
The VLDB Journal manuscript No.
(will be inserted by the editor)

Which Sort Orders are Interesting?

Ravindra Guravannavar · S. Sudarshan · Ajit A. Diwan · Ch. Sobhan Babu

Received: date / Accepted: date

Abstract Sort orders play an important role in query
evaluation. Algorithms that rely on sorting are widely

used to implement joins, grouping, duplicate elimina-

tion and other set operations. The notion of interesting

orders has allowed query optimizers to consider plans
that could be locally sub-optimal, but produce ordered

output beneficial for other operators, and thus be part

of a globally optimal plan. However, the number of in-

teresting orders for most operators is factorial in the

number of attributes involved. Optimizer implementa-
tions use heuristics to prune the number of interest-

ing orders, but the quality of the heuristics is unclear.

Increasingly complex decision support queries and in-

creasing use of query-covering indices, which provide
multiple alternative sort orders for relations, motivate

us to better address the problem of choosing interesting

orders. We show that even a simplified version of the

problem is NP-hard and provide a 1/2-benefit approxi-

mation algorithm for a special case of the problem. We
then present principled heuristics for the general case

of choosing interesting orders.

We have implemented the proposed techniques in
a Volcano-style cost-based optimizer, and our perfor-
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mance study shows significant improvements in esti-
mated cost. We also executed our plans on a widely

used commercial database system, and on PostgreSQL,

and found that actual execution times for our plans

were significantly better than for plans generated by
those systems in several cases.

Keywords Query Optimization · Sort Orders

1 Introduction

Decision support queries, extract-transform-load (ETL)

operations, data cleansing and integration often use

complex joins, aggregation, set operations and dupli-

cate elimination. Sorting based query processing algo-
rithms for these operations are well known. Sorting

based algorithms are quite attractive when physical sort

orders of one or more base relations fulfill the sort order

requirements of operators either completely or partially.

Further, secondary indices that cover a query1 are being
increasingly used in read-mostly environments. Query

covering indices make it very efficient to obtain desired

sort orders without accessing the data pages. These fac-

tors make it possible for sort based plans to significantly
outperform hash based counterparts.

The notion of interesting orders [15] has allowed op-

timizers to consider plans that could be locally sub-

optimal, but produce sort orders that are beneficial for
other operators, and thus produce a better plan over-

all. A sort order on the result of an input sub-expression

is considered interesting for an operator if it is either

required for the evaluation of the operator or reduces

the cost of its evaluation when compared to its eval-
uation with unsorted inputs. However, the number of

1 contains all attributes required to answer the query
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interesting sort orders can be factorial in the number

of attributes involved in the operation. This may not

be acceptable as queries in the aforementioned applica-

tions do contain large number of attributes in joins and

set operations.

In this paper we consider the problem of optimiza-

tion taking sort orders into consideration. We make the
following technical contributions:

1. Often order requirements of operators are partially

satisfied by inputs. For instance, consider a merge-

join with join predicate (r.c1 = s.c1 and r.c2 = s.c2).
A clustering index on r.c1 (or on r.c2 or on s.c1

or on s.c2) is helpful in getting the desired order

efficiently; a secondary index that covers the query

has the same effect.

If a relation (or intermediate result) is already sorted
on a prefix of the required sort order, and if the in-

formation about such partial sort order is known to

the sort operator (also called sort enforcer in [7]2),

the cost of sorting can be reduced significantly [5].
In many cases, when the number of duplicates is not

too large, such partial sort orders may even elimi-

nate the need to materialize runs on secondary stor-

age, and can complete the sort operation using just

one scan of the relation. In this paper, we show how
a cost-based optimizer can be extended to gener-

ate efficient plans taking into account partial sort

orders.

2. We consider operators having more than one inter-
esting sort orders on their inputs, and address the

problem of making a coordinated choice of sort or-

ders for multiple such operators in a query plan. We

say an operator has a flexible order requirement if

it has more than one interesting sort order. For ex-
ample, the merge-join operator has a flexible order

requirement since every permutation of the join at-

tributes is an interesting sort order for the operator.

– In Section 3 we show that a special case of find-

ing optimal sort orders is NP-hard and give a
2-approximation algorithm to choose sort orders

for a tree of merge-joins.

– In Section 4 we address a more general case of

the problem. In many cases, the knowledge of in-

dices and available physical operators in the sys-
tem allows us to narrow down the search space

to a small set of orders. We formalize this idea

(in Section 4.1) through the notion of favorable

orders, and propose a heuristic to efficiently enu-
merate a small set of promising sort orders. Un-

like heuristics used in optimizer implementations,

2 [7] also considers other types of enforcers, collectively called
physical property enforcers.

our approach takes into account issues such as

(i) added choices of sort orders for base relations

due to the use of query covering indices (ii) sort

orders that partially match an order requirement

(iii) requirement of same sort order from mul-
tiple inputs (e.g., merge based join, union) and

(iv) common attributes between multiple joins,

grouping and set operations.

In Section 4.2 we also show how to integrate our
extensions into a cost-based optimizer.

3. We present experimental results (in Section 5) eval-

uating the benefits of the proposed techniques. We

compare the plans generated by our optimizer with

those of three widely used database systems and
show significant benefits due to each of our opti-

mizations.

This article is an extended version of our conference

paper [8]. The important additions made in this arti-

cle are described in Section 6, along with other related
work.

2 Exploiting Partial Sort Orders

Often, sort order requirements of operators are par-

tially satisfied by indices or other operators in the input

subexpressions. A prior knowledge of partial sort orders

available from inputs allows us to produce the required
(complete) sort order more efficiently. When operators

have flexible order requirements, it is thus important to

choose a sort order that makes maximum use of partial

sort orders already available. We motivate the prob-

lem with an example. Consider Query 1 shown below.
Such queries frequently arise in consolidating data from

multiple sources, e.g., in extract-transform-load (ETL)

tasks. The join predicate between the two catalog ta-

bles involves four attributes and two of these attributes
are also involved in another join with the rating table.

Further, the order-by clause asks for sorting on a large

number of columns including the columns involved in

the join predicate.

Query 1

SELECT c1.make, c1.year, c1.city, c1.color,
c1.sellreason, c2.breakdowns, r.rating

FROM catalog1 c1, catalog2 c2, rating r

WHERE c1.city=c2.city AND c1.make=c2.make AND

c1.year=c2.year AND c1.color=c2.color AND

c1.make=r.make and c1.year=r.year
ORDER BYc1.make, c1.year, c1.color, c1.city,

c1.sellreason, c2.breakdowns, r.rating;

The two catalog tables contain 2 million records

each, and have average tuple sizes of 100 bytes and
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2M X 150 bytes

rating
Table scan Table scan

(100)

sort−4
(280K)

2M X 120 bytes

(100)

C.Idx Scan
catalog1 catalog2

Plan Cost=530,345

2M X 100 bytes 2K X 40 bytes

sort−3
(5)

2M X 80 bytes

sort−2
(160K)

sort−1
(100)

sort−4: (y, m, c, co) −−>
sort−3: ( ) −−> (y, m)
sort−2: (m) −−> (y, m, c, co)

sort−1: (y) −−> (y, m, c, co)

(40)(40K)(50K)

(m, y, co, c,...)

Fig. 1 A Näıve Merge-Join Plan

(100)

catalog1
Table scan

ratingcatalog2

Plan Cost=290,410

sort−1 sort−2 sort−3
(0)(100)(200K)

(100)

sort−4
(100)

sort−1: (y) −−> (m, y, co, c)

sort−3: (m) −−> (m, y)

sort−2: (m) −−> (m, y, co, c)

sort−4: (m, y, co, c) −−>(m, y, co, c, ...)

(50K) Cov. Idx ScanC.Idx Scan (40K) (10)

Fig. 2 Optimal Merge-Join Plan

80 bytes. We assume a disk block size of 4K bytes and

10000 blocks (40 MB) of main memory for sorting. The

table catalog1 is clustered on year and the table catalog2

is clustered on make. The rating table has a secondary
index on the make column, and the index includes the

year and rating columns in its leaf pages (i.e., the index

covers the query). Figures 1 and 2 show two different

plans for the example query. Numbers in the parenthe-

ses indicate estimated cost of the operators in number
of I/Os (CPU cost is appropriately translated into I/O

cost units). Edges are marked with the number of tu-

ples expected to flow on that edge and their average

size. For brevity, the input and output orders for the
sort enforcers are shown using only the starting letters

of the column names. Though both plans use the same

join order and employ sort-merge joins, the second plan

is expected to perform significantly better than the first.

2.1 Changes to External Sort

External sorting algorithms have been studied exten-
sively but in isolation. The standard replacement selec-

tion [10] for run formation well adapts with the extent

to which input is presorted. In the extreme case, when

the input is fully sorted, it generates a single run on
the disk and avoids merging altogether. Larson [11]

revisits run formation in the context of query process-

ing and extends the standard replacement selection to

handle variable length keys and to improve locality of

reference. Estivill-Castro and Wood [4] provide a sur-
vey of adaptive sorting algorithms. The technique we

propose in this section to exploit partial sort orders

is a specific optimization in the context of multi-key

external sorting. We observe that, by exploiting prior
knowledge of partial sort order of input, it is possible

to eliminate disk I/O altogether and have a completely

pipelined execution of the sort operator.

We use the following conventions: o, o1, o2 etc. refer to

sort orders. A sort order of size n is a sequence of

attributes/columns (a1, a2, . . . , an). Sort direction (as-

cending/descending) is ignored; our techniques are ap-
plicable independent of the sort direction.

ǫ Empty (no) sort order

attrs(o) The set of attributes in sort order o

|o| Number of attributes in the sort order o

o1 ≤ o2 Order o2 subsumes order o1 (o1 is a prefix of o2)

o1 < o2 Order o1 is a strict prefix of o2

Consider a case where the sort order to produce is

(col1, col2) and the input already has the order (col1).

Further, suppose the number of tuples with any given

value for col1 fit in memory. Standard replacement-
selection writes a single run with all the tuples to the

disk and reads it back again; this breaks the pipeline

and incurs substantial I/O for large inputs. It is not

difficult to see how the standard replacement selection
can be modified to exploit the partial sort orders. Let

o = (a1, a2, . . . , an) be the desired sort order and o′ =

(a1, a2, . . . , ak), k < n be the partial sort order known

to hold on the input. At any point during sorting we

need to retain only those tuples that have the same
value for attributes a1, a2, . . . , ak. When a tuple with a

new value for these set of attributes is read, all the tu-

ples in the heap (or on disk if there are large number of

tuples matching a given value of a1, a2, . . . , ak) can be
sent to the next operator in sorted order. Thus in most

cases, partial sort orders allow a completely pipelined

execution of the sort. Exploiting partial sort orders in

this way has several benefits:

1. Let o = (a1, a2, . . . , an) be the desired sort order

and o′ = (a1, a2, . . . , ak), k < n be the partial sort

order known to already hold on the input. We call
the set of tuples that have the same value for at-

tributes (a1, a2, . . . , ak) as a partial sort segment. If

each partial sort segment fits in memory (which is
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quite often the case in practice), the entire sort op-

eration can be completed without any disk I/O.

