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Abstract

Logic programs can be evaluated bottom-up by repeat-

edly applying all rules, in “iterations”, until the fixpoint is

reached. However, it is often desirable — and in some cases,

e.g. programs with stratified negation, even necessary to

guarantee the semantics — to apply the rules in some order.

An important property of a fixpoint evaluation algorithm

is that it does not repeat inferences; we say that such algo-

rithms have the semi-naive property. The semi-naive algo-

rithms in the literature do not address the issue of how to

apply rules in a specified order while retaining the semi-naive

property. We present two algorithms; one (GSN) is capable

of dealing with a wide range of rule orderings but with a little

more overhead than the usual semi-naive algorithm (which

we call BSN). The other (OSN, and a variant, PSN) han-

dles a smaller class of rule orderings, but with no overheads

beyond those in BSN. This smaller class is sufficiently pow-

erful to enforce the ordering required to implement stratified

programs.

We demonstrate that rule orderings can offer another im-

portant benefit: by choosing a good ordering, we can reduce

the number of rule applications (and thus joins). We present

a theoretical analysis of rule orderings. In particular, we

identify a class of orderings, called cycle-preserving order-

ings, that minimize the number of rule applications (for all

possible instances of the base relations) with respect to a

class of orderings called fair orderings. We also show that
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while non-fair orderings may do a little better on some data

sets, they can do much worse on others; this suggests that

it is advisable to consider only fair orderings in the absence

of additional information that could guide the choice of a

non-fair ordering.

We conclude by presenting performance results that bear

out our theoretical analyses.

1 Introduction

There are essentially two components to fixpoint algorithms

that preserve the semi-naive property. The first is a rewrit-

ing of the program that defines “differential” versions of

predicates, in order to distinguish facts that have been newly

generated (and not yet used in inferences). The second com-

ponent is a technique to apply the rewritten rules and update

these differentials, ensuring that all derivations are made ex-

actly once. Semi-naive algorithms have been proposed by

several researchers (e.g., [B85, BR87]). These algorithms

evaluate the fixpoint in an iterative fashion, with every rule

applied once in each iteration. In these algorithms, facts

generated in an iteration can be used to generate other facts

only in subsequent iterations.

We present two fixpoint evaluation algorithms, General

Semi-Naive (GSN) and Ordered Semi-Naive (OSN); the lat-

ter has a simple variant called Predicate-Wise Semi-Naive

(PSN). These algorithms can use any of the semi-naive

rewriting techniques proposed earlier (e.g., [B85, BR87])

with minor modifications. GSN applies a rule to produce

new facts, and then immediately makes these facts available

to subsequent applications of other rules (possibly in the

same iteration). PSN makes facts generated for a predicate

p available after all rules defining p have been applied.

Rule orderings are significant for three distinct reasons.

First, they are sometimes required in order to compute the

answers correctly. For example, in stratified programs, lower

strata must be evaluated first, and this simple ordering can

become much more complex once we rewrite the program

using Magic Sets (which is an important technique used

widely to avoid irrelevant inferences). Second, rule order-

ing can result in increased efficiency. It is recognized that

evaluating a program clique-by-clique offers significant ad-

vantages. Again, this implies a rule ordering, especially if

we wish to use the clique structure of the original program

rather than the Magic rewritten program. An important



contribution of this paper is to demonstrate that rule order-

ings can also improve efficiency by reducing the number of

rule applications. In effect, since the number of inferences

remains constant — all semi-naive algorithms are optimal in

this respect — this means that the processing becomes more

set-oriented, with each rule application generating more tu-

ples. Finally, rule orderings have been proposed to prune

redundant derivations and to allow the user to specify a de-

sired semantics [H87, H88]).

We use control expressions, in the form of regular expres-

sions over rules, to specify orderings over the application of

rules.

We begin by examining the use of rule ordering and pre-

senting new semi-naive algorithms for evaluating the fix-

point. The GSN algorithm deals with a large set of con-

trol expressions; we examine its use both in clique-by-clique

evaluation and in evaluating a single clique (or strongly con-

nected component, SCC). We describe OSN and its role in

clique-by-clique evaluation. OSN can also be used to order

rules within a clique by slightly refining our treatment of

control expressions; for clarity, we instead present a simple

variant, called PSN, that does this. Compared to traditional

semi-naive algorithms for evaluating a single clique, PSN has

an important advantage — it can considerably reduce the

number of rule applications, while requiring no additional

overheads. GSN has the potential for reducing the number

of rule applications even further, but at the cost of some

overheads.

In the second part of our paper, we study rule orderings in

detail, and establish a close connection between cycles in rule

graphs and orderings that minimize the number of iterations

and rule applications. We define what it means for a rule

ordering to preserve a simple cycle, and prove that a rule

ordering that preserves all simple cycles in the rule graph (if

such an ordering exists) is optimal within a certain class of

rule orderings, in minimizing the number of iterations, and

hence the number of rule applications.

In the third part of our paper, we present a summary

of a performance study that underscores the importance of

utilizing facts early, and choosing a good rule ordering, in re-

ducing the number of iterations, rule applications and joins.

1.1 Related Work

Lu [L87] and Kabler et al. [KIC89] considered how facts

could be (partially) utilized in the same iteration that they

were generated, in the context of transitive closure algo-

rithms, and noted that this reduced the number of disk

I/Os. Kuittinen et al. [KNSS89] proposed a fixpoint evalu-

ation algorithm for logic programs based on the immediate

utilization of facts. The results presented in our paper and

in [KNSS89] were obtained independently. (However, we

have drawn upon and extended their performance evalua-

tion.) Their algorithm also reduces the number of iterations,

and is dependent upon a choice of rule orderings. They do

not analyze the effect of rule orderings theoretically. Al-

though their technique avoids repeating most derivations, it

does not have the semi-naive property since it is possible for

some derivations to be repeated. This affects performance.

Further, it makes the algorithm inapplicable when the semi-

naive property is required for certain further optimizations.

(For example, if a program has the duplicate-freedom prop-

erty, a fixpoint algorithm with the semi-naive property can

be modified easily to eliminate run-time checks for dupli-

cates [MR89].) To the best of our knowledge, no one has

considered the efficient implementation of general rule or-

derings.

2 Motivation

We examine two uses of rule orderings, for ensuring a desired

semantics and for achieving efficiency. We do not explore

the use of control expressions as a user-specified form of

control that refines the logic of the program. (The separation

of logic and control as a programming paradigm has been

widely advocated in the logic programming literature, and

our techniques provide the basis for exploring this paradigm

using bottom-up evaluation.)

2.1 Rule Ordering For Semantics

Stratified programs have been identified as a class of logic

programs that can be efficiently evaluated using a bottom-up

fixpoint evaluation mechanism. In a program with stratified

negation, predicates are partitioned into layers, or strata.

Such a program can be evaluated stratum by stratum. The

fixpoint of all rules defining predicates in lower strata must

be evaluated before the rules defining the predicates in a

stratum are applied. This ordering on rule applications be-

comes considerably more complex when the Magic Sets tech-

nique is used to restrict the computation: the rewritten ver-

sion of a stratified program may not be stratified, and is

equivalent to the original program only when the rules in it

are applied in a particular order (which reflects the structure

of the Magic Sets transformation as well as the rule order-

ing implicit in stratification). Beeri et al. [BRSS89] present

an algorithm to identify this order and to specify it through

control expressions, in the form of regular expressions over

rules.

