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1 IntroductionBottom-up evaluation of a query on a recursively de�ned view / logic program proceeds by repeatedly applyingprogram rules to generate facts until no new facts can be computed. Bottom-up evaluation has been shownto have several advantages over Prolog-style top-down evaluation in the area of deductive databases (see, forexample, [Ull89]). The primary advantages are: (a) the evaluation is set-oriented and can bene�t from e�cientjoin techniques; (b) repeated computation is avoided as a result of storing answers to subqueries and reusingthem; and (c) cyclic subqueries are detected and the resulting in�nite loops are avoided, making the evaluationnot only terminating, but also complete, in many cases where Prolog-style top-down evaluation would loop.However, a disadvantage of bottom-up evaluation is that all generated facts are usually assumed to be storeduntil the end of the evaluation. Since the number of facts generated can be extremely large in the case of manyprograms, reducing the space requirements of a program by discarding facts during the evaluation may be veryimportant. In addition to improving the space requirements, discarding facts that are no longer needed can haveother advantages. I/O costs may be reduced, even eliminated, if the program can be evaluated in main memory;the costs of maintaining and accessing indices, eliminating duplicates etc. are also reduced. Thus, discardingfacts during the evaluation can result in time as well as space improvements. We refer to evaluation methods thatdiscard facts during the course of the evaluation of a logic program (instead of just at the end of the evaluation)as space optimization methods.1Naughton and Ramakrishnan [NR94] introduced the subject of space optimization methods in databaseprogram evaluation, and presented one method, Sliding Window Tabulation, that reduces the space utilizedduring the evaluation of a restricted class of programs rewritten using Magic Sets [BR91].Our paper provides a general framework for, and identi�es the key components of, space optimization meth-ods. Prematurely discarding a fact could mean that some derivation that uses this fact may not be made; thiscould a�ect the set of answers to the user's query. Intuitively, we have the following condition for correctness ofany space optimization method (the condition is formalized later):Soundness and Completeness : For each generated fact, it must be ensured that all facts that can be derivedusing it are actually derived. Further, no fact should be derived that would not be derived without spaceoptimization.2Even if soundness and completeness are ensured, repeated derivations of a discarded fact may not be recognized asyielding duplicates; this could lead to repeated inferences using this fact. Intuitively, it is desirable to additionallyensure the following:Non-redundancy : Repeated occurrences of the same derivation must be avoided.Given techniques for discarding facts while ensuring soundness, completeness and non-redundancy, we can readilyuse them in conjunction with any evaluation method, for example semi-naive �xpoint evaluation. However, the1In this paper, we do not consider other space saving approaches, such as allowing facts to share parts of their structure withother facts.2This point is relevant if non-monotonic constructs such as negation and aggregation are present.2



opportunities for discarding facts can often be increased signi�cantly by modifying the order in which thederivations are made in a program evaluation in order to ensure that derivations of facts are `close' to alltheir uses; this could be used to reduce the necessary `lifetime' of the fact. Thus, a third aspect of any spaceoptimization method is:Reducing fact lifetimes : It is desirable to make derivations of facts be `close' to all their uses.Indeed, every space optimization method has three components, the �rst to ensure soundness and completeness,the second to avoid redundancy, and the third to reduce fact lifetimes. This decomposition provides a frameworkin which to reason about space optimization methods. It also gives us the 
exibility of choosing di�erenttechniques for each component, and synthesizing new space optimization methods.In this paper, we present several novel techniques and program evaluation strategies for ensuring the sound-ness, completeness and non-redundancy requirements, and for reducing fact lifetimes. We also discuss how to tomix and match various techniques useful for di�erent parts of a program to get a space optimization method forthe full program in a modular fashion. This has two important bene�ts:1. We obtain a much deeper understanding of how space optimization can be achieved.2. Concretely, by instantiating our `mix-and-match' algorithm with speci�c techniques and evaluation strate-gies corresponding to each of the three components above, we can optimize a much larger class of programsthan the Sliding Window Tabulation method of [NR94] (see Examples 1.1 and 8.1). In fact, we showthat Sliding Window Tabulation is just one particular way of combining techniques for each of the threecomponents.1.1 ApplicationsSpace optimization is important, in general, for query evaluation in deductive databases, as the examples laterin the paper illustrate.An application area where space optimization methods are particularly important is sequence querying (e.g.,[RRS93, SLR94]). The longest common subsequence problem (Example 1.2) is representative of many problemsthat arise in DNA sequence analysis. Example 8.1 considers the problem of computing N-day averages, which isrepresentative of many problems that arise in querying stock market sequence data (see, e.g., [RRS93]). In eachof these cases, space-e�cient evaluation techniques enable the answering of queries on larger sequence databasesthan were feasible without the use of our space optimization techniques.Space optimization methods can also be used in active databases. Active database models, such as Com-pose [GJS92], permit users to specify patterns of events (event expressions) that trigger speci�c actions. Composeonly allows regular expressions as patterns to ensure constant additional storage requirements. However, theneed for more complex patterns, in particular dealing with time and sequences, soon became evident [JMS92].Space optimization is very important to bound the space utilized for detecting such complex patterns. Suchpatterns can be expressed using logic programs, and our techniques (in particular the monotonicity based tech-niques described in Section 6) are then directly applicable. Our techniques can also be extended to deal directly3



with the syntax used for specifying such complex events, avoiding the need to translate the patterns into logicprograms.1.2 Motivating ExamplesWe present some examples that underscore the importance of space optimization in deductive databases.Example 1.1 Consider the problem of computing the ancestors of a given person, an important problem indeductive database literature. We are given a binary relation father(X;Y ), with the intended meaning that Yis the father of X. Then the following program de�nes the relation anc(X;Y ), with the intended meaning thatY is an ancestor of X.anc(X;Y ) : � father(X;Y ):anc(X;Y ) : � father(X;Z); anc(Z; Y ):Query: ?-anc(n;X):Suppose that the father relation is an acyclic relation, with the functional dependency father : $1 ! $2, i.e.,each person has at most one father.Consider a database with the following facts in the father relation: father(n; n � 1); father(n � 1; n �2); : : : ; father(2; 1); father(1; 0).If we take the bottom-up approach of rewriting by Magic Sets [Ram88] followed by semi-naive bottom-up evaluation [Ban85], the space and time required is O(n2). This is because the evaluation computes thefollowing O(n2) anc facts: anc(n; n � 1); : : : ; anc(n; 1); anc(n; 0); anc(n � 1; n � 2); : : : ; anc(n � 1; 1); anc(n �1; 0); : : :; anc(1; 0).Sliding Window Tabulation, as described in [NR94], is not applicable to this program since the program doesnot exhibit any `monotonicity'. The techniques described in this paper can reduce the space required to answerthe query to O(n). (However, the asymptotic time complexity remains O(n2).) The intuition is as follows:� In an SCC-by-SCC bottom-up evaluation of the Magic Sets rewritten program, each anc fact can be usedonly in the iteration subsequent to the iteration in which it is derived. (This can be deduced from the factthat each of the program rules is linear.)� The program is `duplicate-free'; i.e., no anc fact is derived using two di�erent rule instances. (This canbe deduced from the acyclicity of the father relation, along with the functional dependency between thearguments of the father relation. The actual facts in the father relation are not needed to infer theduplicate-freedom property.)Hence, we can discard those anc facts that are not answers to the query one iteration after they are computed.This results in an O(n) space complexity.3 Retaining all the computed anc facts until the end of the evaluationresults in an O(n2) space complexity. 23The program \factoring" transformations described in [NRSU89, KRS90] also result in an O(n) space complexity for evaluatingthis query, although no facts need be discarded before the end of the evaluation. If space optimization is applied to the \factored"program, and answers are returned to the user as they are computed, then the query can be evaluated in constant space!4



The following example is from [NR94]. This is a complex program, and can be omitted in a �rst readingwithout loss of continuity.Example 1.2 Consider the problem of computing the length of the longest common subsequence (LCS) of twostrings a and b. This problem is signi�cant because it is representative of a number of problems that arise in DNAsequence analysis, an area that has been identi�ed as a promising application for deductive database technology(e.g., [TON90]).We are given two strings, say A = a0a1 : : : am�1 and B = b0b1 : : : bn�1, where the ai and bj are drawn fromsome common alphabet. We use the standard algorithm of Hirschberg [Hir75] to compute the LCS of two strings.To express the problem is deductive database notation, we use the representation that if letter j of string a (resp.b) is �, then the database contains the fact a(j; �) (resp. b(j; �)). Then the following program de�nes the relationlcs(M;N;X), with the intended meaning that the longest common subsequence of A beginning at aM and Bbeginning at bN is of length X.lcs(m;N; 0):lcs(M;n; 0):lcs(M;N;X) : � M < m;N < n; a(M;C); b(N;C); lcs(M + 1; N + 1; X � 1):lcs(M;N;X) : � M < m;N < n; a(M;C); b(N;D); C 6= D; lcs(M + 1; N;X1);lcs(M;N + 1; X2); X = max(X1; X2):Query: ?-lcs(0; 0; X):If the strings are of length m and n, then evaluating the program using the top-down Prolog evaluationstrategy gives a running time that is 
(�m+nn �). The function �m+nn � grows extremely quickly. For example, ifm = n = 20, we have �m+nn � > 275 � 109; if m = n = 100, we have �m+nn � > 1:8� 1059. Clearly, the Prologevaluation strategy cannot be used on this program for any but the shortest of strings.If we take the bottom-up approach of rewriting by Magic Sets [BR91] followed by Semi-Naive bottom-upevaluation, the running time is reduced to O(mn). This is a dramatic improvement; unfortunately, the spacerequired is also O(mn). In DNA sequence analysis, comparison of strings of over 104 bases will be routine. (Thehuman genome is estimated to contain over 109 base pairs.) Even if each fact to be stored �ts in a single byte, onstrings this size, the standard bottom-up approach will require over a hundred megabytes (108 bytes) of storage.Sliding Window Tabulation, as described in [NR94], evaluates this program in O(m+ n) space (which is just104 bytes) and O(mn) time, by discarding facts in the course of the evaluation. Thus this improvement in thespace complexity is very important if the program is to be run over such large databases.While SlidingWindow Tabulation is e�ective on the LCS example, it does not work on many simple variations.For instance, suppose we extend the LCS program so that instead of being base predicates, a and b are de�nedby additional rules in the program | this will be the case if the program preprocesses `rough' base data beforesearching for common subsequences. Sliding Window Tabulation cannot be used on this extension of the LCSprogram. Similarly, if the above program is embedded in a larger program that uses the length of the longestcommon subsequence to perform further analysis, such as �nding the region of a given DNA sequence that best5



matches the given test sequence, Sliding Window Tabulation is again inapplicable. The techniques described inthis paper can handle such extensions and are applicable to a much larger class of programs. 22 De�nitionsIn this paper, we consider Horn clause logic programs4, and assume the usual de�nitions including those of terms,atoms and rules (clauses). We assume some familiarity with semi-naive evaluation, and in some of the sectionsof the paper, with the Magic Sets transformation. We refer the reader to [Ull89] for more details.We present intuitive de�nitions of some well-known concepts in logic programming below; see [Llo87] forformal de�nitions. Informally, the universe of a program consists of all the values (such as integers, reals andstrings) that the program can manipulate. A substitution � is a mapping from a set of variables to values in theuniverse of the program; it is extended to handle syntactic objects (such as terms/literals) containing variablesin a straightforward manner. For example, � = fX=4; Y=\john"g is a substitution, and p(X;Y )[�] (the result ofapplying � to p(X;Y )) is p(4; \john"). The result of applying a substitution to a syntactic object is called aninstance of the object. In this paper, we only use substitutions that map all the variables in the input term tovalues in the universe (`ground values').A program is treated as a set of rules and database (EDB) facts. While analyzing the program, we do notneed to know the speci�c EDB facts, but we often make use of information such as functional dependencies onEDB relations. A program fact is used to mean any fact that is used or derived by the program. In this paper,we assume that all program facts are ground, i.e., they do not contain any (universally quanti�ed) variables. Asu�cient condition that guarantees this is range-restrictedness of the program, i.e., for each rule in the program,each variable that appears in the head of the rule also appears in the body of the rule.2.1 Program EvaluationsThe meaning of a program is de�ned as its least �xpoint in the Herbrand universe [Llo87]. The least �xpointof a program can be computed iteratively, using a bottom-up evaluation. Bottom-up evaluation of a programcomputes all facts that can be inferred starting from the facts in the database, and using the program rulesrepeatedly.In this paper, we describe several bottom-up evaluation techniques for logic programs | each has someadvantages and some disadvantages. However, we would like to make several claims that are applicable to eachof these evaluation techniques and hence we need an abstract notion of an evaluation of a program. For thispurpose, we �rst de�ne program states and state transitions.A state in a program evaluation is a pair hF ;Hi, where F and H are disjoint sets of facts: intuitively, Fdenotes the facts that are available for use in derivations from this state, H denotes the facts that have beenderived but are hidden, and hence are not available for use in derivations from this state; hiding of facts is usedin some of the evaluation strategies we describe later.4Our techniques can be extended to include some classes of programswith negation and aggregation; we do not do so for simplicity.6