2. Exploiting partial sort orders allows us to output

tuples early (as soon as a new segment starts). In

a pipelined execution this can have large benefits.
Moreover, producing tuples early has immense ben-

efits for Top-K queries and situations where the user

retrieves only some result tuples.

3. Since sorting of each partial sort segment is done in-
dependently, the number of comparisons are signifi-

cantly reduced. Note that we empty the heap every

time a new segment starts and hence insertions into

heap will be faster. In general, independently sorting

k segments each of size n/k elements, has the com-
plexity O(n log(n/k)) as against O(n log(n)) for

sorting all n elements. Further, while sorting each

partial sort segment comparisons need to be done on

fewer attributes, (ak+1, . . . , an) in the above case.

Our experimental study presented in Section 5 con-

firms that the benefits of exploiting partial sort orders
can be substantial, and yet none of the systems we eval-

uated exploited the partial sort orders.

2.2 Optimizer Extensions for Partial Sort Orders

In this section we assume operators have fixed sort or-

der requirements, and we focus only on incorporating

partial sort orders. We deal with flexible sort order re-

quirements of operators in subsequent sections.

We use the following notations:

o1 ∧ o2 Longest common prefix between sort or-
ders o1 and o2

o ∧ s Longest prefix of sort order o such that
each attribute in the prefix belongs to the
attribute set s

o1 + o2 Sort order obtained by concatenating o1

and o2

o1 − o2 Sort order o′ such that o2+o′ = o1 (defined
only when o2 ≤ o1)

coe(e, o1, o2) The cost of enforcing order o2 on the result
of expression e which already has order o1

N(e) Expected size, in number of tuples, of the
result of expression e

B(e) Expected size, in number of blocks, of the
result of expression e

D(e, s) Distinct values for attribute(s) s of expres-
sion e. D(e, s) = N(Πs(e))

cpu cost(e, o) CPU cost of sorting the result of e to get
order o

M Number of memory blocks available for
sorting

The Volcano optimizer framework [7] assumes that

an algorithm (physical operator) either guarantees a re-

quired sort order fully or it does not. Further, a physical

property enforcer (such as sort) only knows the prop-

erty to be enforced and has no information about the

properties that hold on its input. The optimizer’s cost

estimate for the enforcer thus depends only on the re-

quired output property (sort order). In order to remedy
these deficiencies we extended the optimizer in the fol-

lowing way: consider an optimization goal (e, o), where

e is the expression and o the required output sort order.

If the physical operator being considered for the logical
operator at the root of e guarantees a sort order o′ < o,

then the optimizer adds a partial sort enforcer enf to

enforce o from o′. We use the following cost model to

account for the benefits of partial sorting.

coe(e, ǫ, o) =

8

<

:

cpu-cost(e, o) if B(e) ≤ M
B(e)(2⌈logM−1(B(e)/M)⌉ + 1) ∗ t otherwise,
where t is the block transfer cost

If e is known to have the order o1, we estimate the cost

of obtaining an order o2 as follows:

coe(e, o1, o2) = D(e, attrs(os)) ∗ coe(e′, ǫ, or), where

os = o2∧o1, or = o2−os and e′ = σp(e), where p equates

attributes in os to an arbitrary constant. Intuitively,
we consider the cost of sorting a single partial sort seg-

ment independently and multiply it by the number of

segments. Note that we assume uniform distribution

of values for attrs(os). Therefore, we estimate N(e′) =

⌈N(e)/D(e, attrs(os))⌉ and B(e′) = ⌈B(e)/D(e, attrs(os))⌉.

When the actual distribution of values is available, a

more accurate cost model that does not rely on the

uniform distribution assumption can be used.

3 Choosing Sort Orders for a Join Tree

Consider a join expression e = e1 ⋊⋉ e2, where e1, e2

are input subexpressions and the join predicate is of

the form: (e1.a1 = e2.a1 and e1.a2 = e2.a2 . . . and

e1.an = e2.an). Note that, w.l.g., we use the same name
for attributes being compared from either side and we

call the set {a1, a2, . . . , an} as the join attribute set. In

this case, the merge join algorithm has potentially n!

interesting sort orders on inputs e1 and e2
3. The specific

sort order chosen for the merge-join can have significant

influence on the plan cost due to the following reasons:

(i) Clustering and covering indices, indexed material-

ized views and other operators in the subexpressions

e1, e2 can make one sort order much cheaper to pro-
duce than another. (ii) The merge-join produces the

same order on its output as the one selected for its in-

puts. Hence, a sort order that helps another operator

above the merge-join can help eliminate a sort or just

3 We assume merge-join requires sorting on all attributes in-
volved in the join predicate.
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R2R1 R3 R4

R1.a=R2.a and R1.b=R2.b

R1.a=R4.a and R2.d=R3.d

L={a,c}L={a,b}

L={a,d}

R3.a=R4.a and R3.c=R4.c

Fig. 3 A Join Tree with Representative Join Attribute Sets

have a partial sort. The assignment of sort orders to
each operator in a plan is said to be optimal if no other

sort order assignment has a lower cost. In this sec-

tion we show that a special case of the the problem of

choosing optimal sort orders for a tree of merge-joins is

NP-hard and provide a 1/2 benefit approximation algo-
rithm for the problem. In the next section, we describe

our heuristics for a more general setting of the prob-

lem in which we make use of the proposed 1/2 benefit

approximation algorithm.

3.1 Optimal Sort Order Assignment is NP-Hard

We now show that the problem of finding an optimal

assignment of sort orders for a given plan is NP-hard

by considering a special case of the problem. Let e =

R1 ⋊⋉ R2 ⋊⋉ R3 . . . ⋊⋉ Rn be a join expression with
conjunctive join predicates on n relations, where n is

a power of 2. Let T be a balanced join order tree for

e. Figure 3 shows an example. For each join node v in

T , we assign an attribute set Lv (called representative
join attribute set), which is constructed as follows. If ai

is an attribute involved in the join predicate of v then

H(ai) ∈ Lv, where H(ai) is the representative of the

attribute equivalence class in the result of e. Two at-

tributes ai and aj belong to the same attribute equiva-
lence class if they are equated directly or transitively in

the join predicates of e. The representative of an equiv-

alence class is an arbitrarily chosen attribute belonging

to the equivalence class. For example, if the predicate
(R1.a1 = R2.a2 and R2.a2 = R3.a3) is part of the join

predicates of e, then R1.a1, R2.a2 and R3.a3 belong to

the same attribute equivalence class, and we will have

H(R1.a1) = H(R2.a2) = H(R3.a3) = R1.a1. In Fig-

ure 3 we have shown the representative join attribute
sets for each join node. For brevity, we omit the relation

name qualifiers for attributes.

Now, suppose all the base relations and intermedi-

ate results in T are of the same size and no indices are
present on the base relations. The problem of choosing

optimal sort orders for each join requires us to choose

permutations of representative join attribute sets such

R3 R6R5

<c,d>
{c,d}

1 2

{a,b,c,d,e}

{a,b,c,k}

{c,e,i,j} {c,k,l,m} {c,d,h,n}
<c,d,h,n>

{f,g,p,q}
<f,g,p,q>

R1 R2 R7 R8R4

2 0

21

Permutations of join attributes giving maximum benefit

<c,k,l,m><c,e,i,j>

<c,k,a,b>

<c,d,a,b,e>

Fig. 4 A Special Case of Choosing Globally Optimal Sort Order

that we minimize the cost of intermediate sorts. The

cost of sorting depends on the sort order already present

on the input and the sort order required. In general,

the sort cost on any edge (vi, vj) of the tree is a mono-
tonically decreasing function of the length of common

prefix between attribute permutations chosen for vi and

vj . For example, see our cost model for sort presented

in Section 2.2. We define the benefit of a solution to
be

∑
vivj∈E f(|pi ∧ pj|), where E is the set of edges in

the tree, pi, pj are attribute permutations chosen by the

solution for vertices vi, vj and f is any monotonically

increasing function in the length of the common prefix

(|pi ∧ pj |), with 0 at origin (i.e., f(0) = 0). Minimizing
the sorting cost requires maximizing the total benefit.

Figure 4, shows an example along with a solution,

which maximizes the total benefit assuming f(|pi∧pj |) =

|pi ∧ pj|. The representative join attribute set for each
join node is shown in curly braces besides the node.

Permutations chosen by the solution are indicated with

angle brackets and the number on each edge shows the

benefit for that edge. Below we state the problem for-

mally.

Problem 1 (Common Prefix Problem) Let T be a tree

having n vertices, the vertex set being V (T ) and the
edge set being E(T ). Each vertex vi (i = 1, . . . , n) is

associated with an attribute set si. Let f be any non-

decreasing function with f(0) = 0. Find a set of at-

tribute permutations p1, p2 . . . , pn, where pi is a per-

mutation of set si, such that the benefit function F =∑
∀vivj∈E(T ) f(|pi ∧ pj |) is maximized.

We prove that Problem 1 is NP-hard even for binary

trees. To do so we consider the special case where f(|pi∧
pj|) = |pi ∧ pj |.

The structure of our proof is as follows: we consider a

known NP-hard problem, SUM-CUT [3], which is related

to graph layouts and rephrase it as MOD-SUM-CUT. We
then reduce the MOD-SUM-CUT problem to the Com-

mon Prefix Problem on star trees. Finally, we reduce the

Common Prefix Problem on star trees to the Common
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Prefix Problem on binary trees. In the rest of this sec-

tion we define each of these problems and then present

the proof of NP-hardness.

Problem 2 (Sum-Cut) [3] Given a graph G with m

vertices, number the vertices of G as 1, . . . , m such that∑
1≤i≤m ci is minimized, where ci is the number of ver-

tices numbered ≤ i that are adjacent to at least one

vertex numbered greater than i.