Several evaluation strategies (e.g., the LDL system, and

the technique of Balbin et al.[BPRM] for evaluating strati-

fied programs) for logic programs use a built-in control strat-

egy to implicitly order rules. Using such a default control

strategy results in the control aspect becoming closely linked

with the logic of the program. An important advantage of

making the control strategy explicit (say, in the form of con-

trol expressions over rules) is that it separates the control

aspect of logic programs from its declarative semantics, and



exposes the possibility of using other equivalent, possibly

more efficient, rule orderings.

2.2 Rule Ordering For Efficiency

Besides implementing desired semantics, ordering of rules

can also be used to reduce the cost of bottom-up evaluation

of logic programs.

The number of inferences has been widely used as a cost

metric in the evaluation of logic programs. However, any

evaluation technique that has the semi-naive property makes

each inference that can be made, exactly once, and hence all

the techniques we study are equivalent under this criterion.

Algorithms having the semi-naive property differ in how in-

ferences are distributed across iterations. However the cost

measure of the number of inferences hides many implemen-

tation costs, and we desire more accurate cost criteria that

refine the criterion of the number of inferences.

One of the advantages of bottom-up evaluation of logic

programs is the increased degree of set-at-a-time computa-

tion. Given that the total number of inferences made by

two different evaluation techniques is identical, the technique

that performs more set-at-a-time computation is expected to

perform better. If more inferences are made using the set of

tuples in a page fetched from disk, the number of I/O oper-

ations can be expected to reduce considerably. This can be

seen from the results of Lu [L87], who considered how facts

could be (partially) utilized in the same iteration that they

were generated (thus reducing the total number of iterations

and hence increasing the set-at-a-time computation in each

iteration), in the context of transitive closure algorithms,

and noted that this reduced the number of disk I/Os. Thus,

the greater the number of inferences made in a single rule

application, the lesser is the number of I/O operations ex-

pected (given that the total number of inferences made does

not change).

The fixpoint evaluation techniques we describe (GSN and

PSN) use facts computed by a rule application in the appli-

cation of other rules within the same iteration, while preserv-

ing the semi-naive property. Our theoretical analysis and

performance results show that these techniques can greatly

reduce the number of rule applications, iterations, and thus

the number of joins needed to reach the fixpoint in a sequen-

tial computation. Since the number of inferences made by

each of the evaluation strategies is the same while the num-

ber of joins is reduced, the degree of set-orientedness in the

processing of the program is increased by these techniques

and hence, the I/O costs can be expected to reduce.

Associated with each join are several fixed overheads, e.g.,

possible accessing from (and storing to) secondary storage

the relations involved in the join, and with each iteration

there are other overheads, e.g., updating the various pred-

icate extensions. The reduction in the number of rule ap-

plications, iterations and joins can be expected to reduce

the costs due to the various fixed overheads associated with

each iteration and with each join. The reduction in cost

due to ordering of rules is orthogonal to other techniques

of reducing the overall cost, such as merging different semi-

naive versions of rules, efficient join and indexing strategies,

and duplicate elimination techniques—none of these is made

inapplicable by ordering rules.

3 Background

3.1 Definitions

Consider the computation of a fact p(c) using a rule R1. A

derivation step for p(c) consists of the rule R and a fact for

each body predicate occurrence, such that p(c) can be de-

rived using the rule and only the given fact for each body

predicate occurrence. A derivation tree for a fact p(c) is de-

fined as below. The leaf nodes of the tree are labeled with

base facts. Each internal node n is labeled with a derived

fact and a rule such that there is a unique child of n cor-

responding to each predicate occurrence in the body of the

rule, and the rule labeling n along with the facts labeling

the children nodes forms a derivation step for the fact that

labels n. A predicate p in a program P is said to be safe if,

given any finite extension for each of the base predicates, p

has a finite extension in the minimal model for P .

The application of a rule R, using a given set of facts,

produces the set of all facts that can be derived using R and

only the facts given. The independent application of a set

of rules means that each rule is applied once but the facts

produced using a particular rule application are not available

to the application of any of the other rules in the set. A fact

is said to have been seen by a rule if the fact was available

to an application of this rule. The closure of a set of rules

using a given set of facts refers to the derivation of all facts

that can be computed using the given facts, and any number

of applications of the rules. We define an evaluation to have

the semi-naive property if no derivation step is repeated in

the evaluation.

Given a program with rules R = {R1, R2, . . . , Rn}, we de-

fine the rule graph for the program as the directed graph G =

(R, E), where (Ri, Rj) ∈ E iff the head of Ri unifies with a

predicate occurrence in the body of Rj . The strongly con-

nected components of the rule graph are referred to as SCCs.

Given a program with predicates Pred = {p1, p2, . . . , pn},

we define the predicate graph for the program as the directed

graph G = (Pred,E), where (pi, pj) ∈ E iff pi occurs in the

body of a rule defining pj . We refer to strongly connected

components in the predicate graph as Pred-SCCs.

1We only consider positive predicates in the rule body. These

definitions can be extended to handle negation and set grouping.



3.2 Basic Semi-Naive Evaluation

Given a program P , the Basic Semi-Naive (BSN) evaluation

[B85, BR87] of the program proceeds an SCC at a time in

a topological order of the SCCs. For each SCC S we apply

the following technique. First we create a semi-naive rewrit-

ten version of each rule in S as follows. Given a rule of the

form p ← p1, . . . , pn, q1, . . . , qm, where p1, . . . , pn are mutu-

ally recursive to p and q1, . . . qm are not, the set of semi-naive

rewritten rules obtained from this rule has a rule of the form,

δpnew ← term, q1, . . . , qm for each term in the expansion of

(pold
1 + δpold

1 ) . . . (pold
n + δpold

n )− (pold
1 . . . pold

n ). Alternatively,

a rewriting based on the technique suggested by Balbin and

Ramamohanarao [BR87] can be used.

In evaluating S, an iteration consists of the application

of each of the semi-naive rewritten versions of each rule in

S, followed by updating the extensions of the semi-naive

relations for each pi as follows,

procedure SN Update(pi)

(1) pold
i := pold

i + δpold
i

(2) δpold
i := δpnew

i − pold
i

(3) δpnew
i := φ

end SN Update

The evaluation of S proceeds by iterating until no new

facts are computed for any of the predicates defined in S.

(Note that the operator “ - ” involves subsumption checks if

non-ground facts are generated.)

At every stage of the evaluation, the set of relations pold
i ,

for all i, has the property that every derivation that uses

only these facts has been made.

4 Control Expressions and

Semi-Naive Evaluation

4.1 Control Expressions

Helm [H87, H88] introduces the notion of control on the

bottom-up evaluation of logic programs using control ex-

pressions, and also looks at control as a way of increasing

the efficiency of evaluation by eliminating some redundant

derivations. Beeri et al. [BRSS89] use control expressions to

evaluate the magic rewritten versions of stratified logic pro-

grams. While the applications of control expressions have

been considered, not much attention has been given to effi-

cient implementation of control expressions.

Let R1, . . . , Rn denote the rules of a program. We now

give the grammar for our control expressions2, and describe

the semantics of these control expressions.

S → T

2The semantics of the control operators that we consider are

different from those those considered by Helm and we do not

discuss the efficient semi-naive implementation of Helm’s control

operators in this paper.