The body of a rule instance R[�] is satis�ed in a state hFi;Hii if each positive literal in the body of R[�] ispresent in the set Fi.5 For example, if R is the rule:q(X): �p(X):and the substitution � is fX=ag, then the body of R[�] is satis�ed in the state hfp(a)g; fp(b)gi. However, if 
 isfX=bg, then the body of R[
] is not satis�ed in that state.De�nition 2.1 (Derivation Step) A derivation step at state hFi;Hii consists of a rule R along with asubstitution � on its variables, such that the body of R[�] is satis�ed.The head of R[�] is referred to as the fact derived in this step, and the instantiated body literals are referredto as the facts used in this derivation step. 2We often use the term `derivation' to refer to a derivation step.A state transition is de�ned as a mapping from one state to another hF1;H1i S�! hF2;H2i. S is thecollection of derivation steps, possibly empty, associated with this transition. We require exactly one of thefollowing conditions to hold in each state transition:New Available Facts : F2 = F1 [ facts derived in S, and H2 = H1.New Hidden Facts : H2 = H1 [ facts derived in S, and F2 = F1.Show Hidden Facts : S = �, F2 = F1 [H, and H2 = H1 �H, where H � H1.Discard Facts : S = �, F2 � F1, and H2 = H1.In the initial state, F is the set of EDB facts in the program, and H is empty (since no facts are hidden initially).De�nition 2.2 (Evaluation) Consider a program P . An evaluation of P is a sequence of state transitionsstarting from the initial state. Each of the states in this sequence is referred to as a point in the evaluation of P .The notion of earlier and later points with respect to a given point in an evaluation is the natural one. 2We discussed the idea of derivation steps above; in an actual bottom-up evaluation, a set of derivation stepsusing a rule are typically performed together in a `rule application'. The following de�nition formalizes ruleapplications.De�nition 2.3 (Rule Application) An application of rule R in state hF1;H1i is a transition hF1;H1i S�!hF2;H2i such that all derivation steps in S are performed using rule R, and F2 [H2 contains all facts that canbe derived using rule R in the state hF1;H1i.An application of a set of rules R is a transition as above where all derivation steps in S are performed usingrules R 2 R, and F2 [H2 contains all facts that can be derived using the rules R 2 R in the state hF1;H1i. 25When negation is allowed, we also require that each instantiated negative literal is not present in Fi, in addition to otherrequirements. 7



Notice that the above de�nition does not require S to contain all the derivation steps that can be performed.Thus, derivations that have been made earlier need not be repeated. In fact, if a fact is present in hF1;H1i,there is no need to perform a derivation step that derives the fact, regardless of whether or not the derivationstep was performed earlier.We often say `apply rule R' (resp. `apply a set of rules R') in a given state to indicate that the state transitionde�ned by the application of rule R (resp. R) must be carried out. Speci�c details of how a rule applicationis carried out, such as the order of the join operations and the technique used for each join operation, are notrelevant to the results in this paper.De�nition 2.4 (S-evaluation) An S-evaluation is an evaluation which satis�es:1. Each state transition where new facts are derived is carried out by an application of a rule or a set of rules.2. In each state transition that discards facts, precisely one fact is discarded. 2The motivation for the second requirement above will be discussed later.In general, the evaluation of a program depends upon the evaluation method that is used. For simplicity, inthis paper we only consider evaluation methods that produce a unique S-evaluation for each program and initialstate. In the rest of this paper, an evaluation is implicitly assumed to be an S-evaluation unless otherwise stated.2.2 Semi-Naive EvaluationDe�nition 2.5 (Semi-Naive Evaluation) We say that an evaluation `has the semi-naive property' if (a) noderivation step occurs more than once in any transition, and (b) no two transitions in the evaluation contain thesame derivation step. We call such an evaluation a semi-naive evaluation.An evaluation is said to be semi-naive with respect to a predicate p if the above two conditions hold for allderivation steps that derive p facts. 2Note that an evaluation is semi-naive if and only if it is semi-naive with respect to each of the predicates de�nedin the program.Several techniques for evaluating programs in a semi-naive fashion have been proposed, e.g., [Ban85, BR87,RSS94]. We brie
y outline below the semi-naive evaluation method presented in [Ban85, BR87], which we callBasic Semi-Naive (BSN) evaluation.The BSN technique has two phases. The �rst is a compilation phase that generates semi-naive rules fromthe given program. From each rule in the program, a set of rules, which we call the semi-naive versions of theoriginal rule, is generated. The second phase is performed at run-time; the evaluation keeps track of `new facts',i.e. those that have not been used to make derivations. The evaluation proceeds in iterations; each iterationapplies (semi-naive versions of) all program rules and makes all new derivations that can be made by usingfacts derived up to (and including) the previous iteration. Derivations using only facts generated two iterations(or more) earlier would have been made already, so only derivations that use at least one fact derived for the�rst time in the previous iteration are made. Some book-keeping is performed to track which facts are new at8



the end of each iteration to track which facts are new. This book-keeping involves deletions from `di�erential'relations that keep track of which facts are new. Strictly speaking, deletions are not modeled in our de�nitionof an evaluation. However, our notion of an evaluation is a high level one, and semi-naive evaluations can bemodeled using our de�nition by ignoring low level details of the evaluation method.States in a BSN evaluation have a one-one correspondence with iterations, where F0 is the set of EDB facts,and Fi = Fi�1[ the set of all facts derived in the ith iteration of BSN. For all i, Hi = ;, and facts are notdiscarded before the end of the evaluation.For positive programs, BSN evaluation computes (in the limit) the meaning of a program as given by itsleast �xpoint semantics. BSN evaluation, as described above, can be re�ned to work on a strongly connectedcomponent (SCC) of the program. The SCCs of a program are partially ordered, and the whole program isevaluated by evaluating the SCCs in a total order consistent with the partial order. This is referred to asSCC-by-SCC evaluation of the program.Some of the techniques that we propose in this paper lead to evaluations that do not have the semi-naiveproperty; however, they satisfy a weaker notion introduced below.De�nition 2.6 (Locally Semi-Naive Evaluation) An evaluation is said to be a locally semi-naive evaluationif (a) no derivation step occurs more than once in any transition, and (b) for each derivation step D that appearsin the i'th transition, either: (1) D does not appear in any prior transition, or (2) There is a j � i such that Duses at least one fact that is present in Fj � Fj�1, and derivation step D does not appear in any transition k,j � k < i. 2Essentially a locally semi-naive evaluation is one where once a derivation step is carried out, it is not repeatedunless one of the facts used in the derivation is discarded, and rederived subsequently.To understand the intuition behind locally semi-naive evaluations, consider a variant of a BSN evaluationwhere a fact is deleted and later re-derived. The fact would be considered a newly derived fact when it is re-derived, and the evaluation may repeat some derivation that uses this fact. The evaluation would thus not be asemi-naive evaluation, but it would be a locally semi-naive evaluation.Proposition 2.1 Every semi-naive evaluation is locally semi-naive. Every locally semi-naive evaluation is semi-naive if no facts are discarded during the evaluation.Proof: The �rst part follows from the de�nitions, since Parts (a) and (b1) in the de�nition of a locally semi-naiveevaluation holds for every derivation step in a semi-naive evaluation.For the second part, consider a locally semi-naive evaluation in which a derivation step D appears in transitioni and also at some previous transition k. By the de�nition of locally semi-naive evaluations, there is a transitionj, k < j � i such that a fact used in D is derived in transition j, and is not available in the antecedent state oftransition j. However, since D appeared in transition k < j, this fact must have been derived in some transitionprior to k and therefore, it must have been discarded in some transition l, k � l < j. 29



2.3 Base and Derived PredicatesIn an evaluation, the facts for the EDB predicates are typically �xed for the duration of the evaluation. No newfacts are derived for these predicates during the evaluation; hence EDB predicates are also referred to as `base'predicates (and predicates de�ned by rules are referred to as `derived' predicates). The knowledge that the set offacts in a `base' predicate is �xed is utilized during rule evaluation (e.g., this can simplify the form of semi-naiverewritten rules).In some cases, predicates that are de�ned by rules can be treated as `base' predicates for the purposes of anumber of optimization and evaluation methods. For instance, in an SCC-by-SCC BSN evaluation, predicatesde�ned in lower SCCs can be treated as `base' in rules in higher SCCs. We present below a generalized de�nitionof `base' predicates, which is applicable for a variety of evaluation strategies.6De�nition 2.7 (Base Set) Consider an S-evaluation generated using an evaluation method M, and a setof predicates q1; : : : ; qn. Let Di be the set of all possible derivation steps that can be made using rule R instate hFi;Hii. Similarly, let D0i be the set of all possible derivation steps that can be made using R in statehFi [Q;Hii, where Q is the set of all facts for predicates q1; : : : ; qn in the meaning of the program.The set of predicates q1; : : : ; qn is said to be a base set with respect to rule R if for each transition hFi;Hii �!hFj;Hji where R is used to perform derivation steps, Di = D0i. 2Note that a rule may have more than one base set; however, the union of base sets is not necessarily a baseset. The following example illustrates this.Example 2.1 Consider the following program.p(0):p(X + 1) : � p(X); X < 100:q(0):q(X + 1) : � q(X); X < 100:r(X) : � p(X); q(X):In a BSN evaluation, where all program rules are applied in each iteration, fpg is a base set with respect to thelast rule. For example, consider the point in the semi-naive �xpoint evaluation when we have just derived r(m),for some integer m. The set of available facts is p(0), p(1), : : : , p(m) and q(0), q(1), : : : , q(m). Even if all pfacts in the least �xpoint of the program were available, i.e., we had p(0); p(1); : : : ; p(100), we could not deriver(n), for n > m. Similarly fqg is a base set. However, the set fp; qg is clearly not a base set. 2Although the de�nition of base set is with respect to a particular evaluation, we only make choices that arecorrect with respect to any evaluation that can be generated by the evaluation method that we use. For example,in an SCC-by-SCC evaluation of the above program, both p and q would (trivially) be in the base set of the lastrule of the program, since p and q would be `fully' evaluated before the �rst application of rule r.6This de�nition is strictly weaker than the usual de�nition. Hence, the use of the traditional de�nition does not a�ect thecorrectness of any of the results in this paper. 10



Among all the base sets, one base set is chosen for each rule, and is referred to as the base set for the rule7;each predicate in it is said to be base with respect to the rule. The other predicates in the rule are said to bederived with respect to the rule.A predicate p2 is said to be derived with respect to another predicate p1 if, either (1) there is a rule R suchthat p1 is the head predicate of R and p2 is derived with respect to R, or (2) there is a predicate p3 such thatp3 is derived with respect to p1 and p2 is derived with respect to p3.A literal p(t) in the body of rule R is said to be a derived literal (resp. base literal) if p is derived with respectto (resp. base with respect to) R. Note that the relation `derived with respect to' is not necessarily re
exive orsymmetric.3 Ensuring Soundness, Completeness and Non-RedundancyIn general, discarding a fact p(a) in an evaluation could result in the non-derivation of other facts that wouldhave been derived, had the fact p(a) not been discarded. Thus, discarding facts could compromise completeness.8The following condition is the key for ensuring that facts are used in all possible derivations, and is used to ensurecompleteness of an evaluation.Condition U : Consider a point e1 in an evaluation E where a fact p(a) is discarded. Fact p(a) satis�esCondition U at e1 i�1. Every derivation step using p(a) has been made at or before e1 in E, or2. There is some later point e2 in E such that p(a) is recomputed at e2 and any derivation step that canbe made using p(a) (given all the facts in the meaning of the program) but that has not been madebefore e1 is made after e2.9 2The restriction of Condition U to a literal in the body of a rule is de�ned in a straightforward manner, byconsidering only uses of a fact in a particular literal in the body of that rule. It is straightforward to show thatCondition U is satis�ed by a fact p(a) at a point e1 in an evaluation i�, for each body occurrence of p in everyrule, the restriction of Condition U to that literal is satis�ed by p(a) in the evaluation.If a fact is discarded and subsequently rederived, we may not detect the duplicate derivation and thus mayrepeat some derivations that use this fact. This could compromise the semi-naive property. Further, not detectingduplicate derivations of a fact could compromise termination if cyclic derivations are possible. If each fact that isdiscarded satis�es the following condition when it is discarded, then multiple derivations of facts will be detected,which can be used to ensure the semi-naive property:7It is possible for predicates to be classi�ed as being in a base set in a non-intuitive manner. However, such a choice does nota�ect the correctness of the results in this paper.8In the presence of negation, discarding a fact could compromise soundness as well.9If the program has negation, Condition U should also include the condition that any derivation that would have been preventedby the presence of p(a) is not made in the evaluation. 11



