings are equivalent under < .

Example 5.2 Consider the rule graph shown in Figure 1. The simple cycle 1, 3, 2, 6 is preserved

by the ordering (2, 6, 4, 1, 3, 5) because the ordering has a cyclic permutation (1, 3, 5, 2, 6, 4) which

has the simple cycle as a subsequence. However, this ordering breaks the simple cycle 1, 4, 2, 5

by degree 3. 2
3Though cycles have the same initial and final vertex, we omit the final vertex in our representation, for

convenience.
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Figure 1: An Example Rule Graph

Lemma 5.1 Consider a cycle C = R1 . . .Rm and a fair ordering O. Let O1 be the cyclic

permutation of O that ends with Rm. Then C forms a subsequence of Oi
1 for i = B(C, O), but

not for any smaller i.

Proof: (Sketch) By definition of B(C, O), for some cyclic permutation Or of O, C is a subse-

quence of Oi
r for i = B(C, O), but not for any smaller i. We now take any arbitrary Oi

r as

above, and move elements after the last occurrence of Rm to the head of the sequence, to get

Oi
1. 2

We present proof sketches for many of the results in this section. Full proofs may be found

in [21].

For the class of fair orderings, we next show that cycle preserving fair orderings are optimal

under the cost criterion of the number of iterations needed to compute the closure of an SCC,

with an immediate update strategy. Since the number of rule applications is constant within an

iteration in a fair ordering, the optimality result carries over for the cost criterion of number of

rule applications.

5.3.1 Optimality of Cycle Preserving Orderings

Definition 5.4 Derivation path : A derivation path for a fact is a path in a derivation tree

for the fact, starting from a leaf node. We represent such a path concisely by listing the rules

labeling the nodes in the derivation path in order, starting from the parent of the leaf. 2
Note that two different paths may have the same representation, but that does not affect our

analysis.

Definition 5.5 Derivation index : Let O denote a fair ordering of rules in the program and

T denote a particular derivation tree for p(c). Consider the rule application sequence O′ = Oj,

for arbitrarily large j. With each node in the derivation tree T , we associate a derivation index ,

which is an index into the sequence O′,
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Leaf nodes (corresponding to base facts) are associated with the derivation index zero. The

derivation index of each internal node n′, labeled with a derived fact p′ and a rule R′, is the

minimum possible k such that, O′[k] = R′ and the derivation indices of the children nodes of n′

are less than k. 2
Definition 5.6 Iteration height : Let O denote a fair ordering of rules in the program

and T denote a particular derivation tree for p(c). With each node in the derivation tree we

associate an iteration height ⌈k/m⌉ where k is the derivation index of that node, and m is the

length of O.

A derivation tree is said to be computed by O using n iterations if the iteration height of the

root of the tree under O is n. 2
The iteration height of a node is defined syntactically but has the following semantic interpre-

tation. If the iteration height of the root of a derivation tree T is n, then the corresponding

fact p(c) is computed in or before the nth iteration of the application of rules according to the

ordering O. If the fact is computed in the nth iteration, there is a derivation tree with iteration

height n for the fact.

Definition 5.7 Iteration count : The iteration count of a fact, for a given fair ordering, is

defined to be the minimum of the iteration heights under the given ordering, of derivation trees

for this fact. 2
This gives us the earliest iteration in which the fact is derived. This link between the semantic

notion of the number of iterations needed to compute a fact, and the iteration heights of deriva-

tion trees for the fact enables us to argue about the computation of facts using purely syntactic

criteria.

Definition 5.8 Iteration length : Consider a derivation tree T for a fact, and a fair ordering

O. Given a derivation path s in T , the iteration length L(s, O) of the path is the minimum n,

such that the path forms a subsequence of On.

The minimum length order sequence for s is defined to be OL(s,O). 2
We next show the relationship between the notion of the iteration length of a path, and the

iteration height of a tree. For a tree T , if T has no internal nodes, define L(T, O) = 0. Otherwise

define L(T, O) = max{L(s, O) | s is a path in T}.

The following lemma permits us to argue about the number of iterations it takes to compute

a derivation tree based on the iteration lengths of the derivation paths in the tree.
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Figure 2: Path with Two Alternative Cycle Sequence Lengths

Lemma 5.2 Given a derivation tree T for a fact p(c), and a fair ordering O, the derivation tree

can be computed by a bottom-up fixpoint evaluation using rule ordering O in L(T, O) iterations.