T → F | F + T | F ⊕ T | F · T

F → Ri | (T ) | F ∗ | F ◦

The semantics of a control expression is defined as a mono-

tone mapping D → D, where D is the set of all database

states. (A database state is a set of facts for the base and

derived predicates.) The initial database state consists of

the set of all given facts. (1) When the control expression

is a single rule Ri, the resultant database is obtained by

applying the rule using the input database and adding the

newly generated facts to the input database. (2) The con-

trol expression α · β maps D to D′′, if α maps D to D′ and

β maps D′ to D′′. (3) The control expression α ⊕ β non-

deterministically maps D to either D′ or D′′, if α maps D

to D′ and β maps D to D′′. (4) The control expression α◦

maps D0 to Di, for an arbitrary choice of i ≥ 0, where α

maps Dj to Dj+1, 0 ≤ j < i. (5) The control expression

α∗ maps D0 to Di, such that α maps Dj to Dj+1, for all

j ≥ 0, and Di = Di+1. This resultant database is uniquely

defined due to monotonicity of the mapping. (6) The control

expression α+β maps D to D′∪D′′, if α maps D to D′ and

β maps D to D′′. A fact is present in D′ ∪D′′ if and only if

it is present in either of D′ or D′′.

4.2 Nested-SCC Evaluation of Pro-

grams

In this section we examine the evaluation of logic programs

using a special form of control expressions, and the advan-

tages of using such control expressions.

The traditional semi-naive evaluation of logic programs

proceeds an SCC at a time in topological order. Every pred-

icate defined in the SCC is viewed as a derived predicate for

the purposes of semi-naive rewriting. Semi-naive rewriting

(as formulated by Balbin and Ramamohanarao [BR87]) gen-

erates a large number of semi-naive versions of a single orig-

inal rule (n− 1 semi-naive versions, where n is the number

of predicates in the body of the rule that are recursive with

the head predicate of the rule—older semi-naive rewritings

generate even more).

The Magic Sets rewriting technique is an important tech-

nique for evaluation queries on logic programs. Consider the

following example.

Example 4.1 Consider the following program P , and

query ?p1(a,X).

1 : p1(X, Y ) ← e1(X, Y ).

2 : p1(X, Y ) ← p1(X, Z), e2(Z, Y ), p(Z,Y ),

¬p(X, Y ).

3 : p(X,Y ) ← e3(X, Y ).

4 : p(X,Y ) ← e4(X, Z), p(Z, Y ).

Using a left to right sip for each rule, the Magic Sets algo-



rithm rewrites P 3 to obtain P mg:

1 : m p1(a).
2 : p1(X, Y ) ← m p1(X), e1(X, Y ).

3 : p1(X, Y ) ← m p1(X), p1(X, Z),

e2(Z, Y ), p(Z,Y ),¬p(X, Y ).

4 : m p(Z, Y ) ← m p1(X), p1(X, Z), e2(Z, Y ).

5 : m p(X, Y ) ← m p1(X), p1(X, Z), e2(Z, Y ),

p(Z,Y ).

6 : p(X, Y ) ← m p(X,Y ), e3(X, Y ).

7 : p(X, Y ) ← m p(X,Y ), e4(X, Z), p(Z, Y ).

8 : m p(Z, Y ) ← m p(X,Y ), e4(X, Z).2
Note that while the original program P had two Pred-

SCCs, in the rewritten program P mg , these collapse into one

Pred-SCC. The number of recursive predicates in the body

per rule in P mg is much greater than the number per rule in

P , and this would result in a much larger number of semi-

naive versions of rules. We now present some definitions and

see how we can reduce the number of semi-naive versions of

rules in P mg.

Consider a rule R in P mg . If R defines a non-magic pred-

icate, let stratumR denote the Pred-SCC of P to which

the head of R belongs. If R defines a magic predicate, let

stratumR denote the Pred-SCC of P to which the head of

the rule from which R was derived belongs. Let BR denote

the set of body predicate occurrences of R that belong to

Pred-SCCs of P that are lower than stratumR. Let the

remaining predicate occurrences in R be denoted as B′
R.

Definition 4.1 An evaluation of P mg is said to have the

Nested-SCC evaluation property if: for every rule R in P mg ,

and for each predicate occurrence pi in the set BR, before

an application of R the entire set of facts for pi that match

the set of all available facts for the predicate occurrences in

the tail of the sips arcs entering pi, is available. 2
An evaluation that has the Nested-SCC evaluation property

is called a Nested-SCC evaluation.

Proposition 4.1 In an evaluation of P mg, for each rule

R, each predicate occurrence in BR can be considered as a

“base” predicate for the purpose of semi-naive rewriting of

R, if the evaluation has the Nested-SCC evaluation property.2
We can ensure the Nested-SCC evaluation property for a

magic rewritten program using control expressions to order

rule applications. Consider Example 4.1. The evaluation of

P mg using the control expression CE2 below has the Nested-

SCC evaluation property.

CE2 = 1 · (4 · (6 + 7 + 8)∗ · 5 · (6 + 7 + 8)∗ · (2 + 3))∗

If CE2 is used to evaluate P mg, then the occurrences of p

and ¬p in the bodies of rules 3 and 5 can be considered as

“base” predicates.

Note that CE2 is based on the Pred-SCC structure of

the original program P . An evaluation of P mg using CE2

3We suppress the adornment for clarity.

closely parallels a top-down evaluation of the program, with

the modification that whenever a subgoal corresponding to

a predicate defined in a lower Pred-SCC of the original pro-

gram P is generated (by applying the appropriate magic

rule), the entire set of answers matching that subgoal is

immediately computed. We discuss how to automatically

generate such control expressions in the full version of this

paper.

4.3 Stratified Programs and Control

Expressions

A program that does not involve negation or aggregation

can be evaluated SCC by SCC in a topological order of the

SCC, with each SCC evaluated using the BSN algorithm (or

the PSN or GSN algorithms for an SCC). It can also be eval-

uated using a Nested-SCC evaluation strategy, as described

in the above section. However, if the original program has

negation or aggregation, an SCC of the rewritten program

cannot always be evaluated using BSN. Consider Example

4.1. In this example, the rewritten program P mg is not strat-

ified (although P itself is stratified), and hence it cannot be

evaluated using BSN.

The magic rewritten version of a stratified program can,

however, always be evaluated using a Nested-SCC evaluation

strategy, to compute the same answer set as the original

program on the given query. Thus in Example 4.1, P mg can

be evaluated using CE2.

Beeri et al. [BRSS89] showed that it is possible to order

the rule applications of the rewritten program using control

expressions (such as CE1 below4) such that an evaluation of

the rewritten program using these control expressions com-

putes the same answer set as the original program.

CE1 = (1⊕ 2⊕ 5 · (6⊕ 7⊕ 8)∗ · 3⊕ 4⊕ (6⊕ 7⊕ 8)◦)∗

This control expression can be evaluated using the GSN eval-

uation technique which is described in Section 5.3.

It should be noted that CE2 imposes some ordering on

the application of rules in P mg that is not essential. For

instance, it closes the (lower) stratum after the application

of rule 4, whereas CE1 does not; this could result in less set-

orientedness in comparison with CE1. However, in either

case, an ordering of rules is required for correctness.

5 General Semi-Naive Evalua-

tion

We now present a technique, General Semi-Naive, or GSN,

evaluation, that makes facts computed by a rule available

4CE1 is a simplification of the control expression automati-

cally generated by the algorithm of Beeri et al. [BRSS89] for this

program.



immediately, while maintaining the semi-naive property. We

first look at how to apply a single rule using the GSN tech-

nique. We then look at how to evaluate control expressions

using this technique in Section 5.3, and in Section 5.4 look

at a specific form of control expression to evaluate a single

SCC in an SCC by SCC evaluation.