Condition D : Consider a point e1 in an evaluation E where a fact p(a) is discarded. Fact p(a) satis�esCondition D at point e1 in E, i�1. It is not derived again at or after the point e1 in E, or2. No derivation using p(a) made at or before e1 is repeated after e1, even if p(a) is rederived at somelater point e2 in E. 2The restriction of Condition D to a rule is de�ned in a straightforward manner, by considering only derivationsof a fact by that rule. Again, it is straightforward to show that Condition D is satis�ed by a fact p(a) at a pointe1 in an evaluation i�, for each rule de�ning predicate p, the restriction of Condition D to that rule is satis�edby p(a) in the evaluation.For an evaluation of a program to be complete, all non-redundant derivations that can be made using theprogram must in fact be made by the evaluation. In the case where the number of derivations of a fact domatter, as when the multiset semantics of Maher and Ramakrishnan [MR89] is used, no derivation is redundant,although in other cases some derivations may be redundant. We say that an evaluation is derivation-complete ifall derivations that can be made using the program are in fact made by the evaluation.The following results summarize how ensuring Conditions U and D while discarding facts during an evaluationguarantees soundness, derivation-completeness and the semi-naive property of the evaluation.De�nition 3.1 (Terminated Evaluation) An evaluation of a program is said to be terminated if its laststate10 hF ;Hi is such that (a) H = ;, and (b) no fact p 62 F can be derived using the facts in F and any rule inthe program. 2Proposition 3.1 Consider a terminated S-evaluation E. Evaluation E is derivation-complete i� Condition Uis satis�ed by each fact whenever it is discarded.Proof: (If): Let fact p(a) be discarded at point e1 in the evaluation E. If p(a) satis�es Condition U (1) at pointe1 in E, then all derivations that use p(a) have been made before e1 in E. If p(a) satis�es Condition U (2) atpoint e1 in E, then those derivations that use p(a) but have not been made before point e1, will be made afterp(a) is rederived in E. In either case, the evaluation E is derivation-complete.(Only if): We prove the contrapositive. Assume that there is some fact p(a) that does not satisfy ConditionU when it is discarded at point e1 in the evaluation E. The fact p(a) does not satisfy Condition U (1) at pointe1, and hence not all derivations using this fact have been made at or before e1. Also, this fact does not satisfyCondition U (2) at point e1. Hence, exactly one of the following hold: (a) this fact is not recomputed after pointe1 in the evaluation, or (b) this fact is recomputed in E after point e1, but there is at least one derivation usingp(a) which was not made before e1, and will not be made after p(a) is recomputed. In either of these cases,evaluation E is not derivation-complete. 2Proposition 3.2 Consider a locally semi-naive S-evaluation E. Evaluation E has the semi-naive property i�Condition D is satis�ed by each fact whenever it is discarded.10The notion of last state is well-de�ned only for �nite evaluations. Our de�nitions can be extended to handle in�nite evaluationsas well, but the details are tedious. 12



Proof: (If): If a fact p(a) satis�es Condition D (1) when it is discarded at point e1 in evaluation E, noderivations that use p(a) are made after e1 in E since E is locally semi-naive. Hence, to prove the semi-naiveproperty of E, we need only consider rederivations of facts in E.Our proof is by induction on the order in which facts are rederived after being discarded in E. Let p1(a1) bethe �rst fact rederived (say, at point e2) after being discarded (say, at an earlier point e1) in the evaluation E.Since evaluation E is locally semi-naive, no derivation step (including the derivation of p1(a1) at e2) is repeatedat or before point e2 in the evaluation E. Fact p1(a1) must satisfy Condition D (2) at point e1 in E. Hence,derivations using p1(a1) made before e1 in E are not repeated after e2. Also, there are no derivation using p1(a1)between points e1 and e2 in E. Consequently, no derivation step that uses p1(a1) is repeated in evaluation E.Consider now the induction step. Let pn(an) be the n'th fact rederived after being discarded in the evaluationE. The induction hypothesis guarantees that this derivation step is a new derivation step (since it has to usepreviously computed, possibly rederived, facts). Since pn(an) must satisfy Condition D (2) when it is discarded,the argument used for the base case also shows that no derivation step that uses pn(an) is repeated in evaluationE. This completes the induction step and hence the proof of the claim that E has the semi-naive property.(Only if): We prove the contrapositive. Assume that there is some fact p(a) that does not satisfy ConditionD when it is discarded at point e1 in the evaluation E. The fact p(a) does not satisfy Condition D (1) at pointe1, and hence it is derived again (say at point e2) in the evaluation E. Also, this fact does not satisfy ConditionD (2) at point e1. Hence, some derivation made using p(a) before e1 is repeated after e2 in E. Hence, evaluationE does not have the semi-naive property. 2From the above two propositions, the following result follows.Theorem 3.3 Consider a locally semi-naive, terminated S-evaluation E. Evaluation E is sound, derivation-complete and has the semi-naive property i� Conditions U and D are satis�ed by each fact whenever it is discarded.2Theorem 3.4 Given a program P , and an arbitrary point e1 in an evaluation of program P , it is undecidablewhether a given fact satis�es Conditions U and/or D at e1.Proof: Consider an arbitrary logic program L that de�nes p. Add the fact p1 and the rule p2: �p; p1 to L to getprogram L1. (Neither p1 nor p2 should occur in L.) The fact p1 can be used to compute p2 i� ?p is satis�ablein L. Since satis�ability is not decidable for logic programs ([Shm87]), it is undecidable if p1 will be used againafter any point e1 in the evaluation. Since there is no other derivation of p1, Condition U is undecidable.To show undecidability of Condition D, add the fact p and the rule R : p1: �p to the logic program L to getL2. Consider a point e1 in a semi-naive evaluation of L2 after p1 has been derived using the given fact p andrule R. Since it is undecidable whether ?p is satis�able in L, if p is discarded at e1 it is undecidable whether thederivation of p1 (using R) is repeated after e1. 2Consequently, it is undecidable whether discarding a fact during an evaluation will compromise the soundness,completeness or semi-naive property of the evaluation. Hence, we must look for su�cient conditions for ensuringConditions D and U for program facts. Even the stronger conditions that test only the �rst parts of ConditionsU and D are undecidable. Our su�cient conditions are often based on the �rst parts of Conditions D and U.13



4 Our Approach to Space Optimization4.1 Discarding Facts Based on Conditions U and DThe general framework of our approach for discarding facts during an evaluation of a program is as follows.Consider an evaluation method. The evaluation method performs certain tests before discarding facts duringan evaluation. Facts are discarded only if they satisfy these tests. Some of these tests guarantee that if a factsatis�es the test when is discarded, then, in the evaluation generated by the evaluation method, the fact satis�esCondition U when it is discarded. We call such tests techniques for ensuring Condition U. Similarly, we havetechniques for ensuring Condition D.Each technique we describe for ensuring Conditions D and/or U is typically applicable only to certain classesof programs. Hence, at compile time we analyze the program, and decide on the applicability of each techniquefor ensuring Conditions D and U. We then generate a speci�c evaluation method for a program by choosingwhich techniques to use. These techniques perform tests at run time to decide when a fact satis�es ConditionsD and/or U. Facts are discarded at run-time as soon as the tests determine that they satisfy Condition U and(if non-redundancy is desired) Condition D. The run-time tests we describe are quite e�cient | see Section 9for more details.The discarding of one fact at a point in the evaluation could a�ect whether or not another fact is rederivedat a later point in the evaluation. Hence, for simplicity, we have assumed that facts are discarded one-at-a-timein the evaluation. The run-time tests for whether a given fact satis�es Conditions D and U are performed underthe assumption that no other fact is discarded at the same point in the evaluation.4.2 Summary of Our TechniquesIn the rest of the paper, we describe several techniques for ensuring Conditions D and U, as well as severalsynchronization techniques.Ensuring Condition D (Non-redundancy) : Techniques for ensuring Condition D can be chosen on a per-rule basis, and di�erent techniques can be used for di�erent rules in a given program. Applicable techniquesinclude the following:1. Providing a bound on the total number of derivations of a fact.If a program is duplicate-free ([MR89]), we know that once a fact is derived it will not be derivedagain. We look at this technique (and some extensions) for ensuring Condition D in Section 5.1.2. Using monotonicity constraints.Monotonicity constraints ensure some monotone ordering on the derivation of facts. We look at thisidea in Section 6.3.Ensuring Condition U (Correctness) : Techniques for ensuring Condition U can be chosen on a per-body-literal basis, and di�erent techniques can be used for di�erent literals in a given program. Applicabletechniques include the following: 14



1. Providing a bound on the total number of uses of a fact.Suppose a rule in linear, i.e. there is only one literal in the body of the rule whose predicate is derivedwith respect to the rule. Once a fact for the derived predicate is used (along with all the facts for the`base' predicates in that rule), we know that no new derivations can be made using that fact in thatrule. We look at this and more general ways of ensuring Condition U in Section 5.2.2. Using monotonicity constraints.In Section 6.4 we consider using monotonicity constraints to ensure Condition U.If none of these approaches for ensuring Conditions D or U succeeds for p facts, we always have the optionof not discarding any p facts. We can still optimize the rest of the program, unlike the method describedin [NR94].Synchronization : If (all) derivations of facts are `close' to all their uses, facts can be discarded soon afterbeing derived (and used).In Section 7 we consider techniques that can be used to order an evaluation to ensure that derivations offacts are close to their uses, and we call them synchronization techniques. These include:� Delaying �rst use of factsThe idea is to partition the set of derived facts into a set of `active' facts used in derivations anda set of `hidden' facts whose use is delayed (until they become `active'). The goal is to balance thederivation of new facts against the identi�cation of facts that can be discarded so that the number offacts that are stored at any one point in the evaluation is reduced (Section 7.1).� Nested-Unit synchronization.This technique identi�es `subgoals' that are to be evaluated by a `sub-program' on each call. Theidea is to generate (answer) facts using the sub-program as and when they are needed by the `main'program (Section 7.2).� Interleaved-Unit synchronization.The acyclic graph of SCCs of a program suggests a natural producer/consumer relationship. Byinterleaving the evaluation of producers and consumers, it is sometimes possible to ensure that factsare generated in a producer as and when they are needed by the consumers. This is generalized towork with `units' instead of SCCs (Section 7.3).Combining Techniques : The various techniques for synchronization and for ensuring Conditions D and Uare applicable to parts of a program (such as rules, literals, etc). These need to be combined to get a spaceoptimization method for the full program. This issue is discussed in some detail in Section 8.2.5 Bounds on Derivations and Uses of FactsIn the following, we use the notion of functional dependencies on variables and literals in rule bodies.15