The Sum-Cut problem can be rephrased as follows:

given a graph G with m vertices, number the vertices of
G as 1, . . . , m such that

∑
1≤i≤m c̄i is maximized, where

c̄i is the number of vertices numbered ≤ i that are ad-

jacent to no vertex numbered greater than i. Let G′ be

the complement graph of G. The complement graph G′

of G contains an edge (vi, vj) iff (vi, vj) is not present in
G. On the complement graph G′, it is straight-forward

to see that the Sum-Cut problem is equivalent to Prob-

lem 3 given below.

Problem 3 (Mod-Sum-Cut) Given a graph H with m

vertices, number the vertices of H as 1, 2, . . . , m such
that

∑
1≤i≤m qi is maximized, where qi is the number

of vertices numbered no larger than i that are adjacent

to all the vertices numbered greater than i.

First, we reduce the Mod-Sum-Cut problem to the

Common Prefix Problem on star trees. A star tree or
simply a star of n vertices is a tree with a root and n−1

leaf vertices.

Lemma 1 The Common Prefix Problem is NP-Hard

for Stars.

Proof We reduce the Mod-Sum-Cut problem to the Com-

mon Prefix Problem on stars, with the function f set to

|pi ∧pj | (i.e., the length of the longest common prefix).

Let graph G with m vertices be the given instance of

Mod-Sum-Cut problem. Let v1, . . . , vm be the vertices
of G. We construct an instance of the Common Pre-

fix Problem on stars as follows: let S be a star having

m + 1 vertices, with ur as as its root and u1, . . . , um

as its leaves. The attribute set of root ur is chosen to
be the set of all vertices in G (i.e., {v1, . . . , vm}), and

the attribute set of each leaf ui is chosen to be adj(vi),

where adj(vi) is the set of all vertices adjacent to vi in

graph G. A pictorial illustration of the construction is

shown in Figure 5.
Now, we show that there exists a solution of value

k for Mod-Sum-Cut on G iff there exists a solution of

value k for the Common Prefix Problem on S.

Suppose there exists a solution of value k for Mod-
Sum-Cut on G. Let the order of vertices in the solution

be vg(1), vg(2), . . . , vg(m), where g is a permutation on

1, . . . , m (i.e., a one-to-one function from {1, . . . , m} to

1u  : adj(v )1 2u  : adj(v )2 mu  : adj(v )m

ru  : V(G)

Fig. 5 Reducing Mod-Sum-Cut to Common Prefix on Star

{1, . . . , m}). We construct the solution for the corre-
sponding Common Prefix Problem (for star S) as fol-

lows: for the root vertex ur, we choose the attribute

permutation to be or = vg(m), vg(m−1), . . . , vg(1). For

each leaf vertex ui, we choose a permutation oi of its

attribute set adj(vi) such that the length of the longest
common prefix |oi ∧ or| is maximum.

In the solution ordering for Mod-Sum-Cut, let li be

the smallest integer such that vi is adjacent to all ver-

tices in the set vg(li+1), . . . , vg(m). This implies the fol-
lowing: (i) in the solution value for Mod-Sum-Cut, ver-

tex vi will be counted m−li times, i.e., k =
∑

vi
(m−li),

and (ii) in the corresponding Common Prefix Problem,

there exists a common prefix of length m − li between

the permutations chosen for ui and the root ur. This
shows there exists a solution of value k for the corre-

sponding Common Prefix Problem.

Now, suppose there exists a solution of value k for

the Common Prefix Problem on S. In the solution, let
the attribute permutation chosen for the root vertex

ur be or = vh(1), vh(2), . . . , vh(m), where h is a per-

mutation on 1, . . . , m. Now, we construct the solution

for Mod-Sum-Cut on G by reversing the order of at-

tributes in or, i.e., by ordering the vertices of G as
vh(m), vh(m−1), . . . , vh(1).

In the solution for the Common Prefix Problem on

S, let oi be the permutation (of set adj(vi)) chosen for

leaf ui. Let li denote the length of the longest common
prefix between oi and or, i.e., li = |oi ∧ or|. We ob-

serve that, the solution value k =
∑

1≤i≤m(li). In the

corresponding solution for Mod-Sum-Cut on G, li will

be the smallest integer such that vertex vi is adjacent

to all vertices in the set vh(m), . . . , vh(m−li+1). Hence,
in the solution value for Mod-Sum-Cut on G, vertex

vi will be counted li times. Therefore, the solution for

Mod-Sum-Cut will have a value of
∑

1≤i≤m(li) = k.

Theorem 1 Problem 1 is NP-hard even for binary trees.

Proof We reduce the Common Prefix Problem on stars
to the Common Prefix Problem on binary trees. Let S

be a star with ur as its root and u1, . . . , um as its leaves.

Let ar denote the set of attributes associated with ur
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and a1, a2, . . . , am denote the set of attributes associ-

ated with vertices u1, u2, . . . , um respectively. We now

construct an instance of the Common Prefix Problem

on binary trees as follows: let T be a binary tree with

2m vertices, with r1, r2, . . . , rm as its internal vertices
and w1, w2, . . . , wm as its leaves. Let the edge set E(T )

be {riri+1 : 1 ≤ i < m} ∪ {riwi : 1 ≤ i ≤ m}. Each in-

ternal vertex ri is assigned the attribute set A = ar∪L,

where L is an arbitrarily chosen set of attributes of size
> m× |ar| and is disjoint from ar ∪ a1 ∪ . . .∪ am. Each

leaf vertex wi is assigned the attribute set ai. Figure 6

pictorially illustrates the construction. In the figure, the

attribute sets ar and a1, . . . , am for the star are assumed

to be as in Figure 5.

w  : adj(v )m

w  : adj(v )22

1 1w  : adj(v )

ULr : V(G)1

UL2r : V(G)

r : V(G)m UL

m

Fig. 6 Reducing the Common Prefix Problem on Stars to the
Common Prefix Problem on Binary Trees

Let Z = (m − 1) × |A|.

First, we show that if there exists a solution of value

k for the Common Prefix Problem on S then there ex-

ists a solution of value k + Z for the Common Prefix
Problem on T .

Suppose there exists a solution of value k for the

Common Prefix Problem on S. Let the or be the at-

tribute permutation assigned for ur and oi be the at-
tribute permutation assigned for each ui, 1 ≤ i ≤ m.

We construct a solution for T as follows: for each intern

vertex ri, we assign the permutation or + ol, where ol

is a fixed permutation of L, chosen arbitrarily. For each

leaf vertex wi, we assign the permutation oi. Since the
same permutation is chosen for all the internal vertices,

each of the (m − 1) pairs of adjacent internal vertices

will have a common prefix of length |A|. Further, each

of the m pairs of internal and leaf vertices that are adja-
cent to each other will have a common prefix of length

|oi ∧ or|. As k =
∑

1≤i≤m(|oi ∧ or |), we conclude the

solution value for T is k + Z.

Next, we show that if there exists a solution of value

k for the Common Prefix Problem on T then there ex-

ists a solution of value k − Z for the Common Prefix

Problem on S. To do so, we make use two supporting

lemmas, Lemma 2 and Lemma 3. Below we state and
prove these lemmas and then continue with the proof

of Theorem 1.

Lemma 2 In any optimal solution for the Common
Prefix Problem on T , all the internal vertices are as-

signed an identical permutation p.

Proof Let Topt be an optimal solution for T . In the op-
timal solution, let p1, . . . , pm be the permutations as-

signed to internal vertices r1, . . . , rm respectively. We

prove that |pi ∧ pi+1| = |A| for 1 ≤ i < m, which essen-

tially proves this lemma.

Case 1: Suppose |pi∧pi+1| < |ar| for some i, 1 ≤ i < m.
This implies, the total benefit of Topt, Ben(Topt) <

(m − 2) × |A| + (m + 1) × |ar|. Since |L| > m × |ar|,

we have |A| > (m + 1) × |ar|. Therefore, Ben(Topt) <

(m−1)×|A|. However, we know that there exists a so-
lution for T with benefit of at least (m− 1)× |A|. This

is because each of the internal vertices have the same

attribute set of size |A|. This contradicts the given fact

that Topt is optimal. Therefore, we conclude that our

assumption: |pi ∧ pi+1| < |ar| for some i, 1 ≤ i < m,
cannot be true.

Case 2: Suppose |pi ∧ pi+1| ≥ |ar| for all 1 ≤ i < m,

but |pi ∧ pi+1| < |A| for some i, 1 ≤ i < m.
Given a permutation p, we use the notation p[j] to de-

note the attribute at the jth position, where 1 ≤ j ≤ |p|.

The condition for Case 2 implies the following:

(a) p1[j] = p2[j] = . . . = pm[j] for 1 ≤ j ≤ |ar|.

(b) in Topt, the total benefit of edges incident between

internal vertices
∑

1≤i<m(|pi ∧ pi+1|) must be less
than |A| × (m − 1).

Now, consider a solution T ′
opt for T in which each

leaf vertex is assigned the same permutation as in Topt

and all the internal vertices are assigned an identical

permutation p constructed as follows: the first |ar| at-
tributes of p are chosen in the same order as the first

|ar| attributes in pi for any 1 ≤ i ≤ m (i.e., p[j] =

pi[j], 1 ≤ j ≤ |ar|), and the next |A− ar| attributes are

chosen an in an arbitrary order.

We observe that in both T ′
opt and Topt the total ben-

efit of edges incident from internal vertices to leaf ver-

tices remains the same. However, in T ′
opt, the total ben-

efit of edges incident between internal vertices will be

|A|×(m−1) (this is because all internal vertices are as-
signed an identical permutation). This implies, the total

benefit of T ′
opt is larger than that of Topt, which contra-

dicts the given fact that Topt is optimal. Therefore, we
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conclude the assumption made for Case 2 cannot be

true.

We thus conclude in every optimal solution Topt, all

the internal vertices are assigned an identical permuta-

tion, completing the proof of Lemma 2.

Next, we state and prove our second supporting lemma.

Lemma 3 There exists an optimal solution for T such
that, in the permutation p chosen for the internal ver-

tices, every attribute in set ar occurs before any at-

tribute in set L occurs.

Proof Let Topt be an optimal solution for T . In Topt,

let p1, . . . , pm be the permutations assigned to the in-

ternal vertices r1, . . . , rm respectively. From Lemma 2

we know that all the internal vertices are assigned an
identical permutation; let p1 = p2 = . . . = pm = p.

Suppose there exist x, y such that x < y, p[x] ∈ L

and p[y] ∈ ar. We now modify p1, . . . , pm as follows:

in each pi, we swap pi[x] with pi[y]. Since there is no

attribute common to the set L and the attribute sets
associated with the leaf vertices, this modification can-

not decrease the total benefit of Topt. This modification

can be repeated until all the attributes in ar appear

before the attributes in L in the permutation p.