5.1 GSN for a Rule

Associated with each rule Ri of the original program, and

each predicate pj that occurs in the body of Ri, we maintain

the relation pold
j,Ri

. The set of relations pold
j,Ri

, for all j, has the

property that every derivation that can be made by an ap-

plication of Ri using only these facts has already been made.

Associated with each predicate pj , we also maintain its com-

plete extension. We also have temporary relations δpnew
j

and δpold
j associated with each predicate pj . The semi-naive

rewriting described in Section 3.2 is modified by replacing

each predicate occurrence pold
j in the semi-naive rewritten

versions of each rule Ri, by pold
j,Ri

.

procedure GSN Rule(R)

Let ph be the predicate defined by rule R.

(1) For every predicate pj in the body of R

δpold
j := pj − pold

j,R.

(2) δpnew
h := φ.

(3) Apply each semi-naive rewritten version of R

(modified as described earlier) independently.

(4) For every predicate pj in the body of R

pold
j,R := pj .

(5) ph := ph + δpnew
h .

end GSN Rule

The application of a rule R in a GSN evaluation consists

of a call to the procedure GSN Rule with argument R.

5.2 Efficient Implementation of GSN

The description of GSN above suggests that each rule has

to separately maintain an extension for each predicate that

occurs in its body and would thus appear to be inefficient

in terms of the storage used. However, it has a simple and

efficient implementation in which the extension of each pred-

icate is maintained as an ordered set of tuples. The new facts

produced by a rule application are appended to the exten-

sion of the predicate5. The extension of each pold
j,Ri

is replaced

by a pointer into the extension of pj , such that the facts in

the extension preceding the pointer have already been seen

by this rule and facts occurring after the pointer have not

been seen yet. We replace the extension of each δpold
j by

another pointer into the extension of pj such that the set

of facts between the pointers for pold
j,Ri

and δpold
j constitutes

the extension for δpold
j . The set of facts beyond the pointer

for δpold
j constitutes the extension of δpnew

j . Thus separate

5In the case of generalized tuples, if a new fact subsumes an

existing fact then the existing fact may need to be deleted.

extensions of a predicate do not have to be maintained for

each rule, and the need for set difference to compute the

δpold
j relations is also eliminated.

A disadvantage with this technique for implementing GSN

is that it forces us to use a very specific storage organiza-

tion for the extension of predicates. Further, some efficient

organization strategies, such as hashing, could possibly be

precluded by this technique, or may need to be modified.

5.3 Implementing Control Expressions

Using GSN

Control expressions can be evaluated in a straightforward

manner if a rule application produces every fact that can be

derived using the rule and the given database, and we call

this the Naive evaluation of control expressions. However,

this does not preserve the semi-naive property.

Consider the restricted set of control expressions gener-

ated by the grammar described in Section 4.1 without the

production that uses the “+” operator6. We modify the

Naive evaluation of control expressions by replacing the ap-

plication of a rule R by the execution of GSN Rule(R). We

call this technique the Generalized Semi-Naive (GSN) evalu-

ation of control expressions. The updates performed in steps

(1), (2), (4) and (5) in GSN Rule maintain the set of facts

that have been used by the rule in previous applications of

this rule, and ensure that in subsequent applications of this

rule, none of the previous derivations is repeated. Also, the

execution of GSN Rule(R) makes all derivations that can be

made by the application of R.

Theorem 5.1 The GSN evaluation of control expressions

that do not have any occurrence of the “+” operator obeys

the semantics of control expressions and has the semi-naive

property.

Proof: (Sketch) We prove this theorem by proving three

properties of any GSN evaluation for the application of each

rule Ri (using induction on the number of applications of

Ri).

P1. Before step (3) of GSN Rule, for each predicate pj oc-

curring in the body of Ri, the set of facts δpold
j = pj − pold

j,Ri

have not been seen by Ri.

P2. Before step (3) of GSN Rule, every derivation that could

be made by an application of Ri using only the facts in the

set of relations pold
j,Ri

, for all j, has already been made.

P3. After step (3) of GSN Rule, every derivation that could

be made using only the facts in the set of relations pj , for

all j, has been made. 2
6Control expressions with the “+” presents some problems

that we don’t discuss here — we can however handle some re-

stricted cases.



5.4 GSN for an SCC

We now consider the evaluation of a single SCC S in an

SCC by SCC evaluation of a stratified program. We assume

that all lower SCCs of the program have been completely

evaluated, and all the facts computed in those SCCs are

available. The GSN evaluation of the SCC S is as described

by GSN SCC.

procedure GSN SCC(S)

Let the ordering of rules in S be Ri1 , . . . , Rin .

(1) Evaluate the control expression

(Ri1 · . . . ·Rin )∗ using GSN evaluation.

end GSN SCC

Theorem 5.2 GSN evaluation of an SCC is sound, com-

plete and has the semi-naive property. 2
We discuss the issues involved in selecting an ordering of

rules in Section 7.

6 Ordered Semi-Naive Evalua-

tion

We now present a technique, Ordered Semi-Naive, or OSN,

evaluation that maintains just one version of the extension

of each predicate, and can handle a restricted class of control

expressions while preserving the semi-naive property. OSN

only handles a restricted class of control expressions, without

the “⊕” and the “◦” operators, and not all such control

expressions are correctly evaluated. However, OSN is useful

in some applications, and we mention a class of expressions

for which this technique is applicable.

For each predicate p in the program P , we maintain the

relations pold, δpold and δpnew as is done in the BSN evalu-

ation of a program. The semi-naive rewriting of the rules of

is done as in BSN.

The evaluation of a control expression by OSN is defined

recursively.

(1) If the control expression is of the form Ri, each semi-

naive rewritten version of Ri is applied independently. Note

that the application of the semi-naive version of Ri affects

only the δpnew relation where p is the head of rule Ri.

(2) If the control expression is of the form β · γ, β is (recur-

sively) evaluated, then for every predicate pi defined by a

rule in β, SN Update(pi) is applied, and finally γ is (recur-

sively) evaluated.

(3) If the control expression is of the form β∗, β is eval-

uated, then for every predicate pi defined by a rule in β,

SN Update(pi) is applied, and if any new facts were pro-

duced, β∗ is recursively evaluated.

(4) If the control expression is of the form β + γ, β is evalu-

ated and then γ is evaluated.

Theorem 6.1 Given a stratified program P and its magic

rewritten version P mg, there is an algorithm to generate a

control expressions such that: (1) the evaluation of P mg us-

ing the control expression has the Nested-SCC evaluation

property, and (2) the OSN evaluation of the control expres-

sion is sound, has the semi-naive property, and if every pred-

icate in P mg is safe, is complete. 2
An algorithm to generate such control expressions is pre-

sented in the full version of this paper.

6.1 Ordered Evaluation of a Pred-SCC

In this section, we describe a technique to evaluate a sin-

gle Pred-SCC of a program, which we call Predicate-wise

Semi-Naive, or PSN, evaluation. Evaluation of a program

proceeds Pred-SCC by Pred-SCC, in a topological order of

the Pred-SCCs. PSN is a derivative of OSN in that with

a slightly enhanced form of control expressions, it is pos-

sible to express the PSN evaluation strategy as a control

expression that can be evaluated by (a correspondingly en-

hanced) OSN. The enhancement consists of separating the

point where a rule is applied from the point where the facts

it computes are made available to other rule applications.

However, for clarity we present it as a separate technique.