De�nition 5.1 (Functional Dependencies on Rules) We say that a set of variables X in a rule R func-tionally determines a set of variables Y in R if the following condition is met: given any rule instances R[�] andR[
] such that the bodies of R[�] and R[
] are satis�ed in the meaning of the program, if X [�] = X[
], thenY [�] = Y [
].A set of literals p in R functionally determines a set of literals q in R if vars(p) functionally determinesvars(q). 2The above notation is abused to allow single variables or literals in place of sets of variables or literals.5.1 Duplicate Freedom and Condition DThe simplest technique to ensure Condition D for a fact p(a) at a point in a locally semi-naive evaluation of aprogram is based on the following condition on the predicate p:Condition DF1 : A predicate satis�es condition DF1 if: (1) No fact for p is derived by more than one rule,and (2) there is at most one derivation for each p fact by any rule. 2The essential idea is to make sure that no fact for p is derived more than once in the evaluation. Thetechniques of [MR89] can be used to test the condition | part (1) can be tested by determining that no tworule heads unify11 and part (2) by checking that the head of a rule functionally determines the body of the rule.Proposition 5.1 If a predicate p in a locally semi-naive S-evaluation satis�es Condition DF1, and the evaluationis semi-naive with respect to p, Condition D is satis�ed by each p fact at any point at which it is discarded.Proof: Conditions DF1 (1) and DF1 (2) together ensure that there is at most one derivation of any p fact.Since the evaluation is semi-naive with respect to p, such a derivation step is not repeated. Hence, predicate pstraightforwardly satis�es Condition D (1). 2We can weaken Condition DF1 in several ways. If part (1) does not hold, we can still ensure Condition Dusing a run-time check to determine that a fact has been derived once by every rule that could possibly deriveit. DF1 can also be weakened by modifying the requirement that `there is at most one derivation for each fact byany rule' to the requirement that `if there is more than one derivation for any fact by a rule, then the facts for thederived literals in the corresponding rule instances are the same'. Thus, multiple derivations would be allowedwithin a rule application. To test this weaker requirement, we can check whether the head of a rule functionallydetermines all derived body predicate occurrences in the rule; the head need not functionally determine the basepredicate occurrences. To summarize:Condition DF2 : Part (1) as in DF1, and (2) if there is more than one derivation for any fact by a rule, thenthe facts for the derived predicate occurrences in the corresponding rule instances are the same. 2A proposition similar to Proposition 5.1 also holds in the case of DF2. Again, if part (1) does not hold, wecan ensure Condition D using run-time checks.11This can be generalized using the techniques of Debray and Warren [DW89], for example.16



5.2 Bounds on Uses and Condition UIf we can determine a bound on the number of uses of p facts in a body predicate occurrence p0 of p, once a pfact has been used in that many derivations in p0, we know that it can no longer be used in this occurrence. Thefollowing condition seeks to capture this intuition.Condition Bounds U : Consider a program P , and a rule R which has a body predicate occurrence p(t). LetR be denoted as:R : p2(t2) : � p(t); b(t0); p1(t1):where b(t0) denotes the set of all the predicate occurrences in R (other than p(t)) that are base with respectto the rule, and p1(t1) denotes the set of all predicate occurrences (other than p(t)) that are derived withrespect to the rule.Then the predicate occurrence p(t) in rule R satis�es Condition Bounds U if it satis�es either of:BU1 : p(t) functionally determines p1(t1) in R, orBU2 : p(t) functionally determines the head p2(t2) of R. 2Proposition 5.2 Consider a locally semi-naive S-evaluation of a program P , and a rule in P :R : p2(t2) : � p(t); b(t0); p1(t1):Suppose body predicate occurrence p(t) in R satis�es Condition BU1 and the evaluation is semi-naive with respectto p2. Then no derivation step in any transition after a point e1 will use fact p(a) in the body literal p(t) if:(1) there is no instance R[�] whose body is satis�ed in the meaning of the program and p(t)[�] = p(a), or (2) anapplication of R that uses a derivation step where p(t) is instantiated to p(a) has been made at or before e1.Proof: If no instance R[�] whose body is satis�ed in the meaning of the program is such that p(t)[�] = p(a),then p(a) cannot be used in any derivation step; this proves Part (1) of the result. If the fact has been used in aderivation step, all derivation steps that it can be used in must have been carried out in the same rule applicationby the de�nition of base with respect to a rule. Since the evaluation is semi-naive with respect to p2, none ofthese derivation steps can be repeated in the evaluation; this proves Part (2) of the result. 2Consider the (important) special case of linear recursive rules. For such rules, Condition Bounds U is alwayssatis�ed | p(t) is the only derived predicate occurrence in the rule R and BU1 is satis�ed trivially. If we useBSN evaluation, any p fact is either used in a derivation step using R in the iteration after it is derived, or thereis no instantiation of the rule R with this p fact, such that the body is satis�ed in the meaning of the program.Consequently, by the above proposition, every p fact satis�es Condition U if it is discarded at any point afterthe end of the iteration subsequent to the iteration in which it is derived.Now suppose some derivations using R and p(a) need to be repeated. If we discard the fact p(a) after aderivation step, we would prevent repetitions of that derivation and hence not satisfy Condition U.17



If the occurrence p(t) in R satis�es Condition BU2, and a fact p(a) has been used in this occurrence ina derivation step, then no new facts can be generated by any subsequent derivations that instantiate p(t) top(a). Condition U is not satis�ed if the fact is discarded, since it is possible that there are other derivationsof the same head fact using p(a) in this predicate occurrence. However, if we are not interested in the numberof derivations, we may e�ectively consider Condition U to be `satis�ed', without compromising soundness orcompleteness (although we do sacri�ce derivation-completeness).The following result is a direct consequence of the above proposition.Corollary 5.3 Suppose a literal p(t) in the body of rule R satis�es Condition Bounds U, and in a point in alocally semi-naive S-evaluation a fact p(a) satis�es the tests described in Proposition 5.2. Then p(a) satis�es therestriction of Condition U to the literal p(t) if it is discarded at that point. 2The following example illustrates the use of bounds on derivations and uses of facts in space optimization.Example 5.1 Consider the program for computing the ancestors of a given person and the father relation,from Example 1.1.anc(X;Y ) : � father(X;Y ):anc(X;Y ) : � father(X;Z); anc(Z; Y ):Query: ?-anc(n;X):Suppose the father relation is an acyclic relation, with the functional dependency father : $1 ! $2, i.e., eachperson has at most one father.We can deduce the following about the program:� The body occurrence of anc(Z; Y ) in the linear recursive rule satis�es Conditions Bounds U. Hence, in anevaluation of the program, each anc fact can be used in at most one rule application (although, possibly,in several derivation steps), in the iteration subsequent to the iteration in which it is derived.� The de�nition of anc satis�es Condition DF1, i.e., no anc fact is derived more than once. The functionaldependency between the arguments of the father relation shows that each anc fact can be derived at mostonce by each rule, and the acyclicity of the father relation along with the functional dependency showsthat each fact can be deduced by at most one rule. (Techniques such as those presented in [MR89] may beused to deduce this; this is outside the scope of our paper.)Hence, we can discard anc facts that are not answers to the query at the end of the iteration after they arecomputed.Consider a father relation with the following facts: father(n; n� 1); father(n � 1; n� 2); : : : ; father(2; 1);father(1; 0). A bottom-up evaluation of the Magic Sets transformed program would have asymptotic spaceand time complexity of O(n2). This is because the evaluation computes the following anc facts: anc(n; n �1); : : : ; anc(n; 1); anc(n; 0); anc(n� 1; n � 2); : : : ; anc(n � 1; 1); anc(n� 1; 0); : : : ; anc(1; 0). In an SCC-by-SCCevaluation of the Magic Sets transformed program, we can discard anc facts one iteration after being derived.This results in an O(n) space complexity. (The time complexity remains unchanged.) 218



Note that the use of functional dependencies is conservative; for example, if literal p functionally determinesliteral q in the body of a rule R, we know that there is at most one q fact that can be used in a derivation stepwith a given p fact. In fact, there may be no such q fact (as the example below illustrates). Conditions BU1and BU2 for literal the p can be re�ned by using a notion of dependencies that requires the existence of exactlyone such q fact for each p fact, but we do not pursue the extension further.Example 5.2 Consider the following program, PAck, that computes the Ackermann function:R1 : ack(0; Q; 2 �Q):R2 : ack(P; 0; 0) : � P > 0:R3 : ack(P; 1; 2) : � P > 0:R4 : ack(P;Q;N ) : � P > 0; Q > 1; ack(P;Q� 1; N1); ack(P � 1; N1; N ):Here, the FDs ack : f$1; $2g ! $3 and f$1; $3g ! $2 hold.12 As a consequence, each body occurrence of ackfunctionally determines the other occurrence of ack in rule R4. Also, each occurrence of ack in the body of ruleR4 functionally determines the head of that rule. Both Conditions BU1 and BU2 are therefore applicable; sinceack can also be shown to be duplicate-free, we can discard each ack fact after two uses. However, there areseveral ack facts that can be used only once, and based on these conditions they are never discarded. 26 MonotonicityIn this section we look at how to use monotonicity to ensure Conditions D and U. Our results on the use ofmonotonicity extend the results of [NR94].6.1 � FunctionsWe make extensive use of the class of � functions de�ned in [NR94]; we present it now for completeness. The �functions are similar to the `size' functions that have been used for detecting termination of logic programs.We let � denote a class of functions that map ground atoms to integers (I). Individual functions in the class� are typically denoted as �, and we often refer to � as the class of � functions.Consider a predicate p(X1; X2; : : : ; Xn), where Di denotes the domain of Xi.13 A function � that is appliedto atoms of predicate p can then be viewed as a function:D1 � D2 � : : :�Dn ! IFor simplicity, we consider only functions that can be expressed as arithmetic expressions on the variablesX1; X2; : : : ; Xn, possibly with pre-de�ned functions (such as term-size) applied to the variables. An example ofa function in � is one that maps fac(I;N ) to I.12The FD ack : f$1;$2g ! $3 holds because the third argument denotes the result of the Ackermann function on the �rst twoarguments. The FD ack : f$1;$3g ! $2 holds because (it can be easily shown that) for a given value of the �rst argument, the valueof third argument is strictly monotonic on the value of the second argument.13In this section we assume that we know the domain from which facts take values. If the domain is not known, we simply assumethat it is the universe. 19



Intuitively, � functions are used to formalize monotonicity that is present in the use or generation of facts.Monotonicity can be used to discard facts once they are no longer needed. In order to characterize the mono-tonicity in the generation or use of facts for a given predicate, we choose a � function for that predicate. Thereare of course many candidate functions to choose from.An important question is, how do we choose such a function automatically. In general, the task is quitedi�cult. In this paper, we deal with the issue as follows. We enumerate all choices from the subclass of �functions that sum up the `sizes' of a subset of the arguments of the predicate. (We de�ne the `size' of anargument later.) From this set of functions, we choose a function that lets us infer `monotonicity of rules'. (Wediscuss the testing for monotonicity later.) If there are multiple functions that enable us to infer monotonicity,we make an arbitrary choice between them. The speci�c choice made can certainly a�ect the e�ciency of thespace optimization method. How precisely to make such a choice is outside the scope of this paper.We now present the de�nition we use for the size of a term; other de�nitions are possible, and our choiceis merely a convenient one. To de�ne the size of a term, we divide terms into three types: those that containintegers, those that contain structured terms, and others. The `size' of an argument is de�ned as follows:1. The size of an integer is itself.2. The size of a structured term f(t1; t2; : : : ; tp) is de�ned bysize(f(t1 ; t2; : : : ; tp)) = 1 + max(size(t1); size(t2); : : : ; size(tp))3. The size of a term that is neither an integer nor a structured term is 1.For example, suppose that the function � chosen for a predicate p(X;Y; Z) is size(X) + size(Y ). If we knowthat the �rst two arguments are integers, the function � merely becomes X + Y . If we do not know the types ofarguments a priori, the computation may proceed as shown below:�(p(f(g(c); a); 4; b)) = size(f(g(c); a)) + 4= 1 + max(size(g(c)); size(a)) + 4= 1 + max(1 + size(c); 1) + 4= 3 + 4= 7Applying � to a structured fact (such as a fact with lists) could take time proportional to the size of thearguments of the fact. However, it may be possible to compute the � value for a fact incrementally, by carryingalong additional information during derivations. For instance, consider the following program that appends twolists: append(nil; L; L):append([H j T ]; L; [H j L1]) : � append(T; L; L1):If we use a function � that sums the sizes of the �rst two arguments of append, it is possible to compute the� value for a newly derived append fact incrementally by using the � value of the append fact in the body of therecursive rule. We do not discuss this issue further in the paper.20