From Lemmas 2 and 3, we can make the follow-

ing statement: if there exists a solution of value k for

the Common Prefix Problem on T , then there exists
a solution Topt of value at least k, in which, all inter-

nal vertices are assigned an identical permutation p and

|p ∧ ar| = |ar|.

We now construct a solution for the star S as fol-
lows: for the root vertex ur we assign the permutation

p ∧ ar. For each leaf vertex ui, we assign the permuta-

tion chosen for the corresponding leaf wi in the solution

Topt. In Topt, the maximum benefit which can be con-

tributed by edges incident between internal vertices of
T is Z. Therefore we conclude the corresponding solu-

tion on S should have a benefit of at least k −Z.

3.2 A Polynomial Time Algorithm for Paths

We now present an efficient algorithm for solving the

Common Prefix Problem, when the tree is a path. The

algorithm employs dynamic programming. Note that

left-deep and right-deep join plans result in problem in-
stances on paths. The algorithm relies on the following

theorem.

Theorem 2 Let v1, v2, . . . , vn be a path, where each

vertex vi is associated with an attribute set si. The

optimal solution value of Common Prefix Problem for

any segment (i, j) of the path, OPT(i, j) = max{OPT(i, k)+

OPT(k+1, j)+f(c(i, j))} over all i ≤ k < j, where c(i, j) is

the number of common attributes for the segment (i, j).

Proof

Case 1: Let c(i, j) = 0, i.e., there exists no attribute

common to all vertices vi, vi+1, . . . , vj . Consider an op-

timal solution for the path vi, . . . , vj . Let px be the

attribute permutation assigned by the optimal solu-
tion to vertex vx, i ≤ x ≤ j. The optimal solution

must contain two vertices vk, vk+1 such that the ben-

efit for the edge (vk, vk+1) is 0, i.e., |pk ∧ pk+1| = 0.

This directly follows from the assumption of Case 1,
c(i, j) = 0. Now, the problem can be independently

solved for the two segments (vi, vk) and (vk+1, vj) and

OPT (i, j) = OPT (i, k) + OPT (k + 1, j).

Case 2: Let c(i, j) 6= 0. Let s(i, j) be the set of at-

tributes common to all vertices vi, . . . , vj . Note that
the cardinality |s(i, j)| = c(i, j). Let os be an arbitrarily

chosen permutation of set s(i, j). We claim that there

exists an optimal solution Sopt such that, for every ver-

tex vx (i ≤ x ≤ j) the attribute permutation px chosen
by the solution has os as its prefix. To see this, con-

sider an optimal solution in which os is not a prefix

of some px. We can then reorder the permutations as-

signed to the vertices, without a decrease in the total

benefit OPT (i, j), so as to have os as the prefix of each
px, i ≤ x ≤ j.

In the above optimal solution Sopt, we can see that

there must exist an edge vkvk+1 whose benefit is ex-

actly f(c(i, j)). The attributes common to path seg-

ment i, . . . , j are also common to path segments i, . . . , k

and k + 1, . . . j, i.e., s(i, j) ⊆ s(i, k) and s(i, j) ⊆ s(k +
1, j). Therefore, in Sopt the permutations assigned for

path segments vi, . . . , vk and vk+1, . . . , vj give an op-

timal solution for those two path segments. Hence we

have OPT (i, j) = OPT (i, k)+OPT (k+1, j)+f(c(i, j)).

Procedure PathOrder in Figure 7 computes optimal

attribute permutations for any path (1, n), where each

vertex i, 1 ≤ i ≤ n, is associated with an attribute
set s[i]. The procedure uses dynamic programming and

computes solutions bottom up starting from path seg-

ments of length 0 (single vertices). The procedure be-

gins by assigning a benefit of 0 to all path segments

(i, i), 1 ≤ i ≤ n. It then constructs solutions for paths
of increasing length. For each path (i, i + j), of length

j, 1 ≤ j ≤ n − 1, the value of k, which maximizes

ben=benefit(i, k)+benefit(k + 1, i + j) is identified. The

values of k, ben and the attributes common to all the
vertices of path (i, i + j) are remembered (memoized).

Finally, the sub-procedure MakePermutation is used to

construct the attribute permutations p[1], . . . , p[n] us-
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ing the memo structure. The first call to procedure

MakePermutation is made with parameter i set to 1

(the first vertex on the path) and j set to n (the last

vertex on the path), and each of the attribute permuta-

tions p[1], . . . , p[n] initialized with an empty sort order.
Procedure MakePermutation constructs the attribute

permutation for each of the vertices i, i+1, . . . , j as fol-

lows: a permutation cp of commons(i, j) (i.e., the set

of attributes common to all the vertices from i, . . . , j)
is chosen at arbitrary. cp is then appended to each of

p[i], . . . , p[j]. The common attributes for segment (i, j)

are then removed from the common attributes of all

subpaths of (i, j). The optimal split point m for the

path segment (i, j) is read from the memo structure,
and the construction of the permutations continues re-

cursively on subpaths (i, m) and (m + 1, j), until i = j

(i.e., a single vertex). The overall time complexity of

procedure PathOrder is O(n3).

3.3 A 1/2 Benefit Approximation Algorithm for

Binary Trees

For binary trees we propose an approximation with ben-
efit at least half that of an optimal solution. Note that

our approximation guarantee implies at least half the

best possible improvement over the worst case sort cost.

This however, does not imply a 2-approximation on the

total cost.
We split the tree into two sets of paths, Po and Pe.

Po has the paths formed by edges incident from odd

levels and Pe has those formed by edges incident from

even levels, Figure 8 shows an example. We then find
an optimal solution for each of the two sets of paths.

Note that this gives us two solutions for the complete

tree, because each set of paths covers all the vertices

of the tree (for any left over vertices at the leaf level

or the root, we choose an arbitrary permutation). Let
the optimal solutions for the two sets of paths be So

and Se and the corresponding benefits be ben(So) and

ben(Se). Let the set of edges included in Po and Pe be

denoted by Eo and Ee respectively. Consider an op-
timal solution ST for the whole tree. In the optimal

solution, let the sum of benefits of all edges in Eo be

odd-ben(ST ) and that of edges in Ee be even-ben(ST ).

We claim that ben(So) ≥ odd-ben(ST ) and ben(Se) ≥

even-ben(ST ). This claim can be easily proved as fol-
lows. Suppose ben(So) < odd-ben(ST ), which means the

sum of benefits for edges in Po is higher in ST than in

So. This is not possible since So is an optimal solution

for Po (proof by contradiction). Similarly, we can prove
that ben(Se) ≥ even-ben(ST ). Since the total benefit

of the optimal solution ben(ST ) = odd-ben(ST ) + even-

ben(ST ), we have ben(So) + ben(Se) ≥ ben(ST ). Hence

Procedure PathOrder
Input: s[n] : array of attribute sets
Output: p[n] : array of permutations or sort orders
Data Structures:

benefit[n][n], split[n][n] : arrays of integers
commons[n][n] : array of attribute sets
apermute(s) : Function that returns an arbitrarily chosen
permutation of attribute set s

BEGIN
// Initialize the arrays.
for i=1 to n

benefit[i][i] = 0; p[i] = ǫ;
commons[i][i] = s[i]; split[i][i] = -1;

for j=1 to n-1 // Consider path segments of length j
for i = 1 to n-j // Consider path segment (i, i+j)

Let k be the index such that i ≤ k < (i+j) and
benefit[i][k]+benefit[k+1][i+j] is maximum.

commons[i][i+j] = commons[i][k] ∩ commons[k+1][i+j];
benefit[i][i+j] = benefit[i][k] + benefit[k+1][i+j] +

f(|commons[i][i+j]|);
split[i][i+j] = k;

// Now, construct the attribute permutations.
Call MakePermutation(1, n);

END PROC

// Procedure to construct attribute permutations from the
// memo structure, in which the optimal split point and common
// attributes are remembered.

Procedure MakePermutation(i, j)
BEGIN

// Choose a permutation of the attributes that are common
// to all the vertices from i to j.
Let ca = commons[i][j];
Let cp = apermute(ca);
for k=i to j

Append cp to p[k];
if (i = j)

return;
// Remove the common attributes from all subpaths of (i,j),
// so that the attributes do not repeat.
For all i’, j’ s.t. i′ ≥ i and j′ ≤ j

commons[i’][j’] = commons[i’][j’] − ca;
// Construct the permutations of remaining attributes for the
// two subpaths, to the left and right of the the split point.
m = split[i][j];
MakePermutation(i, m);
MakePermutation(m+1, j);

END PROC

Fig. 7 Optimal Benefit Sort Orders for a Path

at least one of ben(So) or ben(Se) is ≥ 1/2 ben(ST ).

There may be vertices not included in the chosen solu-
tion, e.g., the even level split in Figure 8 does not in-

clude the root and leaf nodes. For these left over vertices

arbitrary permutations can be chosen. Figures 9 and 10

illustrate the 1/2−benefit approximation technique us-
ing the example of Figure 4. In Figure 9, we consider

a single path which consists of the two edges incident

from the root and obtain the optimal solution for this
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Paths of odd levels Paths of even levels

Fig. 8 A 1/2 Benefit Approximation for Binary Trees

path. For the leaf nodes (left over vertices) we choose
the permutations arbitrarily, and the figure shows the

worst case where the benefit of the edges not included

in the set Po is 0. The total benefit of this solution So

is 4. Next, we consider the two disjoint paths (Pe) as
shown in Figure 10, and obtain optimal solutions inde-

pendently for these paths. For the root node (the left

over vertex) we choose the permutation arbitrarily, and

the figure shows the worst case where the benefit of the

edges not included in the set Pe is 0. The total benefit of
this solution Se is 5, and we choose this one as our final

solution. Note that the benefit of the optimal solution

shown in Figure 4 is 8. Kenkre and Vishwanathan [9]

have subsequently improved upon our result and have
given a log log n

1 + log log n
factor approximation. Analysis of

the general form of the problem and giving a theoret-

ical bound for its approximation are beyond the scope

of this paper.
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<c,a,b,d,e>

{a,b,c,k} {c,d}

{c,k,l,m} {c,d,h,n} {f,g,p,q}

<c,a,b,k>

<e,c,i,j>
{c,e,i,j}

<k,c,l,m> <d,c,h,n> <f,g,p,q>

3 1

0 0 0 0

Fig. 9 Solution So for the example of Figure 4
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Fig. 10 Solution Se for the example of Figure 4

4 Optimization with Favorable Orders

The benefit model we presented in the previous section,

does not take into account factors such as the physical

sort order of a relation, available indices and size of

base relations and intermediate results. Moreover, we

assumed that the join order is fixed. In this section,
we present a two phase approach to address the more

general problem. In phase-1, which occurs during plan

generation, we use the information about available in-

dices and properties of physical operators to efficiently
compute a small set of promising sort orders to try.