The advantage of PSN is that it maintains just one version

of the extension of each predicate while permitting the facts

produced by a rule application to be used within the same

iteration, though not immediately7. The rewriting used is

the same as that used in BSN evaluation but the pattern of

updates to the predicate extensions is different.

procedure PSN Pred(p)

Let Ri1 , . . . , Rin be the recursive rules defining p.

(1) Apply each semi-naive rewritten version of

each Rij
independently.

(2) SN Update(p)

end PSN Pred

procedure PSN SCC(S)

Let Rj1 , . . . , Rjm be the exit rules of the

Pred-SCC S.

(1) Apply each semi-naive rewritten version of

each Rji
independently.

Let the ordering of predicates in S be pi1 , . . . , pik
.

(2) repeat

(3) for j = 1, k do PSN Pred(pij
).

(4) until no new facts are computed.

end PSN SCC

The procedure SN Update is defined in Section 3.2. Note

that no updates to any pold or δpold are made after the ap-

plication of the exit rules. Although the facts produced by

a rule defining a predicate pi are not immediately available

to applications of other rules defining pi, they are available

immediately after the application of all the rules defining

7Although we describe just two evaluation strategies, a gra-

dation is possible between GSN and PSN evaluation for SCCs,

resulting in a range of evaluation strategies. Some set of predi-

cates may be evaluated according to the strategy used by GSN,

and other predicates evaluated according to PSN. We do not fur-

ther elaborate on this, in this paper.



pi, to subsequent rule applications (including the applica-

tion, in the next iteration, of rules defining pi). A new fact

generated by any of the rules defining pi becomes part of

δpold
i immediately after all the rules defining pi have been

applied. After a complete iteration, δpold
i is added to pold

i .

Thus each rule sees each fact once and only once in δpold

and then onwards in pold. This implies that PSN evaluation

has the semi-naive property.

Theorem 6.2 PSN evaluation of a Pred-SCC is sound, has

the semi-naive property, and is complete if every predicate

in the Pred-SCC is safe. 2
Much as the ordering of rules could affect the performance

of GSN, ordering of predicates could affect the performance

of PSN.

In a sequential evaluation, PSN evaluation is always

preferable to BSN evaluation, since it can be implemented

with the same overheads per iteration, but can do better in

terms of the number of iterations. PSN may not be able to

utilize facts as soon as GSN can, but the overheads asso-

ciated with GSN could be higher, and the choice of which

strategy to choose is not always obvious.

7 Rule Orderings that Minimize

Rule Applications

Let q and r be base relations. Consider the following pro-

gram:

R0 : pk(X) ← q(X).

R1 : p1(f1(X)) ← pk(X).

. . .
Rk : pk(fk(X)) ← pk−1(X), r(X).

In an iteration of a Basic Semi-Naive evaluation, all the

rules of the SCC are applied independently. Rule Rk will be

successfully applied for the first time only in the (k + 1)th

iteration. However, it would be possible to successfully ap-

ply rule Rk in the first iteration itself if the rules are applied

in the order shown and the facts produced by each rule ap-

plication are immediately made available to subsequent rule

applications. In the above example, if the computation of

a fact using this technique took n iterations, then compu-

tation of the same fact using the BSN evaluation strategy

could take up to O(k n) iterations.

In the above example, if the rules are applied in the op-

posite order, i.e. Rk, Rk−1, . . . , R0, the number of iterations

taken is practically the same as BSN evaluation, even if facts

are made available immediately. Thus we see the importance

of a good ordering of rules.

In this section, we provide a theoretical analysis of how

the number of rule applications (and iterations) in semi-

naive fixpoint algorithms (that use the immediate update

techniques described in Section 5) can be reduced through

the use of rule ordering. Our results are significant in that

they indicate how this number can be minimized, indepen-

dent of the data in base relations, over a significant class of

rule orderings (Section 7.2). We also present results which

suggest that only this class of rule orderings should be con-

sidered in the absence of additional semantic information

(Section 7.3).

The techniques described in this section deal with rule

orderings, but can be extended, in a straight forward fashion,

to deal with predicate orderings.

7.1 Class of Orderings Considered

Let the rules of the SCC S, whose closure we wish to com-

pute, be R1, . . . , Rn. In Section 7.2 we consider orderings of

the form (Ri1 · . . . ·Rin ), where i1, . . . , in is a permutation of

1, . . . , n. Such orderings are static, non-nested orderings in

which no rule is applied more often than other rules. Such

orderings are referred to as fair orderings since in the ab-

sence of any prior knowledge of the frequency with which

different rules are used, or other semantic information, we

have no basis for applying some rules more often than others.

In Section 7.3 we consider static orderings in which some

rules can be applied more often than other rules. Such or-

derings are referred to as non-fair orderings. This class in-

cludes the class of nested orderings, such as those considered

by Kuittinen et al. [KNSS89]. Non-fair orderings may per-

form somewhat better than fair orderings on some data sets,

but, as we show in Section 7.3, such orderings may also per-

form considerably worse on other data sets. Hence, in the

absence of any information about the kind of data sets, fair

orderings are preferable.

7.2 Fair Orderings

Consider an SCC S, and let the rules in S be R =

{R1, . . . , Rn}. Let G = (R, E) be the rule graph for the

given SCC. Let O be any fair ordering (Ri1 , . . . , Rin ) of the

rules in R. Let C be any simple cycle8 Rj1 , . . . , Rjm in G.

For a fair ordering O, On denotes the string formed by re-

peating O n times and is called an order sequence.

We say that a fair ordering O preserves a cycle C, if

there is a cyclic permutation O1 of O such that C forms

a subsequence9 of O1. A fair ordering O on G is a cycle

preserving fair ordering if for every simple cycle C in G,

O preserves C. A fair ordering O that does not preserve a

cycle C is said to break it. A cycle C is broken by degree

B(C, O) = i, by a fair ordering O, if i is the least number

such that for some cyclic permutation O1 of O, C is a sub-

8Rj1 defines a predicate used in Rj2 , and so on, and Rjm de-

fines a predicate used in Rj1 . Though cycles have the same initial

and final vertex, we omit the final vertex in our representation,

for convenience.
9By subsequence, contiguity is not implied. For example,

R1, R3, R5 is a subsequence of (R1, R2, R3, R4, R5).
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sequence of Oi
1. Thus a fair ordering that preserves a cycle

can be said to break it by degree one.

We define a relation < on the class of fair orderings. Given

two fair orderings O1 and O2 on a rule graph G, O1 < O2 if

for every simple cycle C in G, B(C, O1) ≤ B(C, O2). If we

have O1 < O2 and O2 < O1, we say that the two orderings

are equivalent. The use of this relation will be seen in Sec-

tion 7.2.1, where we show in Theorem 7.2 that if O1 < O2

and the two are not equivalent, then given any database, O1

is better than O2 based on the number of iterations needed

to compute the closure of an SCC. We also show that if

O1 and O2 are equivalent, the number of iterations needed

by the each to compute the closure of an SCC differ by at

most a data-independent constant. Thus we show that an

ordering that preserves all cycles is optimal in the class of

fair orderings, under this cost criterion. From the defini-

tion of the relation < we have, (1) Cyclic permutations of a

fair ordering are equivalent under < , and (2) Any two cycle

preserving fair orderings are equivalent under < .

Example 7.1 Consider the graph shown in Figure 1.

The simple cycle 1, 3, 2, 6 is preserved by the ordering

(2, 6, 4, 1, 3, 5) because the ordering has a cyclic permutation

(1, 3, 5, 2, 6, 4) which has the simple cycle as a subsequence.