The cost of complete enumeration of the � functions in the above mentioned subclass, for a single predicate,is exponential in the number of arguments of the predicate; with multiple predicates we have to multiply togetherthe number of choices for each predicate in order to enumerate all possible choices. However, the number ofarguments of a predicate is typically small and since we analyze program units (Section 8.2) with only a fewpredicates, we expect that the cost will be reasonably small in practice. A heuristic that we have found usefulis the following. We analyze the `mode' (or, equivalently in the context of evaluation using Magic Sets, theadornment) in which a predicate is used, and choose as a � function the sum of the sizes of all the inputarguments (equivalently, `bound' arguments).6.2 Local SaturationConsider a Basic Semi-Naive evaluation, and any point in that evaluation. We know that some facts are `old'and the other facts are `new', and each new derivation step must use at least one new fact. We may be able toinfer that any fact that is derived after this point in the evaluation will have a � value greater than any `new'fact that is available, and thereby deduce which facts will not be derived again, and which facts will not be usedagain.This intuition behind our use of monotonicity information is not limited to Basic Semi-Naive evaluation. Wewould like to use monotonicity information, independent of the speci�c evaluation method used. Hence, we usethe following de�nition of `locally saturated' facts, which corresponds to the `old' facts in BSN; the idea is thateach new derivation step must use at least one fact that is not in the set of `locally saturated' facts.De�nition 6.1 (Locally Saturated) A set of facts S for derived body predicate occurrences of a rule Rde�ning p is said to be locally saturated with respect to R at a point e1 in the evaluation if every derivation stepthat can be made using: (1) the rule R, (2) all facts for the base predicate occurrences in R, and (3) the givenset of facts S for the derived predicate occurrences in R, has been made at or before e1.A set of facts is said to be locally saturated with respect to a set of rules at a point in the evaluation if it islocally saturated with respect to each of the rules at that point in the evaluation. 2Note that there can be more than one set of locally saturated facts at a state in an evaluation. Since allderivations that could be made using a set of locally saturated facts have been made at a point in the evaluation,any new derivation after that point in the evaluation requires at least one fact (for a derived predicate occurrence)that is not in the set of locally saturated facts.In the case of a Basic Semi-Naive evaluation of an SCC (where the set of predicates derived with respect top is just the set of predicates de�ned in the SCC of p), at any point in the (n + 1)'th iteration, the set of factsderived in or before the (n � 1)'th iteration is a set of locally saturated facts for p. If a di�erent evaluationtechnique is used, the sets of locally saturated facts may change, but each new derivation would still have to useat least one fact that is not in the set of locally saturated facts. Thus, we achieve a certain degree of independencefrom speci�c evaluation techniques in the following results.21



6.3 Monotonicity and Condition DDe�nition 6.2 (Monotonicity) A ruleR : p(t): � : : : ; pi(ti); : : : :is said to be monotonically increasing with respect to predicate occurrence pi(ti) in its body if, for every instanceR[�] of the rule where the body is satis�ed in the meaning of the program, �(p(t)[�]) � �(pi(ti)[�]).14 A ruleis said to be monotonically increasing if it is monotonically increasing with respect to all body occurrences ofpredicates that are derived with respect to the rule. 2The following is a su�cient algorithmic test for monotonicity. Consider a rule R:R : p(t) : � p1(t1); : : : ; pn(tn):The rule is guaranteed to be monotonically increasing if for each derived literal pi(ti), the arithmetic expression�(p(t)) � �(pi(ti)) is always non-negative. This can be tested using symbolic manipulation on each expression�(p(t)) � �(pi(ti)), along with the arithmetic literals in the rule body.Condition Monotonicity D : Consider a program P . Let p be a predicate de�ned in P , and let the set Sinclude p and the set of all predicates in P that are derived with respect to p. Let R be the set of all therules of P de�ning the predicates in S. The predicate p satis�es Condition Monotonicity D i� each rule inR is monotonically increasing. 2De�nition 6.3 (Min-head-gap bounding function) For a predicate p satisfying ConditionMonotonicity D,a function 
 mapping ground atoms to integers is said to be a min-head-gap bounding function for p if for eachinstance R0 of any rule R de�ning p, if p(a) is the head fact and q(b) is the fact for any derived literal in thebody of R0, (�(p(a))� �(q(b))) � 
(q(b)). 2Note that the constant function 
 = 0 is always a min-head-gap bounding function for such predicates |however, one might be able to determine a `better' function for the purpose of the subsequent theorem.We can algorithmically determine a min-head-gap bounding function as follows. Suppose for each rule Rde�ning p and for each derived predicate pi(ti) in the body of R, each expression �(p(t)) � �(pi(ti)) not onlyis non-negative but also (after simpli�cation) has as arguments only variables from ti. Then we can derive amin-head-gap bounding function for p by symbolic arithmetic manipulations on these functions. For instance, ifwe have the rulefac(X;X �N ) : � X > 0; Y = X � 1; fac(Y;N ):and a � function that maps fac(X;Y ) to X, simpli�cation of �(X)��(Y ) using Y = X�1 gives us the constantfunction 1 as a min-head-gap bounding function for fac.14It would probably be better to use the term `in
ationary' rather than `monotonicity'. However, we use `monotonicity' forconsistency with earlier work in this area [NR94]. 22



Theorem 6.1 Consider a locally semi-naive S-evaluation where predicate p satis�es Condition Monotonicity D,the evaluation is semi-naive with respect to p, and 
 is a min-head-gap bounding function for p. Let S and R beas in Condition Monotonicity D. In this evaluation, let F be the set of all the facts that have been computed forpredicates de�ned in S, and F 0 � F be a set of facts such that F 0 is locally saturated with respect to the set ofrules R. Letm = minf�(f) + 
(f) j f 2 F n F 0gIf a fact p(a) is such that �(p(a)) < m, then p(a) will not be derived again.Proof: The set of facts F 0 is locally saturated with respect to the set of rules R. Hence, for any predicateq 2 S (i.e., p, or a predicate derived with respect to p) any derivation of a q fact using some rule R 2 Rmust use at least one fact that is not in F 0. Since the rules in R are monotonic, for any new fact q(b),�(q(b)) � minf�(f) j f 2 F � F 0g. Since 
 is a min-head-gap bounding function for p, no p fact with a � valueless than minf�(f) + 
(f) j f 2 F � F 0g will be derived. 2An analogous theorem holds with monotonically decreasing rules in place of monotonically increasing rulesin Condition Monotonicity D. The theorem gives us a way of ensuring Condition D for facts when the conditionson monotonicity are satis�ed.In an iteration of Basic Semi-Naive evaluation of an SCC, the set of facts derived two or more iterations priorto the current iteration constitutes F 0 (as mentioned earlier) and the set of facts derived either in the previousor in the current iteration constitutes F � F 0.Note that although the set of derived predicates as well as the set of locally saturated facts depends on theactual evaluation used, the theorem holds independent of the speci�c evaluation.Example 6.1 Consider the following program that computes a list of factorials of even integers, and an iterativeevaluation of all the rules in the program.R1 : fac list(0; [1]):R2 : fac list(N; [V j L]) : � N > 0; N < n; fac list(N � 1; L); fac(2 �N; V ):R3 : fac(0; 1):R4 : fac(N;N � V ) : � N > 0; N < 2 � n; fac(N � 1; V ):Let the � function map fac list(N; ) to N , and fac(N; ) also to N . We deduce that rules R3 and R4 aremonotonically increasing. In rule R2, fac can be treated as `base'. Hence we deduce that R1 and R2 aremonotonically increasing. Thus Condition Monotonicity D is satis�ed by predicates fac as well as fac list. Wealso deduce min-head-gap bounding functions: the constant function 1 for fac as well as for fac list.From Theorem 6.1 we deduce that once a fac fact with index n is derived, no fac fact with index less thann+ 1 will ever be derived again. We deduce similar results for fac list. 26.4 Monotonicity and Condition UIn this section we discuss how to use monotonicity of rules to ensure Condition U. We make use of the de�nitionsand results in Section 6.3. Let � be a function as before.23



De�nition 6.4 (Body gap) Let R be a rule and let p0 and q0 be predicate occurrences in its body. Let R0be an instance of R with facts p(a1) and q(a2) used in the occurrences p0 and q0 respectively. We then de�nebody gap(R0; p0; q0) = �(p(a1)) � �(q(a2)). If R has at least one derived predicate occurrence in its body, wede�ne:body gap(R0; q0) = maxfbody gap(R0; p0; q0) j p0 is a derived predicate occurrence in RgIf R has no derived predicate occurrence in its body, body gap(R0; q0) :=1. 2Note that if there is only one derived predicate occurrence q0 in the body of a rule R, and R0 is any instance ofR, then body gap(R0; q0) = 0.Monotonicity can be used to infer that a fact can no longer be used in a body predicate occurrence q0 basedon Condition Monotonicity U and Theorem 6.2 below.Condition Monotonicity U : Consider a program P . Let R be a rule with a body predicate occurrence q0having predicate q. Let p01; : : : ; p0n be the derived predicate occurrences in the body of the rule R. Let 
 be afunction that maps q facts to integers. The predicate occurrence q0 in R satis�es Condition Monotonicity Uwith function 
 i�, for each instance R0 (with q(a) used in the occurrence q0):body gap(R0; q0) � 
(q(a)): 2Intuitively the theorem states that if two facts are used in a rule to perform a derivation step, the indices ofthe facts are fairly `close' to each other. The function 
 provides an upper bound on the gap.Suppose for each derived predicate occurrence p0i in the body of rule R, �(p0i) � �(q0) (after simpli�cation)involves only the variables in the literal q0. Then, by a process similar to the derivation of min-head-gap boundingfunctions in Section 6.3, we can derive a function 
 as in Condition Monotonicity U.Theorem 6.2 Consider a point in a locally semi-naive S-evaluation of a program P . Let R be a rule in P , q0be a body predicate occurrence in R and p01; : : : ; p0n be the derived predicate occurrences in the body of the ruleR, such that q0 satis�es Condition Monotonicity U with function 
. Let m be an integer such that no fact forany p0i; 1 � i � n with index (under the function �) less than m will be derived again.15 Suppose that the setof all facts fpi(b) j 1 � i � n and �(pi(b)) < mg is locally saturated with respect to R at the given point in theevaluation.Then, every derivation step that instantiates predicate occurrence q0 to q(a1) must have been made before thegiven point in the evaluation if �(q(a1)) + 
(q(a1)) < m:If the evaluation is semi-naive with respect to the head predicate of R, the fact q(a1) will not be used in thepredicate occurrence q0 after the given point in the evaluation.Proof: Since the set of facts fpi(b) j 1 � i � n and �(pi(b)) < mg is locally saturated with respect to R, and nopi fact with � value less than m will be derived again, any new derivation must use at least one derived fact with15Theorem 6.1 may be used to ensure this. 24



� value of m or more. But by Condition Monotonicity U if a fact q(a1) is used to make a derivation, all derivedfacts used with it are such that their � values are less than or equal to �(q(a1)) + 
(q(a1)). Hence, a fact q(a1)will not be used in the predicate occurrence q0 beyond this point in the evaluation if �(q(a1))+ 
(q(a1)) < m. 2Note that the theorem makes no mention of whether q is derived with respect to the head of the rule or not.An analogous theorem holds when the body gap of the rule with respect to q0 is bounded from below, and nofact for any p0i with index (under �) greater than some m will be derived again.A special case of the function 
 is the constant function k (for some k). The above theorem generalizes theconditions of Sliding Window Tabulation ([NR94]), since only such constant functions could be used for 
 inSliding Window Tabulation. Example 6.2 shows the importance of allowing general functions.Example 6.2 We use the program from Example 6.1 again. Consider Rule R4:R4 : fac(N;N � V ) : � N > 0; N < 2 � n; fac(N � 1; V ):There is only one derived literal in the body of this rule, hence a fac fact can be used at most once in this rule(Condition Bounds U). Another way of looking at this is using monotonicity. A 
 function on fac that boundsbody gap is the constant function 0. Hence if no fac fact with index less than n will be derived henceforth, facfacts with indices less than n will no longer be used in this rule. A similar result holds for uses of fac list factsin rule R2 shown below:R2 : fac list(N; [V j L]) : � N > 0; N < n; fac list(N � 1; L); fac(2 �N; V ):The one predicate occurrence left is the occurrence of fac in rule R2. Now we derive a function 
 on facfacts that satis�es Condition Monotonicity U, using the technique described earlier: 
 maps fac(2 � N; ) toN � 1� 2 �N , and hence fac(M; ) to M=2 �M � 1. Using this we deduce that if no fac list facts with indexless than n will be produced and there are no fac list facts with index less than n that have not been used tomake derivations, then fac facts fac(M; ) such that M + (M=2�M � 1) < n will no longer be used. But fromExample 6.1 we know how to �nd what fac list facts will no longer be produced: if a fact fac list(n; ) has beenproduced in an iteration, no fac list fact with index less than n+ 1 will be produced hence.Thus, in a Basic Semi-Naive evaluation of the program where all program rules are applied in each iteration,one iteration after fac list(n; ) has been produced we know that any fac(m; ) fact with m=2 � 1 < n can nolonger be used in the occurrence of fac in rule R2. 27 SynchronizationA synchronization technique orders derivations in the evaluation of a program so that derivations of facts are`close' to their uses; this helps reduce the `lifetimes' of facts. Intuitively, if each fact computed in an evaluationis stored for only a short while during the evaluation, the total space required for the overall evaluation can bereduced. We begin with an example where synchronizing helps in improving the space utilization of a programevaluation. In the rest of this section, we present three techniques for achieving synchronization.25