We formalize this idea through the notion of favorable

orders. Phase-2, is a plan refinement step and occurs

after the optimizer makes its choice of the best plan.

In phase-2, the sort orders chosen by the optimizer are
refined further to reap extra benefit from the attributes

common to multiple joins. Phase-2 uses the 1/2 benefit

approximation algorithm of Section 3.3

4.1 Favorable Orders

Given an expression e, we expect some sort orders (on
the result of e) to be producible at much lesser cost

than other sort orders. Available indices, indexed ma-

terialized views, specific rewriting of the expression and

choice of physical operators determine what sort orders
are easy to produce. To account for such orders, we in-

troduce the notion of favorable orders. In the discussion

that follows, we use the following notations:

cbp(e, o) Cost of the best plan for expression e with o
being the required output sort order

oR The clustering order of relation R

idx(R) Set of all indices over R

o(I) Order (key) of the index I

〈s〉 An arbitrarily chosen permutation of set s

P (s) Set of all permutations of set s

schema(e) The set of attributes in the output of e

We first define the benefit of a sort order o w.r.t. an

expression e as follows:

benefit(o, e) = cbp(e, ǫ) + coe(e, ǫ, o) − cbp(e, o)

Intuitively, a positive benefit implies the sort order can

be obtained with lesser cost than a full sort of unordered

result. For instance, consider an expression σp(r). The

clustering order of relation r will have a positive benefit
w.r.t. the expression, if the best plan for σp(r) involves

a scan. Similarly, query covering secondary indices and

indexed materialized views can yield orders with posi-

tive benefit. We call the set of all orders, on schema(e),
having a positive benefit w.r.t. e as the favorable order

set of e and denoted it as ford(e).

ford(e)= { o: benefit(o, e)> 0 }



11

Example:

Consider an expression e = r ⋊⋉ s. Suppose the best

plan for e (with no sort order requirement on the out-

put) uses a hash-join and its cost is 100 (i.e., cbp(e, ǫ) =

100). Suppose the cost of sorting the result of e on col-
umn r.c is 60 (i.e., coe(e, ǫ, (r.c)) = 60. Now, if the cost

of the best plan for obtaining the result of e sorted on

r.c is less than 160, (r.c) will be a favorable order w.r.t

e. For instance, this could happen if there exists an
alternative plan using merge-join or nested-loops join

that produces the result of r ⋊⋉ s sorted on r.c at a cost

of 120. Note that the nested-loops join algorithm pre-

serves the sort order of its left (outer) input, and hence

if r is clustered (stored sorted) on r.c a nested-loops
join with r as the left input can produce the desired

sort order efficiently.

4.1.1 Minimal Favorable Orders

The number of favorable orders for an expression can

be very large. For instance, every sort order having the

clustering order as its prefix is a favorable order. We call

a sort order o ∈ ford(e) as a minimal favorable order if

the following two conditions hold.

1. 6 ∃ o′ ∈ ford(e) such that o′ ≤ o and cbp(e, o′) +

coe(e, o′, o) = cbp(e, o). Intuitively, sort order o is

minimal only if there does not exists a sort order o′

such that the cost of obtaining order o equals the

cost of obtaining sort order o′ followed by an explicit

sort to obtain order o.

2. 6 ∃ o′′ ∈ ford(e) such that o ≤ o′′ and cbp(e, o′′) =

cbp(e, o). Intuitively, sort order o is minimal only
if there does not exists a sort order o′′ subsuming

order o and available at the same cost as o.

We call the set of all minimal favorable orders of an

expression e as the minimal favorable order set of e and
denote it by ford-min(e). Conditions 1 and 2 above, en-

sure that when a relation has an index that provides

sort order o efficiently, orders that are prefixes of o and

orders that have o as their prefix are not minimal fa-
vorable orders.

Example:

Consider an expression e = σp(r). Suppose the relation

r is stored sorted on (r.a, r.b). If the best plan to eval-

uate the expression involves a scan, then we will have
(r.a, r.b) as a favorable sort order. Apart from (r.a, r.b),

we also expect any sort order having (r.a, r.b) as its

prefix (e.g., (r.a, r.b, r.c)) to be a favorable order. This

is because given the sort order (r.a, r.b) it is relatively
inexpensive to obtain the sort order (r.a, r.b, r.c). Sim-

ilarly, we also expect the sort order (r.a) to be a favor-

able sort order since it is subsumed by the sort order

(r.a, r.b). However, in this example, the set ford-min(e),

includes only the sort order (r.a, r.b). The sort order

(r.a, r.b, r.c) is not minimal because the cost of obtain-

ing the input sorted on (r.a, r.b, r.c) is equal to the cost

of obtaining the sort order (r.a, r.b) (which involves a
just a scan) followed by a partial sort. Similarly, the sort

order (r.a) is not minimal because the cost of obtaining

the sort order (r.a) equals that of obtaining (r.a, r.b)

and former is subsumed by the later.
We define favorable orders of an expression w.r.t. a set

of attributes s as: ford(e, s)= {o∧s: o ∈ ford(e)}. Intu-

itively, ford(e, s) is the set of orders on s or a subset of s

that can be obtained efficiently. Similarly, the ford-min

of an expression w.r.t. a set of attributes s is defined
as: ford-min(e, s)= {o ∧ s : o ∈ ford-min(e)}

4.1.2 Heuristics for Favorable Orders

Note that the definition of favorable orders uses the cost

of the best plan for the expression. However, we need

to compute the favorable orders of an expression be-

fore the expression is optimized and without requiring

to expand the physical plan space. Further, the size of

the exact ford-min of an expression can be prohibitively

large in the worst case. In this section, we describe a
method of computing approximate ford-min, denoted as

afm, for SPJG (Select-Project-Join-Group-by) expres-

sions. We compute the afm of an expression bottom-up.

For any expression e, afm(e) is computable after the

afm is computed for all of e’s inputs.

1. e = R, where R is a base relation or materialized

view. We include the clustering order of R and all
secondary index orders such that the index covers

the query.

afm(R) = {o : o = oR or o = o(I), I ∈ idx(R) and I

covers the query}

2. e = σp(e1), where e1 is an arbitrary expression.
afm(e) = {o : o ∈ afm(e1) }

3. e = ΠL(e1), where e1 is any expression. We include

longest prefixes of input favorable orders such that

the prefix has only the projected attributes.
afm(e) = {o : ∃o′ ∈ afm(e1) and o = o′ ∧ L}

4. e = e1 ⋊⋉ e2 with join attribute set S = {a1, a2, . . . , an}.

Noting that nested loops joins propagate the sort

order of one of the inputs (outer) and merge join

propagates the sort order chosen for join attributes,
we compute the afm as follows: first, we include all

sort orders in the input afms, next, we consider the

longest prefix of each input favorable order having

attributes only from the join attribute set and ex-
tend it to include an arbitrary permutation of the

remaining join attributes.

Let T =afm(e1) ∪ afm(e2)
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Then, afm(e1 ⋊⋉ e2) = T ∪ {o : o′ ∈ T ∪{ǫ} and o =

o′ ∧ S + 〈S−attrs(o′ ∧ S)〉}

Note that, for the join attributes not involved in an

input favorable order prefix (i.e., S−attrs(o′ ∧ S)),

we take an arbitrary permutation. An exact ford-
min would require us to include all permutations of

such attributes. In the post-optimization phase, we

refine the choice made here using the benefit model

and algorithm of Section 3.3.
5. e =LGF (e1), which represents a group-by expression

with L as the set of group-by attributes and F as

the set of aggregate functions.

afm(e) = {o : o′ ∈ afm(e1)∪{ǫ} and o = o′ ∧ L +

〈L−attrs(o′ ∧ L)〉}
Intuitively, for each input favorable order we iden-

tify the longest prefix with attributes from the pro-

jected group-by columns and extend the prefix with

an arbitrary permutation of the remaining attributes.

Although the approximate ford-min of an expression

contains all the minimal favorable orders of base rela-
tions, it may not contain all the minimal favorable or-

ders of the given expression. As an example, consider an

expression r ⋊⋉ s, where both r and s are base relations

with no clustering or secondary index on them. Now,
the afm(r ⋊⋉ s) contains just one arbitrarily chosen per-

mutation of the join attributes. However, the minimal

favorable orders of r ⋊⋉ s includes all such permuta-

tions. In other words, the set afm contains all useful

sort orders on base relations propagated through inter-
mediate operators, but not all sort orders that could be

generated by intermediate operators.

4.2 Optimizer Extensions

We make use of the approximate favorable orders dur-

ing plan generation (phase-1) to choose a small set of

promising interesting orders for sort-based operators.

We describe our approach taking merge join as an ex-
ample but the approach is applicable to other sort based

operators. In phase-2, which is a post-optimization phase,

we further refine the chosen sort orders.

4.2.1 Plan Generation (Phase-1)

Consider an optimization goal of expression e = el ⋊⋉ er

and required output sort order o. When we consider

merge-join as a candidate algorithm, we need to gener-
ate sub-goals for el and er with the required output sort

order being some permutation of the join attributes.

Let S be the set of attributes involved in the join

predicate. We consider only conjunctive and equality

predicates. We compute the set I(e, o) of interesting

orders as follows.

Steps to compute I(e, o):

1. Collect the favorable orders of inputs plus the re-

quired output order

T (e, o) =afm(el, S) ∪ afm(er , S) ∪ o ∧ S, where
afm(e, S) = {o′ ∧ S : o′ ∈ afm(e)}

2. Remove redundant orders

If o1, o2 ∈ T (e, o) and o1 ≤ o2, remove o1 from

T (e, o)

3. Compute the set I(e, o) by extending each order
in T (e, o) to the length of |S|; the order of extra

attributes can be arbitrarily chosen

I(e, o) = {o : o′ ∈ T (e, o) and o = o′ + 〈S −

attrs(o′)〉}

We then generate optimization sub-goals for el and

er with each order o′ ∈ I(e, o) as the required output

order and retain the cheapest combination.