L(T, O) is thus also the iteration height of T .

Proof: (Sketch) By definition of iteration height, a tree is computed by a bottom-up fixpoint

evaluation in as many iterations as its iteration height. We prove by an induction on the height

of trees that the iteration height of a node is the same as the maximum of the iteration lengths

of paths from the leaves of the tree to that node. 2
The above lemma lets us reason in terms of derivation paths rather than derivation trees.

We next prove certain properties of derivation paths. The next lemma proves one such property,

and is used in turn to prove the result in Theorem 5.1.

Lemma 5.3 For every derivation path s, there exists a sequence s0, . . . , sn of paths in the rule

graph G, such that, (1) s = sn. (2) s0 is an acyclic path in G. (3) For each i > 0, si can be

constructed from si−1 as follows: Choose a rule Rjk
in si−1, and a simple cycle Ci = Rj1, . . . , Rjk

in G, and insert the cycle just after Rjk
.

Proof: (Sketch) The proof is by induction on lengths of paths, and can be easily understood by

reversing the process: given a path it is easy to find a simple cycle in it unless it is acyclic. Just

start from the beginning, go down the path until any node is repeated; the portion between the

repeated nodes, including one repetition of the node, is a simple cycle. By removing the cycle

and repeating this process until there are no more cycles, we get a sequence of paths in reverse

order, and an acyclic path. 2
For any derivation path s, such a sequence s0, . . . , sn is called a construction sequence for

s. A derivation path may not have a unique construction sequence, and different construction

sequences can have different lengths, as the following example shows.
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Example 5.3 Consider the graph shown in Figure 2. The derivation path 1, 2, 3, 1, 3, 2 has the

following two construction sequences associated with it,

1. (1, 3, 2), (1, 2, 3, 1, 3, 2), which is constructed by inserting the simple cycle 1, 2, 3, 1 into the

acyclic path 1, 3, 2 (note that the repeated node 1 in the simple cycle is not inserted).

2. (1, 2), (1, 2, 3, 2), (1, 2, 3, 1, 3, 2), which is constructed by inserting the simple cycle 2, 3, 2

into the acyclic path 1, 2, and then inserting the cycle 3, 1, 3 into the result (the repeated

nodes in the cycles are not inserted). 2
Given a fair ordering O, we now relate the iteration length of a derivation path s with the

length of the construction sequence for s and the degree by which the given ordering breaks

each of the cycles inserted.

Theorem 5.1 Consider any derivation path s and a construction sequence s0, . . . , sn for s as

defined in Lemma 5.3. Let Ci be the cycle inserted in obtaining si from si−1. For every fair

ordering O, the iteration length of s under O is given by L(s, O) = L(s0, O) +
∑n

i=1 B(Ci, O).

Further, L(s0, O) is bounded by the length of the longest acyclic path in the rule graph of the

SCC.

Proof: (Sketch) The proof is by induction on the number of cycles in the construction sequence

of the derivation path. The basis case is when the number of cycles is zero, and is trivial.

Assume the theorem for all paths with construction sequences having less than k cycles, and

consider a path s with a (minimum length) construction sequence of k cycles. Suppose it has a

minimal length order sequence o = Oj. We remove one cycle c from s to get s′, and using the

induction hypothesis we get an order sequence o′ for s′ with the required length. Suppose the

cycle started with node n, and the previous node in s was mapped to some instance rule m in

o′. We cut o′ just after this instance of m. We show using minimality arguments that the initial

part of o′ must be the same as an initial part of o, and the tail part of o′ must be the same as a

tail part of o. What remains of o is now the part in between. This must end with rule m, and

must be an order sequence for c. By the definition of B(c, O) this must be a cyclic permutation

of OB(c,O). This then gives us the iteration length of the minimal length order sequence for s,

which completes the induction step. 2
Note the interesting fact that the above theorem is true for any construction sequence. Since

the actual iteration length of a path does not depend on the construction sequence chosen,
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this tells us that, in a certain sense, all construction sequences are equivalent. For any cycle

preserving fair ordering O with a construction sequence t0, . . . , tn, L(tn, O) = L(t0, O) + n.

Consider a rule graph G, and two fair orderings O1 and O2 such that O1 < O2. We define

MaxR(O1, O2, G) = max{B(C, O2)/B(C, O1) | C is a simple cycle in G}.