Example 7.1 Consider the following program, where n is some constant, and an iterative BSN evaluation ofall the rules in the program.R1 : fac(0; 1):R2 : fac(N;N �X1) : � N > 0; fac(N � 1; X1):R3 : fac1(n; 1):R4 : fac1(N;N �X1) : � N > n; fac1(N � 1; X1):R5 : fac2(n; 1):R6 : fac2(N + 1; Y � Y 1 � Y 2) : � N > n; fac2(N; Y ); fac(N; Y 1); fac1(N; Y 2):Query: ?-fac2(m;X):Let us consider the case when m � n; for m < n, the answer set to the query is empty. If each factin this evaluation is used as soon as it is derived (or in the following iteration as when Basic Semi-Naiveevaluation is used), we would have to store n+ 6 facts at any point in the evaluation (from the n+ 1th iterationonwards, although less in previous iterations) based on satisfaction of Conditions U and D. However, if all usesof a fac1(N; ) fact are delayed till fac(N; ) has been derived, we need store only six facts at a point in theevaluation. Since n can be arbitrarily large, synchronizing the evaluation helps considerably in improving thespace utilization of the program evaluation. 2In order to handle the complexity of choosing a synchronization technique for a given (possibly large) program,we partition the rules of the program into sub-programs which we call units, then decide on the synchronizationtechniques to be used between units. We describe how to partition the rules of a program into units in Section 8.2.The applicability of synchronization techniques depends on semantic properties of this partitioning, and wedescribe these properties when presenting the various synchronization techniques.An example of the partitioning of a program into units is the partitioning de�ned by the SCCs of theprogram; each SCC contains a maximal set of mutually recursive predicates, along with the set of rules de�ningthe predicates.7.1 Delaying First Use of FactsAn integral part of the SlidingWindow Tabulation technique for space optimization [NR94] is the idea of keepingall uses of a derived fact `close' together in the evaluation | this is done by delaying the �rst use of a (derived)fact. Each fact is assigned an integer index by a � function. At each point in the evaluation, there is an active`window' of facts; a fact whose index is not in this window is not available for immediate use in rule applications| it is hidden and can be used only when its index falls in the current window. In this section, we generalizethis idea of [NR94] and see how it helps in synchronization of evaluation.Condition Hiding Facts : A unit satis�es Condition Hiding Facts if:1. All the rules of the unit are monotonically increasing,2. There exists a function 
0 mapping facts to integers such that for each derived body predicate occur-rence p0 of an instance R0 of a rule in the unit, where fact p(b) is used in p0, body gap(R0; p0) � 
0(p(b)).26



3. There is a �nite bound min� such that �(p(b)) � min� for all facts p(b) for each predicate p de�nedin the unit. 2Proposition 7.1 Consider an S-evaluation of a unit that satis�es Condition Hiding Facts. Let mD be anyinteger. Let F be the set of p(b) facts for which �(p(b)) + 
0(p(b)) = mD . Facts q(c) with �(q(c)) � mD must bemade available to rule applications, for facts in F to be completely used. q(c) facts with �(q(c)) > mD cannot beused along with any fact from F in any rule application.Proof: Since for rule instance R0 (with p(b) used in predicate occurrence p0) body gap(R0; p0) � 
0(p(b)), anyderived fact used in R0 must have a � value less than or equal to �(p(b)) + 
0(p(b)). Hence for any fact p in theset F , if a derived fact q is used in an instance of a rule in the unit along with p, then �(q) � mD . Facts withgreater � values cannot be used in a rule application with any fact from F . 27.1.1 Evaluation With Hiding FactsProposition 7.1 provides a basis for the hiding of facts to reduce space utilization. Consider a unit S that satis�esCondition Hiding Facts. The value min� may be determined in one of several ways: it may be determined byprogram analysis (as in Example 7.1); or, if S is an SCC in a magic rewritten program and the magic predicatescorresponding to the predicates in S are in a lower SCC, it may be determined based on an evaluation of theSCC containing the magic predicates.16At a point in the evaluation of S, let mD be the greatest integer such that the set of all program facts with �values < mD is locally saturated with respect to all the rules in the unit. Initially,mD is set to min�. Since theunit S has monotone rules, the value of mD can be determined at later points in the evaluation as discussed inSection 6.3. We modify the evaluation of S by always hiding derived facts with indices greater than mD. (Thehidden facts are part of the hidden component of a program evaluation state.) The value mD could increaseeach time facts are derived; it can be updated, for instance, at the end of each iteration in a Basic Semi-Naiveevaluation of the unit.Extensions of BSN evaluation to handle hiding of facts, and rule ordering are presented in [RSS94]. Thedetails do not concern us in this paper.To see how delaying the �rst use of facts can improve space utilization, consider q(c) facts with �(q(c)) > mD .Any p(d) fact that can be used in a rule application with such a q(c) fact would have �(p(d)) + 
0(p(d)) > mD .Since facts with a � index of mD can still be derived, such a p(d) fact cannot be discarded at this point in theevaluation based on Theorem 6.2 to ensure Condition U. If these q(c) facts are used along with p(d) facts in arule application, new facts can be derived but none of the (p(d) or q(c)) facts used to derive these new facts canbe discarded. By hiding q(c) facts with a � value greater than mD, derivations that use these facts are delayeduntil some of the p(d) facts that can be used along with the q(c) facts can be discarded; this can improve thespace utilization of the program. Note that if the facts with a � index of mD are also hidden, the set of locallysaturated facts would not change, the value of mD would not increase and evaluation would not proceed anyfurther. As seen in Example 7.1, hiding facts in this fashion could greatly reduce the space utilized by a program.16This can be generalized to work with units, instead of SCCs, in a straightforward fashion.27



Our contribution in this section is twofold. First, we isolate the synchronization achieved by hiding facts inan evaluation from other components of space optimization methods. Second, [NR94] had the restriction thatthe body gap be bounded above by a constant. We generalize this to handle the body gap being bounded by anarbitrary function of facts.7.2 Nested-Unit SynchronizationPrograms that have been rewritten using Magic rewriting [BR91] present opportunities for certain kinds ofsynchronization, which we present below. Familiarity with Magic rewriting is important for understanding therest of this section.Consider a magic rewritten program Pmg obtained from a program P .17 Let S be an SCC of Pmg such thatS contains predicates from exactly two SCCs S1 and S2 of P , such that predicates de�ned in S2 are used in S1.Let R denote the rules in S. Let Ri; i = 1; 2, denote the rules in R obtained by the magic rewriting of rules inSi. R1 can be partitioned into two sets of rules: Rext1 containing the rules de�ning predicates of the form m p,where p is de�ned in S2, and Rint1 containing the rest of the rules in R1.The magic facts computed using the rules Rext1 are referred to as external subgoals, in contrast to the magicfacts computed using the magic rules in Rint1 and R2 which are referred to as internal subgoals. The Nested-Unittechnique essentially views the rules in Rext1 as generating subgoals, and solves them by obtaining the �xpointof R2 augmented with these external subgoals. Nested-Unit synchronization should be used only if R2 is safelycomputable [KRS88].Algorithm Nested-Unit Synchronize (R1;R2)Let R1; : : : ; Rn be the rules in Rint1 .Let mRi;1; : : : ;mRi;mi be the (magic) rules in Rext1 derived from rule Ri,in the left-to-right ordering of the literals in Ri from which they are derived.Repeatedly apply the rules in Rint1 , subject to the following restrictions, until a �xpoint is reached.(1) Before applying a rule Rj from Rint1 , do for k = 1 : : :mj(2) Apply mRj;k and then compute a �xpoint of the rules R2.end Nested-Unit SynchronizeProposition 7.2 Consider SCCs S1 and S2 in a program with R1 and R2 de�ned as above. If R1 and R2 areevaluated using Nested-Unit synchronization, each predicate de�ned in R2 is base with respect to every rule inR1.Proof: Since R2 is safely computable, the correctness of the magic sets transformation guarantees that allanswers to subgoals generated using a rule in Rext1 are computed before any rule uses any of the answers to thesubgoals in a rule in R1. The external magic rules corresponding to predicates in S2 are applied in the left-to-right order, which is the sip-order used in the Magic rewriting, and no facts for predicates in S1 are computed17We assume a left-to-right sip order in the Magic rewriting of the program.28



in this phase. An induction on the sip order then shows that the possible set of derivation steps using the ruleapplications in R1 would not change even if all the facts in the meaning of the program for predicates de�nedusing S2 were available. 2Although the above algorithm and proposition assume that S contains only predicates from two SCCs S1 andS2, they can be extended to synchronize evaluation in the case where S contains predicates from multiple SCCsS1; : : : ; Sn of the original program. Multiple sets of rules Ri; 1 � i � n are de�ned, and the synchronizationtechnique ensures that if Sa de�nes a predicate used in Sb; a 6= b, then the evaluation of the rules in Rb willtreat Ra in a nested fashion as above. The algorithm and proposition can also be extended in a straightforwardmanner to the case where S contains rules from multiple SCCs of a magic rewritten program, rather than justa single SCC as was assumed earlier.Several of the techniques for ensuring Conditions D or U used the notion of predicates being base with respectto rules. By using Nested-Unit synchronization we may enable the use of one of those techniques in a place whereit may not otherwise be applicable.Nested-Unit synchronization can be combined with the following straightforward technique for ensuring Con-dition U, which we call Nested-Unit Discarding. While computing the �xpoint of the rules in R2, discard facts,other than the external subgoals and answers that match the external subgoals, based on the restrictions of Dand U to the rules of R2. Discard the external subgoals after computing the �xpoint of the rules in R2. Discardthe answers to an external subgoal after applying the rule in R1 that generated the external subgoal.The above technique may discard a fact before it has been used to make all the derivations that can be madeusing that fact. However, the use of Nested-Unit synchronization ensures that such a fact will be recomputedwhen required, and will be used to make any further required derivations. Since derivations may be repeated,the resulting evaluation is not a semi-naive evaluation; however, it is a locally semi-naive evaluation.7.3 Interleaved-Unit SynchronizationInterleaved-Unit synchronization is a form of synchronization that exploits the SCC structure of the program.The intuition behind the technique is as follows. Consider a predicate p de�ned in an SCC. A p fact must beretained until Conditions U and D are satis�ed by it in this (`producer') SCC; in addition, it must be retaineduntil it has been used completely in all occurrences of p in other (`consumer') SCCs. If the evaluation proceedsSCC-by-SCC, the producer SCC evaluationmust be completed before evaluation of the consumer SCCs can begin,and p facts must therefore be retained at least until the end of the evaluation of the producer SCC. However,it is sometimes possible to use the p fact in all consumer SCCs soon after it is produced, by interleaving theevaluation of SCCs, thereby making it possible to discard the p fact sooner, while retaining the advantages of anSCC-by-SCC semi-naive evaluation.The above intuition can be extended to the case where the producer and the consumers can be units containingrules from multiple SCCs, rather than just one SCC. A unit of a program P is the producer for a predicate p ifit contains all the rules from P that de�ne p. A unit of a program P is a consumer for a predicate p if it is notthe producer of p, and contains at least one body occurrence of p.We present the technique by describing the interleaving of a producer unit (de�ning a single predicate p)29



and one or more consumer units for p. Any unit (other than the producer) that contains occurrences of p mustbe treated as a consumer and the producer and all consumer units must satisfy the following condition for thetechnique to be applicable.18Condition Interleaved-Units :� The producer and each of its consumer units must contain only monotonically increasing rules.� The rules in the producer unit do not depend (directly or indirectly) on any predicates de�ned byrules in any of the consumer units.19� In each consumer unit Sj , for each rule R that contains a body predicate occurrence p0 of p, either(1) if there is an occurrence of a derived predicate in the body of R, then for each occurrence q0 ofany derived predicate q in the body of R, there exists a function 
p0 ;q0 that maps q facts to integerssuch that for each instance R0 of R (where say q(b) is used in the occurrence q0), body gap(R0; p0; q0) �
p0;q0 (q(b)); or (2) there is a bound maxp0 such that for any fact p(b) that can be used in the occurrencep0, �(p(b)) � maxp0 . 2We now describe the Interleaved-Unit synchronization technique, which works on any sub-program thatsatis�es Condition Interleaved-Units. Consider a rule R in a consumer unit Sj . Let p0 and q0 be occurrences inthe body of R of predicates p and q; let p be de�ned in a producer unit (of Sj) and q be derived with respect toR. We de�ne the following indices:m(p0; q0) = maxff�1g [ f�(q(b)) + 
p0;q0(q(b)) j q(b) is an available factggM (p0) = minfm(p0; q0) j q0 is a derived predicate occurrence in the body of Rg= maxp0 if there is no derived predicate occurrence in the body of R (p; Sj) = maxfM (p0) j p0 is an occurrence of p in the body of any rule in Sjgm(p0; q0) is the index of the largest (under the � function) p fact that can possibly be used in p0 with anavailable q fact in q0. M (p0) is the index of the largest p fact that can be used in the occurrence p0 (with theset of currently known facts in Sj). The index of the largest p fact that can be used with the set of currentlyknown facts in Sj is given by  (p; Sj) and this index is available to the unit that de�nes p. Using these indices,Interleaved-Unit synchronization can be expressed as follows:Algorithm Interleaved-Unit Producer (S)(1) repeat(2) Let top = minjf (p; Sj) j Sj uses p and is waiting on Sg:(3) Evaluate S till no facts p(b) such that �(p(b)) � top can be derived./* Tested using monotonicity; any technique may be used to evaluate S. */18Although we consider only a single predicate de�ned in a producer unit and require that all consumers of the predicate satisfyCondition Interleaved-Units, it is possible to extend the condition as well as the synchronization technique to relax these restrictions.19This condition is automatically satis�ed if the units are SCCs of the program.30