However, this ordering breaks the simple cycle 1, 4, 2, 5 by

degree 3. 2
Lemma 7.1 Consider a cycle C = R1 . . . Rm and a fair

ordering O. Let O1 be the cyclic permutation of O that

ends with Rm. Then C forms a subsequence of Oi
1 for

i = B(C,O), but not for any smaller i. 2
The use of this lemma will be seen in subsequent sections.

For the class of fair orderings, we next show that cycle

preserving fair orderings are optimal under the cost criterion

of the number of iterations needed to compute the closure

of an SCC, with an immediate update strategy. Since the

number of rule applications is constant within an iteration,

the optimality result carries over for the cost criterion of

number of rule applications.

7.2.1 Optimality of Cycle Preserving Orderings

A derivation path for a fact is a path in a derivation tree

for the fact, starting from a leaf node. We represent such

a path concisely by listing the rules labeling the nodes in

the derivation path in order, starting from the parent of

the leaf. Note that two different paths may have the same

representation, but that does not affect our analysis.

Let O denote a fair ordering of rules and T denote a par-

ticular derivation tree for p(c). Consider the rule application

sequence O′ = Oj , for arbitrarily large j. With each node in

the derivation tree T , we associate a derivation index , which

is an index into the sequence O′, Leaf nodes (corresponding

to base facts) are associated with the derivation index zero.

The derivation index of each internal node n′, labeled with a

derived fact p′ and a rule R′, is the minimum possible k such

that, O′[k] = R′ and the derivation indices of the children

nodes of n′ are less than k. With each node in the derivation

tree we associate an iteration height ⌈k/ |O |⌉ where k is the

derivation index of that node. A derivation tree is said to

be computed by O using n iterations if the iteration height

of the root of the tree under O is n.

The iteration height of a node is defined syntactically but

has the following semantic interpretation. If the iteration

height of the root of a derivation tree T is n, then the corre-

sponding fact p(c) is computed in or before the nth iteration

of the application of rules according to the ordering O. If

the fact is computed in the nth iteration, there is a deriva-

tion tree with iteration height n for the fact. The iteration

count of a fact, for a given fair ordering, is defined to be the

minimum of the iteration heights under the given ordering,

of derivation trees for this fact. This gives us the earliest

iteration in which the fact is derived. This link between the

semantic notion of the number of iterations needed to com-

pute a fact, and the iteration heights of derivation trees for

the fact enables us to argue about the computation of facts

using purely syntactic criteria.

Given a derivation path s in T , the iteration length L(s, O)

of the path is the minimum n, such that the path forms a

subsequence of On. The minimum length order sequence for

s is defined to be OL(s,O). We next show the relationship

between the notion of the iteration length of a path, and the

iteration height of a tree. For a tree T , if T has no internal

nodes, L(T, O) = 0. Otherwise L(T, O) = max{L(s, O) | s

is a path in T}.

The following lemma permits us to argue about the num-

ber of iterations it takes to compute a derivation tree based

on the iteration lengths of the derivation paths in the tree.

Lemma 7.2 Given a derivation tree T for a fact p(c), and

a fair ordering O, the derivation tree can be computed by

a bottom-up fixpoint evaluation using rule ordering O in

L(T, O) iterations. L(T, O) is thus also the iteration height

of T . 2
Every derivation path has a certain structure which is

described in the next lemma, and which we use to prove the

result in Theorem 7.1.

Lemma 7.3 For every derivation path s, there exists a se-

quence s0, . . . , sn of paths in the rule graph G, such that, (1)

s = sn. (2) s0 is an acyclic path in G. (3) For each i > 0,

si can be constructed from si−1 as follows: Choose a rule
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Rjk
in si−1, and a simple cycle Ci = Rj1 , . . . , Rjk

in G, and

insert the cycle just after Rjk
. 2

For any derivation path s, such a sequence s0, . . . , sn is

called a construction sequence for s. Intuitively, we can cre-

ate a construction sequence in reverse order by successively

deleting simple cycles from a derivation path. A derivation

path may not have a unique construction sequence.

Given a fair ordering O, we now relate the iteration length

of a derivation path s with the length of the construction

sequence for s and the degree by which the given ordering

breaks each of the cycles inserted.

Theorem 7.1 Consider any derivation path s and a con-

struction sequence s0, . . . , sn for s as defined in Lemma 7.3.

Let Ci be the cycle inserted in obtaining si from si−1. For ev-

ery fair ordering O, the iteration length of s under O is given

by L(s, O) = L(s0, O)+
∑n

i=1
B(Ci, O). Further, L(s0, O) is

bounded by the length of the longest acyclic path in the rule

graph of the SCC.

Proof: We prove this by induction on on the length of the

construction sequence for a derivation path s. As a basis,

note that all construction sequences of length one have only

one element s0, and it follows that, L(s, O) = L(s0, O). Note

that L(s0, O) is data-independent.

Assume inductively that for all paths s that have a

construction sequence of length less than or equal to k,

L(s, O) = L(s0, O) +
∑n

i=1
B(Ci, O), where there is a con-

struction sequence s0, . . . , sn for s, n < k. Recall that

L(s, O) is the minimum number i such that s forms a sub-

sequence of Oi. Corresponding to each rule occurrence in

s, we have a rule occurrence in some repetition of O in Oi.

Figure 2 depicts this pictorially.

Consider now a path that has no construction sequence

of length less than or equal to k, but has a construction se-

quence of length k + 1. Let the last cycle inserted in the

sequence be Ck = Rs, . . . , Rl. sk−1 has a construction se-

quence of length k, and therefore by the induction hypoth-

esis, L(sk−1, O) = L(s0, O) +
∑k−1

i=1
B(Ci, O). For the path

sk−1 we have the corresponding (minimal length) order se-

quence, O1 = OL(sk−1 ,O), such that sk−1 is a subsequence

of O1. Similarly for the path sk we have the corresponding

(minimal length) order sequence O2 = OL(sk,O). Figure 3

shows O1 and O2.

Let the point of insertion of Ck in sk−1 be after an occur-

rence of rule Rl. Let this occurrence of Rl be called R1
l . R1

l

corresponds to the the (unique) occurrence of Rl (labeled 1

in Figure 3) in some occurrence of O in O1. Similarly, for

O2 R1
l corresponds to the occurrence of Rl at Point 2 in O2.

Let the occurrence of Rl in the newly inserted cycle be la-

beled R2
l . R2

l corresponds to the (unique) occurrence of Rl

(labeled 3 in Figure 3) in some occurrence of O in O2.

We claim that the initial part of O1 up to (and including)

1 is the same as the initial part of O2 up to (and including)

2, and further, the part of O1 after 1 is the same as the part

of O2 after 3. Once we have shown this, we show that the

part of O2 between 2 and 3 has exactly B(Ck, O) repetitions

of O, which proves the result.

Point 1 and Point 3 both correspond to occurrences of rule

Rl. Since there is only one occurrence of each rule within O,

Point 1 is at the same position within a repetition of O in

O1 as Point 3 is in a repetition of O in O2. The part of sk

after R2
l and the part of sk−1 after R1

l are the same, since

sk is derived from sk−1 by inserting a cycle at R1
l , and this

cycle ends at R2
l . Call this part of sk as stail.