This serves as a bound on how much costlier, based on the number of iterations, O2 can be

compared to O1.

Given any two fair orderings that are related by the < relation, we wish to compare the

number of iterations taken to compute the closure of an SCC by the two orderings. To this end,

we first compare the iteration lengths of derivation paths. This is used to compare the iteration

heights of derivation trees for a fact. We then argue about the number of iterations taken to

derive a fact by the two orderings, by comparing the iteration counts of the fact. This leads

finally to our main result, stated in Theorem 5.2, that relates the number of iterations taken to

compute the closure of the SCC by the two fair orderings.

Lemma 5.4 Consider any two fair orderings O1 and O2 for a graph G, such that O1 < O2.

For any derivation path s, the iteration lengths of s under the two orderings are related as

L(s, O1) − k ≤ L(s, O2) ≤ MaxR(O1, O2, G) · L(s, O1) + k, where k is bounded by the length of

the longest acyclic path in G.

Proof: (Sketch) We get a construction sequence for s, and use Theorem 5.1 to express the

iteration lengths in terms of the length of the construction sequence for s, and the degree to

which cycles are broken by the two orderings. The lemma then follows from the definition of

MaxR. 2
Lemma 5.5 Consider any two fair orderings O1 and O2 for a graph G, such that O1 < O2.

For any derivation tree T , the iteration heights of T under the two orderings are related as

L(T, O1)− k ≤ L(T, O2) ≤ MaxR(O1, O2, G) ·L(T, O1) + k, where k is bounded by the length of

the longest acyclic path in G.

Proof: (Sketch) The proof follows from Lemma 5.2, which links iteration heights directly to

iteration lengths, and Lemma 5.4, which shows a result similar to that of this lemma, for iteration

lengths. 2
Lemma 5.6 Given any fact p(c), and any two fair orderings O1 and O2 for a graph G, such

that O1 < O2, let the iteration counts of p(c), for O1 and O2, be n1 and n2, respectively. n1 and
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n2 are related as n1 − k ≤ n2 ≤ MaxR(O1, O2, G) · n1 + k, where k is bounded by the length of

the longest acyclic path in G.

Proof: (Sketch) A fact can have several derivation trees. We choose derivation trees with

minimum iteration heights under each of the two orderings. Using Lemma 5.5 with the two

derivation trees we directly show the two inequalities in this lemma. 2
Theorem 5.2 Given an SCC S, any two fair orderings O1 and O2 for the rule graph of S,

such that O1 < O2, and any set of base facts, let the number of iterations required to compute

the closure of S by bottom-up fixpoint evaluations using rule orderings O1 and O2 be n1 and

n2 respectively. n1 and n2 are related as n1 − k ≤ n2 ≤ MaxR(O1, O2, G) · n1 + k, where k is

bounded by the length of the longest acyclic path in the rule graph for the SCC.

Proof: (Sketch) We find facts that are computed last under each of the orderings, and using

Lemma 5.6 we show the two inequalities in this theorem. 2
Corollary 5.1 Given any two cycle preserving fair orderings, the number of iterations required

to compute the closure of an SCC by bottom-up fixpoint evaluations using the two orderings

differ by at most a (data-independent) constant. Also, the number of rule applications required

by the two orderings differ by at most a (data-independent) constant. 2
5.3.2 Generating Cycle Preserving Fair Orderings

An SCC with n rules could have an exponential number of simple cycles. A naive algorithm for

generating cycle preserving orderings would examine all O(n!) orderings and all simple cycles to

check if the ordering preserves every simple cycle. Finding an efficient algorithm to construct

orderings that are minimal under the < relation is an open problem, as is the special case

of an algorithm for finding cycle preserving orderings. Finding what complexity classes these

problems belong to is also an interesting open problem.

As a heuristic, we suggest using the reverse of a depth-first search pop-out order of the rule

graph as a rule ordering. This often generates cycle preserving orderings, but not always. For

examples of depth-first search pop-out orders, see [21].

5.4 Non-Fair Orderings

In this section we consider static orderings in which some rules may be applied more often than

other rules. We divide this class into the class of flat orderings and the class of non-flat nested
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orderings.

Definition 5.9 Nested ordering : A nested ordering is an ordering O of the form (O1),

where O1 is generated by the grammar

O1 → R1 | . . . | Rn | O1 · O1 | (O1)∗

where R1, . . . , Rn are the rules of an SCC S of the rule graph, such that each rule in the SCC

occurs at least once in the ordering O. 2
An example is the ordering (R1 · R2 · (R3 · R4)

∗ · R5)
∗. Note that a nested ordering can have

more than one occurrence of any rule in the SCC.