(4) Release any units Sj waiting on S such that  (p; Sj) = top:(5) foreverend Interleaved-Unit ProducerAlgorithm Interleaved-Unit Consumer (Sj)(1) Evaluate Sj with the following restriction:(2) Whenever new facts are made available for derived predicates in Sj do(3) Update the indices m;M and  .(4) Wait on producer units of Sj .end Interleaved-Unit ConsumerThe above description of the algorithm uses concurrent threads of execution for generality. It is straight-forward to reformulate it, with a loss of concurrency and some extra checks, as a demand-driven sequentialiteration. In this case, the evaluation of the consumer unit invokes the producer unit, rather than waiting on it;the evaluation of the producer units returns after computing all facts requested by a consumer.Although the discussion so far assumed `monotonically increasing', if `increasing' is uniformly changed to`decreasing', the above results and algorithms hold with simple modi�cations.In the special case when all the consumer units of a given producer unit S0 contain only non-recursive rulesusing EDB predicates and predicates from S0, each of these consumer units is evaluated exactly once in anordering determined by the  values of the consumer units. In such a situation, it is often bene�cial to mergeall the (non-recursive) rules in the consumer units of S0 with the rules in S0. Further, these non-recursive rulesdo not need to satisfy any bound maxp0 (as de�ned in Condition Interleaved-Units). Example 8.1 describes aprogram where this merging is very useful.Theorem 7.3 If units S0; S1; : : : ; Sm are evaluated using Interleaved-Unit synchronization with S0 as the pro-ducer and S1; : : : ; Sm as its consumers, each predicate de�ned in S0 is base with respect to every rule in S1; : : : ; Sm.Proof: Consider a single predicate p and a single consumer unit Sj that uses p. In order to prove the theorem,we need only show that  (p; Sj) is indeed the largest � value of any p fact that can be used in a derivationwith any of the current set of derived facts in Sj . It then follows from the algorithm that any p fact that couldpossibly be used in a derivation step is indeed made available, and hence p is base with respect to every rule inSj.We show that  (p; Sj) works as claimed by starting with m(p0; q0). By the body gap requirement of ConditionInterleaved-Units and the de�nition of m(p0; q0), m(p0; q0) is indeed the index of the largest (under the � function)p fact that can possibly be used in p0 with an available q fact in q0. For a given rule R, if p facts with an indexgreater than some value n cannot be used in predicate occurrence p0 with the available q facts for some predicateoccurrence q0, they cannot be used in a derivation step with the available facts for the derived predicates. Hencein the de�nition of M (p0) we take the minimum over all derived body predicate occurrences q0; M (p0) is thenthe index of the largest p fact that can be used in the occurrence p0 with the set of currently available facts in31



Sj. Since in the de�nition of  (p; Sj) we take the maximum over all predicate occurrences,  (p; Sj) works asclaimed. 2Example 7.2 Consider again the program below from Example 6.1, and an SCC-by-SCC evaluation of theprogram.R1 : fac list(0; [1]):R2 : fac list(N; [V j L]) : � N > 0; N < n; fac list(N � 1; L); fac(2 �N; V ):R3 : fac(0; 1):R4 : fac(N;N � V ) : � N > 0; N < 2 � n; fac(N � 1; V ):This program has two SCCs, the lower one containing the predicate fac and the upper one containing fac list.Let us call the lower SCC which is a producer of fac as S1 and the higher SCC, which is a consumer of fac, asS2. There is only one rule R2 in S2 that uses the predicate fac. This rule has a derived predicate fac list. Weassume that we use Basic Semi-Naive evaluation for the consumer SCC.We derive the function 
 that maps fac list(N�1; ) to 2�N�(N�1), (and hence fac list(N; ) to N+2) tobound body gap(R2; fac(2�N; V ); fac list(N �1; L)). SCCs S1 and S2 satisfy Condition Interleaved-Units withthis function 
 that bounds body-gap. We can then use Interleaved Unit evaluation to evaluate this program.After each Basic Semi-Naive iteration of the consumer SCC (in Procedure Interleaved Unit Consumer) newfacts are produced. Using these facts we �nd the maximum value of �(fac list(N; )) + 
(fac list(N; )). Butthis function simpli�es to 2 �N + 2. Thus if fac list(n; ) has been produced, we need fac facts with indices upto 2 �n+2. We then call Procedure Interleaved Unit Producer(S1). SCC S1 then iterates, producing fac facts.Due to monotonicity of rules in S1, we know that when fac(2 � n + 2; ) has been produced, all fac facts withindices � 2 � n + 2 have been produced. Hence Procedure Interleaved Unit Producer returns, and ProcedureInterleaved Unit Consumer continues with its next iteration.Suppose we use Interleaved-Unit synchronization on this program, along with monotonicity to ensure Condi-tions D and U. The next question is, how much space is used? It is easy to see that in SCC S2, only two fac listfacts are retained at any point in the evaluation; each fac list fact uses O(n) space. As for SCC S1, we storeat most facts with indices from 2 � (n� 1) to 2 �n, which means at most 3 facts are stored. Thus we use a totalof O(n) space using this space optimization technique. If we do not discard any facts during the evaluation,we would use O(n2) space. By discarding facts during the evaluation, we have achieved an order of magnitudeimprovement in the space utilized in evaluating this program. 27.4 Using Inverted RulesIn several cases (such as monotonically increasing units that have been rewritten using the Magic Sets trans-formation), Condition Interleaved-Units is almost satis�ed, except that the two units are monotonic in oppositedirections. By using the notion of inverted rules introduced in [NR94], we can still use Interleaved-Unit evaluationin some cases.Suppose that units S1 and S2 are monotonic in opposite directions, and rules in S2 use predicates de�ned byrules in S1. We can in some cases use the rules in S1 in reverse | feed them the head facts and regenerate the32



body facts. This is done using `inverted' rules created by swapping the head and one of the body literals in arule.The intuition is to evaluate S1 iteratively, discarding facts computed in S1 based on Condition D and therestriction of Condition U to this unit. However, certain facts, i.e., fringe facts, are retained during the evaluationof S1. The `inverted' rules generated from S1 are then evaluated (using the previously computed fringe facts) inan interleaved fashion with the consumer unit S2. In general, the inverted rules may compute more facts thanwere computed earlier by the rules in S1. However, computing a superset of the desired set of derived facts maybe acceptable in some cases, e.g., when the rules in S1 compute magic facts; see [NR94] for a further discussion.We present a generalized notion of inverted rules in [SSRN94], and show how inverted rules could be used toensure Condition U.8 Combining Techniques8.1 Sliding Window TabulationThe Sliding Window Tabulation scheme of [NR94] is an example where the technique of adding inverted rulesto a program is used in conjunction with delaying the �rst use of facts for synchronization and monotonicity ofderivations and uses to ensure D and U. Sliding Window Tabulation works on programs that satisfy the followingcondition:Condition Sliding Window Tabulation :1. The magic program Pmg has exactly two SCCs | the lower SCC S2 only containing the magicpredicates (and rules de�ning them), and the higher SCC S1 only containing the (derived) predicates(and the corresponding rules) of the original program.2. The rules in S1 are monotonic in the opposite direction to the rules in S2.3. The set of rules R2 in S2 can be inverted to get R02 | the set of fringe facts being those magic factsderived using R2 that do not generate any new magic facts, and4. In Pmg, the body gap in each rule with respect to each of the (non-magic and corresponding magic)predicates is bounded by a constant. 2If the rewritten magic program Pmg satis�es these conditions, the evaluation can be understood as follows:Algorithm Sliding Window Tabulation Eval (S1; S2)Let the set of inverted magic rules obtained from the set of rules R2 in S2 be R02.(1) Evaluate the rules R2 using monotonicity to ensure Conditions D and therestriction of U to the uses of magic facts in S2, while discarding facts;however, fringe facts are not discarded. The �rst use of facts is delayedby hiding facts based on the body gap of the (magic) rules in S2.33



(2) R02 and the set of rules in S1 are evaluated using Interleaved-Unit Synchronization.20Monotonicity is used to ensure Conditions D and U and the �rst use of facts isagain delayed by hiding facts. The `lowest' fact de�ned in S1 can be determinedsince R2 is evaluated before S1.end Sliding Window Tabulation EvalSince R02 is the set of inverted rules generated fromR2, any facts discarded in Step (1) of the above algorithmare rederived when required in Step (2).Using our generalized techniques for ensuring Conditions U, D and achieving synchronization based on mono-tonicity, the basic techniques of Sliding Window Tabulation can be extended in many ways beyond the class ofprograms described in [NR94]. One possible extension is based on synchronization of multiple consumer unitswith a single producer; another extension permits the body gap of the rules to be bounded by some function ofthe facts, not just a constant.8.2 A Framework for Combining TechniquesRecall that every space optimization method has three components | ensuring Condition U for facts before theyare discarded, ensuring Condition D for facts before they are discarded, and synchronization techniques to ensurethat as new facts get computed, others become eligible for discarding. We now discuss how these techniques (forsynchronizing evaluation and for ensuring Conditions D and U for parts of a complex program) can be combinedto obtain a space optimization method for the full program, and present a heuristic algorithm for this purpose.The importance of our algorithm is twofold. First, it carefully incorporates the interactions between di�erentspace optimization methods in a modular fashion. There are several distinct ways to improve space utilization,but not all of them can be used on a given program in a consistent manner; the algorithm ensures that aconsistent set of techniques is chosen. Second, the algorithm uses heuristics to prune the combinatorial explosionthat would result in naively considering arbitrary combinations of methods.8.2.1 Orthogonality of TechniquesThe �rst point to note is that the choice of synchronization techniques a�ects the choice of the techniques forensuring Conditions U and D | some techniques for ensuring U and D may be applicable only with certain syn-chronization techniques. For instance, Nested-Unit synchronization sets up subgoals when some facts are neededin a rule application; when the answers are computed (in a nested fashion) and used in the rule application,they automatically satisfy Condition U with respect to this predicate occurrence. This technique for ensuringCondition U, however, may not be applicable with other synchronization techniques. Further, since synchroniza-tion techniques determine which predicates can be treated as base (with respect to a rule or predicate) in an20Actually, we need to extend Interleaved Evaluation a little to handle the full generality of Sliding Window Tabulation. SlidingWindow Tabulation can handle some exit rules for which no boundmaxp0 (de�ned in Condition Interleaved-Units) exists. It treatsthese rules as though they were derived rules, andmakes only somemagic facts available to them at a time. Although Interleaved-Unitevaluation can be extended to handle such cases, we omit the tedious details of the extension.34