An Example: Consider Query 1 of Section 2. For brevity,

we refer to the two catalog tables as ct1 and ct2, the

rating table as rt, and the columns with their starting

letters. The afms computed as described in Section 4.1.2
are as follows:

afm(ct1) = {(y)}, afm(ct2) = {(m)}, afm(rt) = {(m)},

afm(ct1 ⋊⋉ ct2) = {(y), (m), (y, co, c, m), (m, co, c, y)},

afm((ct1 ⋊⋉ ct2) ⋊⋉ rt) = {(y), (m), (y, co, c, m), (m, co,
c, y), (y, m), (m, y)}

For (ct1 ⋊⋉ ct2) ⋊⋉ rt we consider two interesting sort

orders {(y, m), (m, y)} and for ct1 ⋊⋉ ct2 we consider

four sort orders {(y, co, c, m), (m, co, c, y), (y, m, co, c),

(m, y, co, c)}. As a result the optimizer will consider the
plan shown in Figure 2.

A Note on Optimality: If the set I(e, o) is computed

using the exact set of minimal favorable orders (ford-
min), then it must contain an optimal sort order, i.e., a

sort order, which produces the optimal merge join plan

in terms of overall plan cost.

Theorem 3 The set I(e, o) computed with exact ford-

min contains an optimal sort order op for the optimiza-

tion goal e = (el ⋊⋉ er) with (o) as the required output
sort order, under Assumption A.

Assumption A : If o1, o2 are two sort orders on the same

set of attributes (i.e., attrs(o1) = attrs(o2)), then the
CPU cost of sorting the result of an expression e to ob-

tain o1 will be same as that for o2, i.e., cpu-cost(e, o1) =

cpu-cost(e, o2).

The theorem essentially states the following: to identify
an optimal sort order, it is sufficient to consider only the

minimal favorable orders and not the full set of favor-

able orders. Appendix A gives the proof of Theorem 3.
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4.2.2 Plan Refinement (Phase-2)

During the plan refinement phase, for each merge-join

node in the plan tree, we identify the set of free at-
tributes, the attributes which were not part of any of the

input favorable orders. Note that for these attributes we

had chosen an arbitrary permutation while computing

the afm (Section 4.1.2). We then make use of the 1/2
benefit approximation algorithm for trees (described in

Section 3.3) and rework the permutations chosen for

the free attributes.

Formally, let pi be the permutation chosen for the

join node vi. Let qi be the order such that qi ∈ afm(vi.left-

input) ∪ afm(vi.right-input) and |pi ∧ qi| is the maxi-
mum. Intuitively, qi is the input favorable order sharing

the longest common prefix with pi. Let fi =attrs(pi −

(pi ∧ qi)); fi is the set of free attributes for vi.

We now construct a binary tree, where each node ni

corresponding to join-node vi is associated with the at-
tribute set fi. The attribute permutations for the nodes

are chosen using the 1/2 benefit approximation algo-

rithm; the chosen sort order for free attributes is then

appended to the sort order chosen during plan genera-

tion (i.e., pi ∧ qi) to get a complete order.

The reworking of the sort orders will be useful only
if the adjacent nodes share the same prefix, i.e., pi ∧ qi

was the same for adjacent nodes. This condition how-

ever certainly holds when the inputs for joins have no

favorable orders.

Figure 11 illustrates the post-optimization phase.
Assume all relations involved (R1, . . . , R4) are clustered

on attribute a and no other favorable orders exist. i.e.,

afm(Ri) = {(a)}, for i = 1 to 4. The orders chosen by

the plan generation phase are shown besides the join

nodes with free attributes being in italics. The reworked
orders after the post-optimization phase are shown un-

derlined.

(a, b,c,h)

(a,d,h)

(a,h,d)

(a, e,h)
(a,h,e)

(a,h,b,c)

R1 R2 R3 R4

Fig. 11 Post-Optimization Phase

In many cases, there exists a hierarchical relation-
ship between attributes as in the case of the standard

example of order number, line number. Most indices

follow these hierarchies, and thus most promising sort

orders for join operations also follow them. The notion

of favorable sort orders, which is used in the plan gen-

eration phase, formalizes this intuition. The problem

of choosing sort orders, which is a fundamental issue

in query optimization, must however be addressed in
its most general form without entirely relying on the

existence of such hierarchical relationship between at-

tributes. The plan refinement phase, which makes use

of the results presented in Section 3, achieves this goal.
Our experimental section shows that the two phase ap-

proach presented in this paper succeeds in producing

efficient plans without significant overheads.

5 Experimental Results

We performed experiments to evaluate the benefits due

to the proposed ideas. For comparison, we use Post-

greSQL (version 8.1.3) and two widely used commercial

database systems (we call them SYS1 and SYS2). All

tests were run on an Intel P4 (HT) PC with 512 MB
of RAM. We used TPC-H 1GB dataset and additional

tables as specified in the individual test cases. For each

table, a clustering index was built on the primary key.

Additional secondary indices built are specified along
with the test cases. All relevant statistics were built

and the optimization level for one of the systems, which

supports multiple levels of optimization, was set to the

highest.

5.1 Modified Replacement Selection

The first set of experiments evaluate the benefits of

exploiting partial sort orders. External sort in Post-

greSQL employs the standard replacement selection (SRS)

algorithm [10] suitably adapted for variable length records.
We modified this implementation to exploit partial sort

orders available on the input (as described in Section 2),

and we call it Modified Replacement Selection (MRS).

We now present experiments comparing the performance
of MRS with SRS.

Experiment A1

The first experiment consists of a simple ORDER BY

of the TPC-H lineitem table on two columns (l suppkey,
l partkey).

Query 2

SELECT l suppkey, l partkey

FROM lineitem

ORDER BY l suppkey, l partkey;
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A secondary index on l suppkey was available that
covered the query (included the l partkey column)4. On

all three systems, the order by on (l suppkey, l partkey)

took almost the same time as an order by on (l partkey,

l suppkey) showing that the sort operator of these sys-

tems did not exploit partial sort orders effectively. We
then compared the running times with our implemen-

tation that exploited partial sort order (l suppkey) and

the results are shown in Figure 12.

For SYS1 and SYS2, as we did not have access to

their source code, we simulated the partial sorting using

a correlated rank query. The subquery sorted the index

entries matching a given l suppkey on l partkey and the

subquery was invoked with all suppkey values so as to
obtain the desired sort order of (l suppkey, l partkey).

By avoiding run generation I/O and making reduced

comparisons, MRS performs 3-4 times better than SRS.

Experiment A2

The second experiment shows how MRS is superior in

terms of its ability to produce records early and uni-

formly. Table R3 having 3 columns (c1, c2, c3) was pop-

ulated with 10 million records and was clustered on
(c1). The query asked an order by on (c1, c2). Figure 13

shows the plot of number of tuples produced vs. time

with cardinality of c1 = 10, 000.

MRS starts producing the tuples without any delay

after the operator initialization where as SRS produces

its first output tuple only after seeing all input tuples.

By producing tuples early, MRS speeds up the pipeline

significantly. Such early output behavior is highly de-
sirable for Top-K queries.

4 On systems not supporting indexes with included columns,
we used a table with only the desired two columns, clustered on
l suppkey

Experiment A3

The third experiment shows the effect of partial sort

segment size on sorting. Eight tables R0, . . . , R7, with
identical schema of 3 columns (c1, c2, c3) were each pop-

ulated with 10 million fixed length records each of size

200 bytes. The columns c1, c2 and c3 were all of fixed

length character datatype with lengths 10, 10 and 180
respectively. Table Ri had 10i tuples for each distinct

value of c1 (i.e., uniform distribution over 107−i dis-

tinct values of c1), resulting in a partial sort segment

size of 200 × 10i bytes. Thus R0 had a sort segment of

size 1 tuple or 200 bytes, and R7 had a sort segment
of size 10 million tuples or 2GB. The data for each ta-

ble Ri was generated as follows: 107−i groups of tuples

(segments) were produced each with 10i tuples. Tuples

in each group had the same string value for column c1
and randomly generated strings for columns c2 and c3.

Each table was clustered on (c1). The query had an

order by on (c1, c2). The running times with default

and modified replacement selection on PostgreSQL are

shown in Figure 14. In the figure, the numbers near the
points are the actual execution timings in seconds.

When the partial sort segment size is small enough

to fit in memory (up to 10MB or 50K records), SRS pro-

duces a single sorted run on disk and does not involve
merging of runs. The modified replacement selection

(MRS) gets the benefit of avoiding I/O and reduced

number of comparisons. When the partial sort segment

size becomes too large to fit in memory, we see a sudden

rise in the time taken by SRS. This is because replace-
ment selection will have to deal with merging several

runs. MRS however deals with merging smaller number

of runs initially as each partial sort segment is sorted

separately. As the partial sort segment size increases,
the running time of MRS rises and becomes same as

that of SRS at the extreme point where all records have

the same value for c1.
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Experiment A4

To see the influence of MRS on a query with joins

and aggregates, we consider Query 3 shown below. The

query finds the number of lineitems and available quan-

tity for each supplier, part pair. The supplier and part
key columns were common to the join, group-by and

the order-by clauses. Two indices, lineitem(l suppkey)

and partsupp(ps suppkey), were present and covered the

query. The indices were thus useful to obtain part of the
desired sort order (suppkey, partkey).

Query 3 Number of lineitems for each (supplier, part)

pair

SELECT ps suppkey, ps partkey, ps availqty,
count(l partkey)

FROM partsupp, lineitem

WHERE ps suppkey=l suppkey AND

ps partkey=l partkey

GROUP BY ps suppkey, ps partkey, ps availqty
ORDER BY ps suppkey, ps partkey;

On PostgreSQL the query took 63 seconds to exe-
cute with SRS, and 25 seconds with MRS. The query

plan used in both cases was the same: a merge join

of the two relations on (suppkey, partkey) followed by

aggregation.

5.2 Choice of Interesting Orders

We extended PYRO, a Volcano-style cost based opti-
mizer [14], to consider partial sort orders and to use

the proposed method for choosing sort orders for merge

joins and aggregation. We compare the plans produced

by the extended implementation, which we call PYRO-

O, with those of PostgreSQL, SYS1 and SYS2.

Experiment B1

For this experiment we used Query 4 shown below,

which lists parts for which the total quantity ordered is

more than the stock available at the supplier.

Query 4 Parts Running Out of Stock

SELECT ps suppkey, ps partkey, ps availqty,

sum(l quantity)

FROM partsupp, lineitem
WHERE ps suppkey=l suppkey AND ps partkey=

l partkey AND l linestatus=’O’

GROUP BY ps availqty, ps partkey, ps suppkey

HAVING sum(l quantity) > ps availqty

ORDER BY ps partkey;

Table partsupp had clustering index on its primary

key (ps partkey, ps suppkey). Two secondary indices,

one on ps suppkey and the other on l suppkey were also
built on the partsupp and lineitem tables respectively.