Definition 5.10 Flat ordering : A flat ordering is a nested ordering that has parentheses

only at the outermost level. 2
The nesting level of nested orderings is defined in the obvious manner, where a flat ordering is

defined to have a nesting level of one. We have the following lemma, whose proof is straightfor-

ward.

Lemma 5.7 Consider an SCC S, and any flat ordering O of the rules in S. Let k1 be the

number of rule occurrences in O. Let nopt be the minimum number of rule applications needed

to compute the closure of S on a given database, using a sequential evaluation with immediate

updates. If nO denotes the number of rule applications needed to compute the closure of S on

the same database, using the ordering O, then nO ≤ nopt · k1. 2
We now compare flat orderings with nested orderings.

Lemma 5.8 Consider an SCC S, and let O be any nested ordering with k1 rule occurrences

and a nesting level of s. Let iterbsn be the number of iterations needed to compute the closure of

S using BSN. If nO denotes the number of rule applications needed to compute the closure of S

using the ordering O, then nO ≤ (iterbsn)s · k1.

Proof: (Sketch) No loop in the nested ordering can iterate more than iterbsn times after it is

entered, since iterbsn is the length of the longest derivation path. The result then follows from

the nesting level of the ordering. 2
From the previous two lemmas we have the following theorem, which summarizes our com-

parison of flat and nested orderings.

Theorem 5.3 Consider an SCC S, and any flat ordering Of and any nested ordering On on

S. Let iterbsn be number of iterations needed to compute the closure of S using BSN. If nf and
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nn denote the number of rule applications needed to compute the closure of S using Of and On

respectively, then nf/k ≤ nn ≤ (iterbsn)s · k1, where k is the number of rule occurrences in Of ,

k1 is the number of rule occurrences in On, and s is the nesting level of On.

Proof: The number of rule applications using any flat ordering is bounded as iterbsn ≤ nf ,

where iterbsn is the number of iterations needed to compute the closure of S using BSN. Clearly

nopt ≤ nn, and the theorem follows from Lemma 5.7 and Lemma 5.8. 2
Since an optimal fair ordering must take at least as many rule applications as an optimal

rule ordering, the above theorem also directly bounds how much worse an arbitrary flat ordering

can be compared to an optimal fair ordering.

Note that every fair ordering is also a flat ordering, and hence the above theorem applies when

we compare fair orderings with nested orderings. The worst case performance of nested orderings

is bounded, as shown above. In Section 6 we describe an example where the performance of a

nested ordering is indeed as bad (to within a small constant factor) as the above upper bound

allows (Program P2, data set S64). Thus, although a nested ordering can perform somewhat

better (i.e. nf = c ∗ nn, 1 < c ≤ k) than fair orderings on some data sets, it is possible for it to

perform much worse (when nn = (iterbsn)s.k1) on other data sets. Note also that iterbsn ≥ nf/k.

6 Performance Results

In this section we summarize the results of a performance study of the benefits of immediate

availability of facts, and the benefits of ordering rules as described in Section 5. Our performance

study draws upon and extends the work of Kuittinen et al. [15].

We consider two programs, referred to as P1 and P2 in this section.4 Mostly, we discuss P1,

and discuss P2 only when it offers some additional insight. For a listing of these programs, our

datasets, and further details of our performance evaluation, see [21].

The above programs were hand-coded for each of the evaluation techniques, and measure-

ments were made by running the resultant programs on several data sets (which are described

in [21]. There is a cycle preserving fair ordering for each SCC of P1 and P2, and the column

“General 1” of the tables is for a GSN evaluation using such an ordering. The column “General

2” in the tables for P1 corresponds to a GSN evaluation of P1 using a fair ordering that breaks a

4P1 is the same program that was used in [15].
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Data Set Basic Pred General 1 General 2

A10 3579 1535 1023 2812

B64 146 73 68 80

F10 23 10 7 18

Table 4: Program P1: Number of Iterations

Data Set Basic Pred General 1 General 2

Non-Nl Null Non-Nl Null Non-Nl Null Non-Nl Null

A10 6126 14835 6126 4615 5230 2693 6126 11000

B64 1066 196 549 88 588 14 596 96

F10 73 78 57 17 45 10 73 53

Table 5: Program P1: Number of Joins (Non-Null and Null)

cycle to degree six. Column “Basic” corresponds to a Basic Semi-Naive evaluation, and column

“Pred” is for a Predicate Semi-Naive evaluation using a cycle preserving fair ordering based on

the predicate graph.