Since O1 is a minimal length order sequence for the path

sk−1, the part of O1 after Point 1 must correspond to a min-

imal length order sequence for the path stail. Similarly the

part of O1 after Point 3 must also correspond to a minimal

length order sequence for stail. Further, Points 1 and 3 both

correspond to occurrences of Rl. Hence, it follows that the

part of O2 after Point 3 must be the same as the part of O1

after 1. By reasoning similar to the above, we can show that

the part of O1 up to Point 1 is the same as the part of O2

up to Point 2.

Each rule occurs exactly once in each repetition of O,

and Points 2 as well as 3 (in O2) correspond to occurrences

of rule Rl. Thus the part of O2 between Points 2 and 3

(including 3, but not 2) corresponds to an integral number

of repetitions of the cyclic permutation Or of O that ends

with rule Rl. Since both Or and Ck end with Rl, and Or is

a cyclic permutation of O, it follows from Lemma 7.1 that

Ck forms a subsequence of Oi
r for i = B(Ck, O), but not for

any smaller i. Thus the number of repetitions of Or between

2 and 3 is B(Ck, O), and the proof is complete. 2
Note the interesting fact that the above theorem is true

for any construction sequence. Since the actual iteration

length of a path does not depend on the construction se-



quence chosen, this tells us that, in a certain sense, all con-

struction sequences are equivalent. For any cycle preserv-

ing fair ordering s with a construction sequence s0, . . . , sn,

L(s, O) = L(s0, O) + n.

Consider a rule graph G, and two fair orderings O1 and

O2 such that O1 < O2. We define MaxR(O1, O2, G) =

max{B(C,O2)/B(C, O1) | C is a basic cycle in G}. This

serves as a bound on how much costlier, based on the number

of iterations, O2 can be compared to O1.

Given any two fair orderings that are related by the <

relation, we wish to compare the number of iterations taken

to compute the closure of an SCC by the two orderings. To

this end, we first compare the iteration lengths of deriva-

tion paths. This is used to compare the iteration heights of

derivation trees for a fact. We then argue about the number

of iterations taken to derive a fact by the two orderings, by

comparing the iteration counts of the fact. 10 This leads fi-

nally to our main result, stated in Theorem 7.2, that relates

the number of iterations taken to compute the closure of the

SCC by the two fair orderings.

Theorem 7.2 Given an SCC S, any two fair orderings O1

and O2, such that O1 < O2, and any set of base facts, let

the number of iterations required to compute the closure of

S by bottom-up fixpoint evaluations using rule orderings O1

and O2 be n1 and n2 respectively. n1 and n2 are related as

n1−k ≤ n2 ≤MaxR(O1, O2, G) ·n1 +k, where k is bounded

by the length of the longest acyclic path in the rule graph for

the SCC.

Proof: (Sketch) Consider the fact that is computed last,

when the closure of S is computed using ordering O2,

and call this fact p(c). Clearly n2 iterations are needed

to compute this fact. We show that this fact will be

computed using ordering O1 in r1 iterations, where n2 ≤

MaxR(O1, O2, G) · r1 + k. Further, n1 ≥ r1, and hence we

have n2 ≤MaxR(O1, O2, G) · n1 + k.

Next consider the fact that is computed last when the

closure of S is done using ordering O1, and call this fact

p′(c′). This fact needs n1 iterations to compute. We show

that this fact is computed using ordering O2 in r2 iterations,

with n1 − k ≤ r2. Further n2 ≥ r2, and hence we have

n1 − k ≤ n2. 2
Corollary 7.1 Given any two cycle preserving fair order-

ings, the number of iterations required to compute the closure

of an SCC by bottom-up fixpoint evaluations using the two

orderings differ by at most a (data-independent) constant.

Also, the number of rule applications required by the two or-

derings differ by at most a (data-independent) constant. 2
7.3 Non-Fair Orderings

In this section we consider static orderings in which some

rules may be applied more often than other rules. We divide

this class into the class of flat orderings and the class of

10This development, in a chain of lemmas, is omitted here.

nested orderings. A nested ordering is an ordering O of the

form (O1), where O1 is generated by the grammar

O1→ R1 | . . . | Rn | O1 ·O1 | (O1)∗

where R1, . . . , Rn are the rules of an SCC S of the rule graph,

such that each rule in the SCC occurs at least once in the

ordering O. An example is the ordering (R1 ·R2 · (R3 ·R4)
∗ ·

R5)
∗. Note that a nested ordering can have more than one

occurrence of any rule in the SCC.

A flat ordering is a nested ordering that has parenthe-

ses only at the outermost level. The nesting level of such

an ordering is defined in the obvious manner, where a flat

ordering is defined to have a nesting level of one. The follow-

ing theorem summarizes our comparison of flat and nested

orderings.

Theorem 7.3 Consider an SCC S, and any flat ordering

Of and any nested ordering On on S. Let iterbsn be number

of iterations needed to compute the closure of S using BSN.

If nf and nn denote the number of rule applications needed

to compute the closure of S using Of and On respectively,

then nf/k ≤ nn ≤ (iterbsn)s · k1, where k is the number of

rule occurrences in Of , k1 is the number of rule occurrences

in On, and s is the nesting level of On. 2
Since an optimal fair ordering must take at least as many

rule applications as an optimal rule ordering, the above the-

orem also directly bounds how much worse an arbitrary flat

ordering can be compared to an optimal fair ordering.

Note that every fair ordering is also a flat ordering, and

hence the above theorem applies when we compare fair or-

derings with nested orderings. The worst case performance

of nested orderings is bounded, as shown above. In Section 8

we describe an example where the performance of a nested

ordering is indeed as bad (to within a small constant factor)

as the above upper bound allows (Program P2, data set

S64). Thus, although a nested ordering can perform some-

what better (i.e. nf = cnn, 1 < c ≤ k) than fair orderings

on some data sets, it is possible for it to perform much worse

(when nn = (iterbsn)s.k1) on other data sets. Note also that

iterbsn ≥ nf/k.

8 Summary of Performance Re-

sults

In this section we describe preliminary results of a perfor-

mance study of the benefits of immediate availability of

facts, and the benefits of ordering rules as described in

Section 7. These results bear out the theoretical analysis

presented in earlier sections. We then compare fair order-

ings with nested orderings, and show that for some data

sets, nested orderings outperform fair orderings, whereas

for other data sets they perform much worse. Our perfor-

mance study draws upon and extends the work of Kuittinen

et al. [KNSS89].



Data Set Basic Pred-wise Gen’l 1 Gen’l 2

A10 3579 1535 1023 2812

B64 146 73 68 80

F10 23 10 7 18

Table 1: Program P1: Number of Iterations

We consider two programs, referred to as P111 and P2 in

this section. These programs and corresponding data sets

are presented in Appendix A.

The semi-naive rewriting used is the version proposed in

[BR87]. The above programs were hand-coded for each of

the evaluation techniques, and measurements were made by

running the resultant programs on the data sets described.

There is a cycle preserving fair ordering for each SCC of P1

and P2, and the column “General 1” of the tables is for a

Generalized Semi-Naive evaluation using such an ordering.

The column “General 2” in the tables for P1 corresponds

to a GSN evaluation of P1 using a fair ordering that breaks

a cycle to degree six. The column “Nested” in the tables

for P2 corresponds to the above nested ordering. Column

“Basic” corresponds to a Basic Semi-Naive evaluation, and

column “Pred-wise” is for a Predicate-wise Semi-Naive eval-

uation using a cycle preserving fair ordering based on the

predicate graph.

For P1 we use the data sets A10, B64, and F10. Data set

A10 results in no duplicate derivations with P1, but takes

a large number of iterations. Data set B64 is large, takes

a moderate number of iterations, and results in a moderate

number of duplicates. Data set F10 results in a large number

of duplicate derivations, but a fewer number of iterations.