The two secondary indices covered all attributes needed

for the query.

The experiment shows the need for cost-based choice

of interesting orders. The choice of interesting orders for
the join and aggregate are not obvious in this case for

the following reasons:

1. The order-by clause favors the choice of a sort order
where partkey appears first.

2. The clustering index on partsupp favors the choice

of (partkey, suppkey).
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Fig. 15 Plans for Query 4 (PostgreSQL and PYRO-O)
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Fig. 16 Plans for Query 4 (SYS1 and SYS2)

3. The secondary indices favor the choice of (supp-

key, partkey) that can be obtained by using a low

cost partial sort. Note that this option can be much
cheaper due to the size of the lineitem relation.

Therefore, the optimizer must make a cost-based
decision on the sort order to use. Figures 15 and 16

show the plans chosen by PostgreSQL, PYRO-O, SYS1

and SYS2.

All plans except the hash-join plan of SYS1 and
the plan produced by PYRO-O use an expensive full

sort of 6 million lineitem index entries on (l partkey,

l suppkey). Further, PostgreSQL uses a hash aggregate

where a sort-based aggregate would have been much

cheaper as the required sort order for the group-by was
available from the output of merge-join. Note that the

sort order (ps partkey, ps suppkey, ps availability), re-

quired by the group-by, can be inferred from the sort

order (ps partkey, ps suppkey), available on the result
of merge-join, due to the presence of the functional

dependency {ps partkey, ps suppkey} → {ps availqty}.

On SYS1, it was possible to force the use of a merge-

join instead of hash-join and the plan chosen is shown

in Figure 16(b).

We compared the actual running time of PYRO-O’s

plan with those of PostgreSQL and SYS1 by forcing
our plan on the respective systems. Figures 17 and 18

show the execution times. It was not possible for us to

force our plan on SYS2 and make a fair comparison

and hence we omit the same. The only surprising result
was the default plan chosen by SYS1 performed slightly

poorer than the forced merge-join plan on SYS1. In all

cases, the forced PYRO-O plan performed significantly

better than the other plans. The main reason for the

improvement was the use of a partial sort of lineitem
index entries as against a full sort. The final sort on

partkey was not very expensive as only a few tuples

needed to be sorted.

For Query 4 the plan generation phase (phase-1) was

sufficient to select the sort orders and phase-2 does not
make any changes. We shall now see a case for which

phase-1 cannot make a good choice and the sort orders

get refined by phase-2.
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Experiment B2

This experiment uses Query 5, which has two full outer
joins with two common attributes between the joins.

We performed this experiment to see whether the sys-

tems we compare with are designed to exploit attributes

common to multiple sort-based operators.

Query 5 Attributes common to multiple joins

SELECT * FROM R1

FULL OUTER JOIN R2

ON (R1.c5=R2.c5 AND R1.c4=R2.c4 AND
R1.c3=R2.c3)

FULL OUTER JOIN R3

ON (R3.c1=R1.c1 AND R3.c4=R1.c4 AND

R3.c5=R1.c5);

The tables R1, R2 and R3 were identical and each
populated with 100,000 records. No indexes were built.

As shown in Figure 19(a), both SYS1 and PostgreSQL

chose sort orders that do not share any common prefix.

The plan chosen by PYRO-O is shown in Figure 19(b).
In the plan chosen by PYRO-O, the two joins share a

common prefix of (c4, c5), and thus the sorting effort

is expected to be significantly less. SYS2, not having

an implementation of full outer join, chose a union of
two left outer joins. The two left outer joins used to

get a full outer join used different sort orders making

the union expensive, illustrating a need for coordinated

choice of sort orders. The execution timings for Query 5

on PostgreSQL and SYS1 are shown in Figures 17 and
18 respectively.

Experiment B3

In this experiment we compare our approach of choos-

ing orders, PYRO-O, with the exhaustive approach,

and a heuristic used by PostgreSQL. PostgreSQL uses
the following heuristic: for each of the n attributes in-

volved in the join condition, a sort order beginning with

that attribute is chosen; in each order, the remaining
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n−1 attributes are ordered arbitrarily. We implemented
PostgreSQL’s heuristic in PYRO along with the ex-

tensions to exploit partial sort orders and we call it

PYRO-P. The exhaustive approach, called PYRO-E,

enumerates all n! permutations and considers partial

sort orders. In addition, we also compare with baseline
PYRO, which chooses an arbitrary sort order, and a

variation of PYRO-O, called PYRO-O− that considers

only exact favorable orders (no partial sort). Figure 20

shows the estimated plan costs. Note the logscale for
y-axis. The plan costs are normalized taking the plan

cost with exhaustive approach to be 100. In the fig-

ure, Q4 and Q5 stand for Query 4 and Query 5 of Ex-

periments B1 and B2. Q6 and Q7 stand for Query 6

and Query 7, which are given below. For Q4 and Q5,
as very few attributes were involved in the join condi-

tion, PostgreSQL’s heuristic along with extensions to

exploit partial sort orders, produced plans which were

close to optimal. However, for more complex queries the
heuristic does not perform well since it makes an arbi-

trary choice for secondary orders. Although PYRO-O

is seen to perform as well as the exhaustive approach

on the queries considered, the choice of sort orders in

PYRO-O may not be optimal for all queries. The plan
refinement algorithm described in Section 4.2.2 uses an

approximation and cannot guarantee optimal choice of

sort orders.

Query 6 Total value executed for a given order

SELECT T1.UserId, T1.BasketId, T1.ParentOrderId,

T1.WaveId, T1.ChildOrderId,

(T1.Quantity * T1.Price) as OrderValue,
SUM(T2.Quantity * T2.Price) as ExecValue

FROM TRAN T1, TRAN T2

WHERE T1.UserId=T2.UserId AND

T1.ParentOrderId=T2.ParentOrderId AND
T1.BasketId=T2.BasketId AND

T1.WaveId=T2.WaveId AND

T1.ChildOrderId=T2.ChildOrderId AND

T1.TranType=’New’ AND
T2.TranType=’Executed’

GROUP BYT1.UserId, T1.BasketId, T1.ParentOrderId,

T1.WaveId, T1.ChildOrderId;

Query 7 Basket Analytics

SELECT * FROM BASKET B, ANALYTICS A

WHERE B.ProdType = A.ProdType AND

B.Symbol = A.Symbol AND

B.Exchange = A.Exchange;

5.3 Optimization Overheads

Changes to the optimizer implementation to take par-

tial sort orders into consideration are described in Sec-

tion 2.2. We avoid generating optimization sub-goals
for every possible partial sort orders, by making the

following change to the optimizer: if the physical op-

erator being considered for a logical operator partially

fulfills the sort order requirement of its parent operator,
the optimizer adds a partial sort enforcer on top of the

child operator. Thus there is no increase in the number

of plans explored when considering partial sort orders

alone. However, the number of optimization sub-goals

generated for operators like merge-join depends on the
number of sort orders we consider as interesting.

During plan generation, the number of sort orders

we try at each join or aggregate node is of the order of

the number of indices present that are useful for answer-

ing the query, which in most practical case is expected

to be small. Figure 21 shows the scalability of the three
heuristics. For this experiment a query that joined two

relations on varying number of attributes was used.

Though PYRO-P and PYRO-O take the same amount

of time in this experiment, in most cases, the number of
favorable orders is much less than the total number of

attributes involved and hence PYRO-O generates fewer

interesting orders than PYRO-P.
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The plan-refinement algorithm presented in Section

3.3 was tested with trees up to 31 nodes (joins) and 10

attributes per node. The time taken was negligible in

each case. The execution of plan refinement phase took

less than 6 ms even for the tree with 31 nodes.

Both the optimizer extensions and the extension to

external-sorting (MRS) were straight forward to imple-

ment. The optimizer extensions neatly integrated into

our existing Volcano style optimizer.

6 Related Work

Both System R [15] and Volcano [7] optimizers con-

sider plans that could be locally sub-optimal but pro-

vide a sort order of interest to other operators, and thus

yield a better plan overall. However, both System R

and Volcano assume that operators have one or few ex-
act sort orders of interest. This is not true of operators

like merge-join, merge-union, grouping and duplicate

elimination, which have a factorial number of interest-

ing orders. Heuristics such as the PostgreSQL heuristic,
are commonly used by optimizers. Details of the heuris-

tics are publicly available only for PostgreSQL. Further,

System R and Volcano optimizers consider only those

sort orders as useful that completely meet an order re-

quirement. Plans that partially satisfy a sort order re-
quirement are not handled. In this paper we addressed

these two issues.

The seminal work by Simmen et.al. [16] describes

techniques to infer sort orders from functional depen-

dencies and predicates applied, and thereby avoids re-
dundant sort enforcers in the plan. Simmen et.al. [16]

briefly mention the problem of non-exact sort order re-

quirements and mentions an approach of propagating

an order specification that allows any permutation on
the attributes involved. Though such an approach is

possible for single input operators like group-by, it can-

not be used for operators such as merge-join and merge-

union for which the order guaranteed by both inputs

must match. Moreover, the paper does not make it clear
how the flexible order requirements are combined at

other joins and group-by operators. Simmen et.al. [16]

also note that the approach of carrying a flexible or-

der specification increases the complexity of the code
significantly. Our techniques do not use flexible order

specifications and hence can be incorporated into an

existing optimizer with minimal changes. Further, our

techniques work uniformly across all types of operators

that have a flexible order requirement.

Claussen et.al. [2] explore early-sorting as a means

to reduce sorting cost in query plans. The key idea is

to avoid sorting of large intermediate join results by

pushing sorting to base relations, and using order pre-

serving hash joins. There has been significant work on

avoiding redundant sorting by inferring sort orders and

groupings using functional dependencies [16,17,12,13].

These techniques are complementary to our work. A
more recent work in the same direction is by Zhou

et.al. [18], which addresses the problem of generating

efficient parallel query execution plans for massive data

analysis over clusters of commodity hardware. The key
challenge in query optimization for shared-nothing clus-

ters is to reduce data repartitioning, which involves

expensive data reshuffling across nodes. They present

a unified framework for reasoning about partitioning,

grouping and sorting, and show how they incorporated
the proposed techniques in the SCOPE optimizer. Op-

timization with data partitioning is an additional mo-

tivation for our work, as coordinated choice of physical

properties for binary operators is crucial. It remains im-
portant even if data is memory/flash resident reducing

the impact of sort order optimization for disk IO.