For P1 we use the data sets A10, B64, and F10. Data set A10 results in no duplicate

derivations with P1, but takes a large number of iterations. Data set B64 is large, takes a

moderate number of iterations, and results in a moderate number of duplicates. Data set F10

results in a large number of duplicate derivations, but a fewer number of iterations.

For P2 we use two data sets, C16 and S64. C16 is designed such that the nested ordering we

consider performs well, and S64 is designed such that the nested ordering performs very badly

compared to the cycle preserving fair ordering.

Table 4 shows the number of iterations taken by each evaluation strategy on P1. It should

be noted that the total number of rule applications (considered) is directly proportional to

the number of iterations taken. PSN outperforms BSN on this measure. It improves over the

performance of BSN by over 50% on all data sets considered. GSN with a cycle preserving fair

ordering outperforms PSN by about 30% (on A10 and F10) and performs about 50% to 70%

better than BSN. GSN with a bad fair ordering performs much worse than GSN with a good

fair ordering (although it can never be worse than BSN), and this clearly brings out the benefits

of good fair orderings.
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Data Set Eval. Tech. Non-Nl Joins Hashed Constant Logarithmic Linear

A10 Basic 6126 1 1 1 1

A10 Pred 6126 1.000 1.000 1.000 1.000

A10 General 1 5230 0.856 1.000 1.000 1.000

B64 Basic 1066 1 1 1 1

B64 Pred 549 0.525 1.000 0.999 1.000

B64 General 1 588 0.542 1.000 0.997 1.000

F10 Basic 73 1 1 1 1

F10 Pred 57 0.900 1.000 1.004 1.001

F10 General 1 45 0.822 1.003 1.013 1.025

Table 6: Program P1: Normalized Joins Costs (Without Overheads)

If one of the relations in the join is empty, the result of the join is null, and we call such a

join a null join. We may be able to detect this condition at run time without incurring much

cost. Table 5 shows the number of joins used by each evaluation strategy on P1, divided into

the number of null joins, and the number of non-null joins. The total number of joins taken by

General 1 is better than PSN, which in turn is better than BSN. If we count only non-null joins,

this is not strictly true. PSN always performs no worse than BSN, and on B64 performs about

50% fewer non-null joins. General 1 performs 15% to 45% better than BSN on this count. On

one data set, B64, PSN is slightly better (less than 7%) than General 1. However, on the other

two data sets, General 1 outperforms PSN by about 15% to 20%.

The cost of a single join can be modeled in different ways, depending on the join strategy

used. In Table 6 we present the portion of the join cost that excludes the per-join overhead. To

get the full join cost, we must add the overhead per join times the number of (non-null) joins.

In these tables, the column “Hashed” is a measure of the join cost (excluding overheads) using

the hash join technique. The column “Constant” corresponds to a nested loop join with indices

that can be accessed in constant time (for instance, a hash index), the column “Logarithmic”

corresponds to nested loops join with a logarithmic access time index (for instance, a B-tree

index), and the column “Linear” corresponds to a nested loop join without indices (which is

equivalent to an index with access time linear in the size of the relation). All these costs are

normalized (with Basic = 1 for each technique and data set) order of magnitude estimates
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derived directly from the sizes of the relations. The size of the result of the join is included in

the join cost. Note the following important points:

• I/O costs and overhead costs for joins are not measured in these tables. The number of

non-null joins may be used to estimate the total overhead and this should be added to the

cost in the table. Since the overheads are implementation dependent and we currently lack

an actual system to measure the overheads, we do not present the total cost. Some results

comparing PSN with BSN using total elapsed time on a disk based system are presented

in [16].

• The only comparisons that may be made from this table are the differences between the

different evaluation strategies. These numbers should not be used to directly compare

different join techniques (i.e. the numbers in a single row of the table should not be

compared).

The performance study of Kuittinen et al. [15] only models the join cost in one way, the hashed

join method.