For P2 we use two data sets, C16 and S64. C16 is de-

signed such that the nested ordering we consider performs

well, and S64 is designed such that the nested ordering per-

forms very badly compared to the cycle preserving fair or-

dering.

Table 1 shows the number of iterations taken by each

evaluation strategy on P1. It should be noted that the total

number of rule applications (considered) is directly propor-

tional to the number of iterations taken. PSN outperforms

BSN on this measure. It improves over the performance of

BSN by over 50% on all data sets considered. GSN with

a cycle preserving fair ordering outperforms PSN by about

30% (on A10 and F10) and performs about 50% to 70% bet-

ter than BSN. GSN with a bad fair ordering performs much

worse than GSN with a good fair ordering (although it can

never be worse than BSN), and this clearly brings out the

benefits of good fair orderings.

If one of the relations in the join is empty, the result of the

join is null, and we call such a join a null join. We may be

able to detect this condition at run time without incurring

much cost. Table 2 shows the number of joins used by each

11P1 is the same program that was used in [KNSS89].

Data Set Basic Pred-wise Gen’l 1 Nested

C16 282 221 207 179

S64 1717 588 583 2536

Table 3: Program P2: Number of Rule Applications

evaluation strategy on P1, divided into the number of null

joins, and the number of non-null joins. The total number of

joins taken by General 1 is better than PSN, which in turn is

better than BSN. If we count only non-null joins, this is not

strictly true. PSN always performs no worse than BSN, and

on B64 performs about 50% fewer non-null joins. General

1 performs 15% to 45% better than BSN on this count. On

one data set, B64, PSN is slightly better (less than 7%) than

General 1. However, on the other two data sets, General 1

outperforms PSN by about 15% to 20%.

Table 3 shows the number of rule applications taken by

each evaluation strategy on P2. It can be seen that for C16,

Nested is better than the fair ordering indicated by General

1. However, for S64 Nested performs much worse than any

of the other evaluation strategies. Both PSN and General 1

are about 20% to 65% better than BSN.

Table 4 shows the number of joins used by each evaluation

strategy on P2. Again, the number of joins taken by Nested

is better than the fair ordering indicated by General 1 for

the data set C16. However, Nested performs very badly on

the data set S64 compared to each of the other evaluation

strategies. General 1 and PSN are about 20% to 30% better

than BSN.

Our performance results underscore the theoretical re-

sults described in earlier sections. The benefits of immediate

availability of facts is indicated by the fact that GSN is in

general better than PSN, which, in turn, is in general better

than BSN, under the cost criterion of number of rule ap-

plications and iterations. Further, our results clearly bring

out the advantages of cycle preserving fair orderings. Our

results also indicate that nested orderings may perform bet-

ter than fair orderings on some data sets, but can perform

much worse on others.

9 Conclusion

In this paper, we studied several aspects of rule ordering

in the bottom-up evaluation of logic programs. Rule or-

derings are necessary for ensuring a desired semantics, such

as the evaluation of the magic rewritten versions of strati-

fied programs. Rule orderings were also shown to be useful

for improving the total cost of sequential evaluation of logic

programs. We presented three evaluation algorithms, GSN,

OSN and PSN, that could be used for evaluating such rule

orderings, while preserving the semi-naive property, and dis-

cussed cases where each was useful.

We studied rule orderings theoretically, and showed that



Data Set Basic Pred-wise General 1 General 2

Non-Nl Null Non-Nl Null Non-Nl Null Non-Nl Null

A10 6126 14835 6126 4615 5230 2693 6126 11000

B64 1066 196 549 88 588 14 596 96

F10 73 78 57 17 45 10 73 53

Table 2: Program P1: Number of Joins (Non-Null and Null)

Data Set Basic Pred-wise General 1 Nested

Non-Nl Null Non-Nl Null Non-Nl Null Non-Nl Null

C16 459 203 372 162 364 139 304 30

S64 2002 1016 1386 389 1447 323 5230 446

Table 4: Program P2: Number of Joins (Non-Null and Null)

for the class of fair orderings, cycle preserving orderings were

optimal and, in the absence of additional information, fair

orderings are to be preferred to non-fair orderings.

An important open problem is to find an efficient algo-

rithm that checks whether an SCC has a cycle preserving

fair ordering and if so, produces it. As a heuristic, we sug-

gest the reverse of a depth-first search pop-out order of the

rule graph. This produces a fair ordering that often pre-

serves cycles in an SCC. However, this procedure does not

guarantee that all cycles are preserved, even if the SCC has

a cycle preserving fair ordering, and in the worst case this

procedure could break the cycles in the rule graph to a high

degree.

We also presented a summary of some performance results

to support our theoretical analyses.
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A Programs

In P1, rules 1 and 9 are in separate SCCs, and the other

seven rules are in one SCC of the rule graph. The cycle



1 : anc(X, Y, 1) ← manc(X), up(X, Y ).

2 : anc(X, Y, N) ← N > 1, manc(X), anc(X, Z, N − 1),

up(Z, Y ).

3 : desc(X,Y, 1) ← mdesc(X, 1), down(X, Y ).

4 : desc(X,Y, N) ← N > 1, mdesc(X,N),

desc(X,Z, N − 1), down(Z, Y ).

5 : sg(X,Y ) ← msg(X), flat(X, Y ).

6 : sg(X,Y ) ← msg(X), anc(X, X1, N),

flat(X1, X2), sg(X2, Y 2),

flat(Y 2, Y 1), desc(Y 1, Y, N).

7 : manc(X) ← msg(X).

8 : msg(X2) ← msg(X), anc(X, X1, N),

flat(X1, X2).

9 : mdesc(Y 1, N) ← msg(X), anc(X, X1, N),

flat(X1, X2),

sg(X2, Y 2), flat(Y 2, Y 1).

10 : mdesc(X,N − 1) ← mdesc(X,N), N > 1.

11 : msg(1).
12 : query(X) ← sg(1,X).

Figure 5: Program P2
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Figure 6: Data Set S64

preserving fair ordering for this program is 1 · (2 · 7 · 5 · 6 · 3 ·

4 · 8) · 9. The ordering 1 · (2 · 8 · 4 · 3 · 6 · 5 · 7) · 9 breaks a

cycle to a degree six, and is used in General 2.

There are two non-trivial SCCs in the rule graph of P2.

The fair orderings chosen for each of the SCCs is cycle pre-

serving. Combining the fair orderings for each SCC, the fair

rule ordering used for P2 is 11·(7·1·2·8)·5·(9·10·3·4·6)·12.

Combining the nested orderings for the SCCs, the nested or-

dering used for this program is 11 · (7 · 1 · (2)∗ · 8)∗ · 5 · (9 ·

10 · 3 · (4)∗ · 6)∗ · 12.

Data sets A10 and B64 are the same as those used in

[KNSS89]. A grid is defined to be a structure such that: (1)

If i and j are nodes in the same column and i is below j,

there is a fact up(i, j) as well as a fact down(j, i), and (2)

If i and j are nodes in the same row and j is immediately

to the right of i, there is a fact flat(i, j). Data set Cn is a

grid with n rows and 8 columns. Data set F10 represents a

10×10 grid, with the additional facts up(i, j) and down(j, i)

for every pair of nodes i , j that are in the same column, and

i is below (but not necessarily immediately below) j. Data

set S64 is as shown in Figure 6.