Graefe et.al. [6] introduce the notion of hash teams,

which realizes many of the benefits of interesting sort
orders in hash based query processing. The key differ-

ence between interesting sort orders and hash teams is

that input sort orders may be useful even when they

do not match the required sort order exactly. On the
other hand, hash teams, as described in [6], are appli-

cable only when two joins have exactly the same set of

attributes involved in the join predicate . Unlike sort

orders, partitions created by hashing on attribute set

{a, b} are not useful to obtain partitions on {a, c} (al-
though it is possible to consider approaches where we

only hash on {a} and use it to obtain the two required

set of partitions).

Yu Cao et.al. [1] present a complementary tech-

nique, where they consider suffixes of sort orders. If

input is sorted on a list of columns, e.g., (a, b, c) and

the desired sort order is (c), then tuples for each dis-

tinct value of (a, b) can be interpreted as runs to be
merged, thereby avoiding the run generation step.

The present article is an extended version of the

conference paper [8], with the following being the im-

portant additions. We present the common prefix prob-
lem on trees in more detail and give the proof of its

hardness, both for stars and binary trees. We present

the polynomial-time algorithm for paths. An important

property of the minimal favorable orders is stated and
proved in the appendix. The experimental section has

been enhanced with additional queries from real-world

applications and execution plans.
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7 Summary

In this paper we addressed the problem of choosing

efficient sort orders for sort-based operators such as

merge-join and sort-based grouping. We showed that

even a simplified version of the problem is NP-hard, and
proposed principled heuristics for choosing interesting

orders. Our heuristics are guided by the notion of fa-

vorable orders. We take into account important issues

such as partially matching sort orders and attributes
common to multiple operators. We then explained how

the solution can be used for choosing efficient param-

eter sort orders for nested queries. We presented a de-

tailed experimental study on widely used database sys-

tems, and the results showed significant performance
improvements due to the proposed techniques for sev-

eral queries.
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APPENDIX

A Proof of Optimality with Minimal Favorable

Orders

The notion of minimal favorable orders, introduced in Section 4,
served as the basis for our heuristics for selecting sort orders.
Since it is hard to compute the exact set of minimal favorable
orders, we used a heuristic approach to compute them approxi-
mately. However, it is interesting to study the properties of mini-
mal favorable orders. In this section we give a proof of Theorem 3
stated earlier in Section 4.2.1. The theorem essentially states the
following: to identify an optimal sort order, it is sufficient to con-
sider only the minimal favorable orders and not the full set of
favorable orders. Below, we repeat the formal statement of the
theorem and present a proof. The proof makes use of notation
introduced in Sections 2.1 and 4.1.

Theorem 3 The set I(e, o) computed with exact ford-min con-
tains an optimal sort order op for the optimization goal e = (el ⋊⋉
er) with (o) as the required output sort order.
We prove Theorem 3 under the following assumption: If o1, o2

are two sort orders on the same set of attributes (i.e., attrs(o1)
= attrs(o2)), then the CPU cost of sorting the result of an ex-
pression e to obtain o1 will be same as that for o2, i.e., cpu-
cost(e, o1) =cpu-cost(e, o2).

Proof Consider the optimization goal for a join expression (e =
el ⋊⋉ er , with (o) as the sort order required on the result of e. Let

S be the set of join attributes and o′ be any sort order on S. The
cost of the best merge-join plan for e, when o′ is chosen as the
sort order for el, er , is given by:

PC(e, o, o′) = cbp(el, o
′) + cbp(er, o′) + coe(e, o′, o) + CM(el, er),

where CM(el, er) is the cost of merging. (1)

In Equation 1, we note that CM(el, er) is independent of the sort
order o′.

Let ob be an optimal sort order for el ⋊⋉ er . Assume ob /∈ I(e).
We show that ∃op ∈ I(e) such that PC(op) =PC(ob).

Case 1: Suppose ob is such that ob /∈ ford(el) ∪ ford(er).

PC(e, o, ob) = cbp(el, ob) + cbp(er, ob) + coe(e, ob, o) +

CM(el, er) (2)

Since, ob /∈ ford(el) ∪ ford(er) we can write

= cbp(el, ǫ) + coe(el, ǫ, ob) + cbp(er, ǫ) +

coe(er, ǫ, ob) + coe(e, ob, o) + CM(el, er) (3)

Let op be a sort order in I(e) such that o ∧ S ≤ op, where
o is the required output sort order in the optimization goal. The
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existence of such a sort order in I(e) directly follows from the
construction of I(e), specifically, steps 1 and 2 in Section 4.2.1.

Since both ob and op are sort orders on the same attribute

set S, we have

coe(el, ǫ, ob) = coe(el, ǫ, op) and coe(er , ǫ, ob) = coe(er, ǫ, op) (4)

Substituting Equation 4 in Equation 3 we get:

PC(e, o, ob) = cbp(el, ǫ) + coe(el, ǫ, op) + cbp(er, ǫ) +

coe(er, ǫ, op) + coe(e, ob, o) + CM(el, er) (5)

≥ cbp(el, op) + cbp(er, op) + coe(e, ob, o) +

CM(el, er) (6)

As (o ∧ S) ≤ op, we have (ob ∧ o) ≤ (op ∧ o) (because ob is a
permutation of S). Therefore, coe(e, ob, o) ≥ coe(e, op, o). From
this, we can rewrite Equation 6 as:

PC(e, o, ob) ≥ cbp(el, op) + cbp(er, op) + coe(e, op, o) + CM(el, er)

≥ PC(e, o, op).

By assumption ob is an optimal sort order. So we conclude -

PC(e, o, ob) = PC(e, o, op). In other words, I(e) contains a sort
order op having the same plan cost as the optimal sort order ob.

Case 2: Suppose ob is such that ob ∈ ford(el) or ford(er) but
not both.
Without loss of generality we assume ob ∈ ford(el). This implies
one of the following:

(i) ∃o′ ∈ ford-min(el) such that ob ≤ o′ and cbp(el, ob) =
cbp(el, o

′) or
(ii) ∃o′ ∈ ford-min(el) such that o′ ≤ ob and cbp(el, o

′) +
coe(el, o

′, ob) = cbp(el, ob).

We now consider, each of these cases separately.
Case 2-A: Suppose condition (i), repeated below as Equation 7,
holds.

∃o′ ∈ ford-min(el) such that ob ≤ o′ and cbp(el, ob) = cbp(el, o
′)

(7)

o′ ∈ ford-min(el) implies (o′ ∧ S) ∈ ford-min(el, S). Therefore,
from the construction of set I(e), we know:

∃op ∈ I(e) such that (o′ ∧ S) ≤ op (8)

Since ob ≤ o′, we know (ob ∧ S) ≤ (o′ ∧ S) (9)

Substituting Equation 9 in Equation 8, we get (ob ∧ S) ≤ op.
Since both ob and op are permutations of the same attribute set
S, we must have ob = op. i.e., the optimal sort order ob must be
in I(e).
Case 2-B: Suppose condition (ii), repeated below as Equation 10,
holds.

∃o′ ∈ ford-min(el) such that o′ ≤ ob and

cbp(el, o
′) + coe(el, o

′, ob) = cbp(el, ob) (10)

The plan cost for e, with ob as as the chosen sort order, is given
by:

PC(e, ob) = cbp(el, ob) + cbp(er, ob) + coe(e, ob, o) + CM(el, er)

Substituting for cbp(el, ob) from Equation 10, we get

= cbp(el, o
′) + coe(el, o

′, ob) + cbp(er, ob) +

coe(e, ob, o) + CM(el, er) (11)

o′ ∈ ford-min(el) implies ∃op ∈ I(e) such that (o′∧S) ≤ op. Since
o′ ≤ ob, we know attrs(o′) ⊆ S. Therefore, we have o′ ∧ S = o′.

And hence, o′ ≤ op. Also, since both op and ob are permutations
of S, we have |ob| = |op|.
Since, ob /∈ ford(er), we have cbp(er, ob) = cbp(er, op). Substi-

tuting this in Equation 11, we get:

PC(e, ob) = cbp(el, o
′) + coe(el, o

′, ob) + cbp(er, op) +

coe(e, ob, o) + CM(el, er) (12)

Since o′ ≤ ob and o′ ≤ op and |ob| = |op| we can write Equa-
tion 12 as:

PC(e, ob) = cbp(el, o
′) + coe(el, o

′, op) + cbp(er , op) +

coe(e, ob, o) + CM(el, er)

≥ cbp(el, op) + cbp(er, op) +

coe(e, ob, o) + CM(el, er) (13)

Now, we show that coe(e, ob, o) ≥ coe(e, op, o) to complete the
proof.
Case (a): Suppose, o′ ≤ o.
Since I(e) contains a sort order which subsumes, o ∧ S, it is
possible to choose op from I(e) such that (o ∧ S) ≤ op. This
implies, |ob ∧ o| ≤ |op ∧ o|. Hence, coe(e, ob, o) ≥ coe(e, op, o).
Substituting this in Equation 13, we get:

PC(e, ob) ≥ cbp(el, op) + cbp(er, op) + coe(e, op, o) + CM(el, er)

≥ PC(e, op)

Case (b): Suppose, o′ � o.
Now, o′∧o = ob∧o = op∧o (because o′ ≤ ob and o′ ≤ op). There-
fore, coe(e, ob, o) = coe(e, op, o). Substituting this in Equation 13,
we get:

PC(e, ob) ≥ cbp(el, op) + cbp(er, op) + coe(e, op, o) + CM(el, er)

≥ PC(e, op)

Case 3: Suppose ob is present in both ford(el) and ford(er)
This implies one of the following:

(i) ∃o′ ∈ ford-min(el) ∪ ford-min(er) such that ob ≤ o′. In this
case the proof can proceed as in Case 2-A.

(ii) ∃o1 ∈ ford-min(el) and ∃o2 ∈ ford-min(er) such that (a)
o1 ≤ ob and o2 ≤ ob and (b) cbp(el, o1) + coe(el, o1, ob) =
cbp(el, ob) and (c) cbp(er, o2)+ coe(er , o2, ob) = cbp(er , ob).

Since o1 ≤ ob and o2 ≤ ob, either o1 ≤ o2 or o2 ≤ o1.
Hence, ∃op ∈ I(e) such that o1 ≤ op and o2 ≤ op. Choos-
ing such an op, and proceeding as in Case 2-B we can prove
PC(e, ob) ≥ PC(e, op)

This completes the proof of Theorem 3.