The performance results in Table 6 indicate that for the hash join strategy the total join cost

closely parallels the number of non-null joins. PSN and GSN do consistently better than BSN

under this metric. The performance results also indicate that under other join cost assumptions

(nested loops without indices, and with constant or logarithmic access time indices), the total

join costs apart from the I/O costs and other overheads associated with each join, are practically

the same for each of the fixpoint evaluation strategies we study (BSN, PSN, and GSN). In these

cases the number of non-null joins becomes the significant factor.

The cost of checking for and eliminating duplicates could form a significant part of the total

cost of evaluation. We studied duplicate elimination costs under various assumptions about the

indexing costs (constant, logarithmic, linear), but without a detailed model of I/O costs. Since

the costs for BSN, PSN and GSN varied by less than 5%, we omit these results.

From Table 7, for the number of rule applications, it can be seen that for C16, Nested is

better than the fair ordering indicated by General 1. However, for S64 Nested performs much

worse than any of the other evaluation strategies. Both PSN and General 1 are about 20% to

65% better than BSN. This pattern continued to hold approximately when we compared Nested

and other strategies with respect to the number of joins.
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Data Set Basic Pred General 1 Nested

C16 282 221 207 179

S64 1717 588 583 2536

Table 7: Program P2: Number of Rule Applications

Our performance results underscore the theoretical results described in earlier sections. The

benefits of immediate availability of facts is indicated by the fact that GSN is in general better

than PSN, which, in turn, is in general better than BSN, under the cost criterion of number of

rule applications and iterations. Further, our results clearly bring out the advantages of cycle

preserving fair orderings. Our results also indicate that nested orderings may perform better

than fair orderings on some data sets, but can perform much worse on others.

7 Related Work

The idea of semi-naive, or differential, evaluation has been independently rediscovered many

times ([9, 19, 5, 2, 1]).

The most closely related work is that of Kuittinen et al. [15], who propose a fixpoint evalu-

ation algorithm for logic programs based on the immediate utilization of facts. Their algorithm

also reduces the number of iterations, and is dependent upon a choice of rule orderings. They

present a performance study of the effects of rule orderings, although they do not analyze

the effect of rule orderings theoretically. The results presented in our paper and in [15] were

obtained independently. (However, we have drawn upon and extended their performance eval-

uation.) Although the technique of Kuittinen et al. avoids repeating most derivations, it does

not have the non-repetition property since it is possible for some derivations to be repeated.

This can adversely affect performance. Further, it makes the algorithm inapplicable when the

non-repetition property is used to perform further optimizations. (For example, if a program

has the duplicate-freedom property, a fixpoint algorithm with the non-repetition property can

be modified easily to eliminate run-time checks for duplicates [18].) Finally, their technique

handles only a subset of the rule orderings that GSN can handle. Schmidt [23] presents another

evaluation technique that allows for some ordering of rules; however, this technique also lacks

the non-repetition property.

Gonzalez-Rubio, Rohmer and Bradier [10] have independently proposed a parallel evaluation
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technique that has some similarity to GSN evaluation. The idea is to run a copy of the BSN

algorithm on each processor, and to exchange facts as needed. A fact received from another

processor is treated exactly as if it were derived locally in an iteration. It is possible to modify

their technique and obtain an algorithm similar to GSN, although they do not address the issue

of ordering rules.

Other related work includes a scheme for ordering facts in a semi-naive evaluation proposed

by Schmidt et al. [24]. In the context of transitive closure, Lu [17], presents a technique for

facts to be (partially) utilized in the same iteration that they were generated. There is also

some connection to work on parallelizing transitive closure by using different expansions of the

recursive rule. For a more detailed discussion of related work, see [21].

8 Summary

In this paper, we studied several aspects of rule ordering in the bottom-up evaluation of logic

programs. Rule orderings are necessary for ensuring a desired semantics, such as the evaluation

of the magic rewritten versions of stratified programs. We presented two evaluation algorithms,

GSN and PSN, that could be used for evaluating such rule orderings, while preserving the

non-repetition property, and discussed cases where each was useful.

We studied rule orderings theoretically, and showed that for the class of fair orderings, cycle

preserving orderings were optimal and, in the absence of additional information, fair orderings

are to be preferred to non-fair orderings. An important open problem is to find an efficient

algorithm that checks whether an SCC has a cycle preserving fair ordering and if so, produces

it.

We also presented a performance study to support our theoretical analyses. Rule order-

ings were also shown to be useful for improving the total cost of sequential evaluation of logic

programs.
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