evaluation, they could a�ect the applicability of techniques (to ensure U and D) that depend on which predicatesare base and which derived. This suggests that techniques for ensuring U and D for a sub-program be chosenafter choosing a synchronization technique (for that sub-program).The second point to note is that, given a synchronization strategy for a sub-program, the choice of a tech-nique for ensuring U does not a�ect the correctness of a technique chosen for ensuring D, and vice versa. Theapplicability of techniques to ensure U for sub-program facts may depend on ensuring D for (possibly other)sub-program facts; however, it does not depend on which techniques are used for this purpose.The third point to note is that more than one technique may be applicable for ensuring D or U for a singleliteral (or rule), and a choice has to be made. The choice for one literal may a�ect the e�ciency of the choice foranother literal in that some of the overhead costs may potentially be shared by some combination of techniquesbut not by others.In the process of obtaining a synchronization technique for an entire program, many choices have to be made,such as what synchronization techniques to use and what techniques to use for ensuring U or D for each literaland each rule. We do not address the issue of how to make an optimal choice in this paper, and leave it as animportant open problem. However, in Section 8.2.2 below we describe a heuristic for choosing synchronizationtechniques as well as techniques to ensure Conditions D and U, to obtain a space optimization method for thefull program.8.2.2 A Heuristic for Combining TechniquesIn the following discussion we assume that we are given a program-query pair hP;Qi. We expect Magic rewriting(or some variant thereof) to be used quite extensively in query optimization, and hence we describe how toobtain a space optimization method for the Magic rewritten form Pmg of program P rather than for P itself.We also assume that no rewriting is done on the program subsequent to Magic rewriting (although rewritingssuch as existential query optimization [RBK88] may be done prior to Magic rewriting). This assumption helps inpresenting the algorithm concisely, but is not essential for the use of space optimization methods on the program.We divide the program into units (i.e., sub-programs), then determine the synchronization techniques to beused between units, and �nally for each unit we choose the techniques to ensure U and D.In order to describe the synchronization techniques to be used between units, we de�ne a unit graph asfollows: the units Ui form the nodes of the graph, and the edges are directed and are given labels from thefollowing set: Sequential; Nested; Interleaved.21 The edge labels specify how the program must be evaluated.If there is a Sequential edge from unit U1 to unit U2, then unit U1 must be evaluated before the evaluation ofunit U2 is begun. The meaning of the other edges is de�ned similarly. This graph is required to be acyclic.We describe below a heuristic order in which to make the various choices for synchronization between unitsand techniques to ensure Conditions U and D for each unit. We then describe an algorithm that synchronizesthe evaluation of a program based on the unit graph chosen. In the next section we present examples of the useof the heuristics.21In [SSRN94], we also consider edges labeled Inverted. 35



Bottom-up evaluation of logic programs is typically performed using SCC-by-SCC BSN evaluation. Ourheuristic for obtaining a space optimization method starts by initializing the units to be the SCCs of the programPmg, with Sequential edges between units. The evaluation of this unit graph corresponds to an SCC-by-SCCBSN evaluation of the program.Initialize : Start with the SCCs S1; : : : ; Sm of Pmg as the initial units U1; : : : ; Um. Create a directed, labelededge hUi; Uj; Sequentiali, if a predicate de�ned in Ui is used in a rule in Uj .Create Nested Edges : If a unit Ui (of Pmg) contains predicates from multiple SCCs of P , split Ui into unitsUi1; : : : ; Uini as described in Section 7.2. Each unit Uij is nested within unit Ui. For each Uij, if a predicatede�ned in Uij is used in Uik; j 6= k, create a directed, labeled edge hUij ; Uik; Nestedi.Create Interleaved Edges : Consider a unit U such that all edges from U are labeled Sequential. If ConditionInterleaved-Units is satis�ed by U (as a producer unit) and all its consumers Ui; 1 � i � n, re-label theedges from U to Ui as Interleaved. If all consumers of unit U have only non-recursive rules, which useonly EDB predicates and predicates de�ned in U , merge the consumer units into U , and collapse the nodesin the unit graph corresponding to the consumer units into the node corresponding to U . (Also change theedges in the unit graph to re
ect this collapsing of nodes.)Create Nested Sub-units : The nested units created in the above steps are now reanalyzed by recursively applyingthe above steps independently to each nested unit treated as a program by itself.Decide Hiding Facts : Analyze each unit (and sub-unit) Ui for the applicability of delaying the �rst use of factsduring an evaluation of Ui, based on Condition Hiding Facts.Analyze UD Applicability : Check the applicability of all the techniques for ensuring U for each body predicateoccurrence and for ensuring D for each rule in the resultant program.Choose UD Techniques : Examine the set of applicable techniques for ensuring Conditions U and D and makesuitable (heuristic) choices based on their relative `e�ciency' and the overheads incurred.If a unit U has only Nested edges out of it, the rules in U use only EDB predicates and predicates de�nedin U , and no non-trivial technique for ensuring Condition D is applicable to predicates de�ned in U , useNested-Unit Discarding.22Evaluate Program : We describe the evaluation of the program in a recursive fashion, starting from the unit Uqcontaining the rules de�ning the query predicate. Let U be the unit to be evaluated.First consider the case when either U is Uq or the evaluation of U is called from a unit U 0 such that the labelof the edge from U to U 0 is not Interleaved. Recursively evaluate all units Ui such that there is an edgelabeled Sequential or Inverted from Ui to U . Next, if U has sub-units, recursively evaluate each of thesub-units of U that has no edges out of it. Next, if unit U has an edge labeled Interleaved into it, evaluateU using Algorithm Interleaved-Unit Consumer in a demand-driven fashion, else evaluate U iteratively. In22Note that in this case, not ensuring Condition D for this unit does not adversely a�ect ensuring U for facts in other units.36



either of these two cases, if there are units Uj such that the edges from Uj to U are labeled Nested, useAlgorithm Nested-Unit Synchronize to synchronize the evaluation of the Uj 's with the evaluation of U .Next consider the case when U is not Uq and the evaluation of U is called from a unit U 0 such that thelabel of the edge from U to U 0 is Interleaved. In this case, the evaluation of U is as described in the �rstcase except that the evaluation of U proceeds until all facts required by U 0 have been computed, insteadof computing till a �xpoint is reached.We have described the synchronization for the various units in the program. Discarding of facts proceedsbased on ensuring of Conditions U and D as described previously. This results in a space optimizationmethod for the full program.8.3 Obtaining a Space Optimization Method for an Example ProgramThe following program and query is typical of sequence querying in stock market applications (see, e.g., [RRS93]).In this domain, queries often require a scan over the entire dataset computing summary statistics. We demon-strate that a space e�cient evaluation can reduce the space required to evaluate this query from linear in thesize of the database to a constant independent of the size of the database.Example 8.1 (N-Day Averages)We are given a binary relation sequence(D;V ), with the intended meaning that V is the value of the sequenceon day D. We are interested in computing the average for each N day period beginning from a given day (thisis indicated by the single fact in the from(D) relation); each period begins the day after the end of the previousperiod. The following program Pavg solves this problem. It de�nes the relation ndayavg(N;D;A), with theintended meaning that A is the N day average of the sequence beginning on day D.ndayavg(N;D;A) : � t1(N;D;N; V ); A = V=N:t1(N;Day1; 1; V ) : � from(Day1); sequence(Day1; V ):t1(N;D2; 1; V 2) : � t1(N;D;N; V 1); D2 = D +N; sequence(D2; V 2):t1(N;D;M; V ) : � M1 =M � 1;M1 < N;M1 > 0;t1(N;D;M1; V 1); D2 = D+M1; sequence(D2; V 2); V = V 1+V 2:The Magic rewritten form of the above program for the query ?ndayavg(n;D;A) (where n is a constant) isas follows:R1 : m t1(N;N ) : � m ndayavg(N ):R2 : ndayavg(N;D;A) : � m ndayavg(N ); t1(N;D;N; V ); A = V=N:R3 : t1(N;Day1; 1; V ) : � m t1(N; 1); from(Day1); sequence(Day1; V ):R4 : m t1(N;N ) : � m t1(N; 1):R5 : t1(N;D2; 1; V 2) : � t1(N;D;N; V 1); D2 = D + N; sequence(D2; V 2):R6 : m t1(N;M1) : � m t1(N;M );M1 =M � 1;M1 < N;M1 > 0:R7 : t1(N;D;M; V ) : � m t1(N;M );M1 =M � 1;M1 < N;M1 > 0;t1(N;D;M1; V 1); D2 = D+M1; sequence(D2; V 2); V = V 1+V 2:R8 : m ndayavg(n): 37
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Sequential SequentialFigure 1: Unit Structure for PmgavgChoosing Synchronization techniques:The unit structure (and edge labels) obtained using the method outlined in Section 8.2.2 is shown in Figure 1.Each unit in the �gure indicates the predicates and rules it contains. All the edges in the unit graph are labeledSequential. Though Condition Hiding Facts is satis�ed by unit U3, each rule in this unit is linear, and hencedelaying �rst use of facts is not useful.Choice of techniques for ensuring Condition D:The rule in U1 computes a single fact, and the fact is not discarded during the evaluation. Similarly, therules de�ning m t1 do not satisfy monotonicity or duplicate-freedom, and m t1 facts are not discarded duringthe evaluation. The rules in U3 are monotonically increasing, with the function � mapping t1(N;D;M; V ) toD +M , and ndayavg(N;D;A) to N + D; this is the only � function, obtained by summing up the sizes of asubset of the arguments, that ensures monotonicity of the rules in U3. Hence, Condition Monotonicity D can beused to ensure Condition D for facts computed in U3. The min-head-gap bounding function for the predicatendavavg is 0, and for the predicate t1 is 1.Choice of techniques for ensuring Condition U:Facts computed in U1 and U2 are not discarded. The rules de�ning t1 and ndayavg (in U3) are linear, andBounds U applies trivially. The rules are also monotonically increasing, and Condition Monotonicity U can alsobe used to ensure Condition U. Since Bounds U is easier to test, we use it.Evaluation:Given the choice of synchronization techniques and techniques to ensure Conditions U and D, Pmgavg is eval-uated as follows. The evaluation starts with U3 (which contains rules de�ning the query predicate), which �rstrecursively invokes the evaluation of U2; this in turn �rst recursively invokes the evaluation of U1. Now therules in U1 are iteratively evaluated; no facts are discarded. Then the rules in U2 are evaluated; again, no factsare discarded. Finally, the rules in U3 are evaluated. During this evaluation, t1 facts are discarded based onConditions Monotonicity D and Bounds U. It turns out that t1 facts are discarded at the end of the iterationfollowing the iteration in which they are derived; the monotonicity ensures that these facts will not be derivedagain, and linearity of the rules ensures that they won't be used again. Similarly, ndayavg facts are returned tothe user as they are computed, and discarded; monotonicity ensures that these facts will not be derived again.Facts for ndayavg are not used in the program, and hence satisfy Condition U trivially.Note that the space optimization method for this program does not discard facts for all predicates de�ned inthe program, unlike in previous examples. 38



Improvements in Space Complexity:Given a query ?ndayavg(n;D;A), on a sequence database of size s, and a single fact from(1), this evaluationstores a total of n + 4 non-EDB facts (1 fact for m ndayavg, n facts for m t1 of the form m t1(n; i); 1 � i � n,1 fact for ndayavg and 2 facts for t1 computed in successive iterations). Note that the total space utilized instoring the non-EDB facts is independent of the size of the sequence database. If the space optimizationmethodsdescribed above were not used, the total number of non-EDB facts computed would be s+n+ bs=nc+ 1, whichis proportional to the size of the sequence database.Note that Sliding Window Tabulation [NR94] is not applicable in this example. 29 OverheadsThere are three aspects to the overheads involved with these techniques.Compile-time time overheads : Suppose we are given (a) dependency information about all predicates inthe program, (b) duplicate-freedom information, (c) � functions for all predicates in the program, and (d)
 functions for di�erent predicates as necessary. Then the cost of testing various conditions is linear inthe size of the input. We have indicated brie
y how to derive some of the functions, and we expect ouralgorithms to be e�cient in practice.Run-time time overheads : These overheads are minimal for tests based on bounds | in some cases there isno overhead for any of the tests, and in other cases, at most a few simple counts need to be maintained foreach fact, and updated when the fact is used. Tests based on monotonicity are a little more complicated.When a fact is derived we need to compute its � value, and possibly its value under some of the 
 functions.This computation is quite e�cient, in the absence of function symbols. The only important cost here is thecost of secondary indices on the � value so that facts can be discarded when index m (from Theorem 6.1)reaches a certain value.Run-time space overheads : For bounds based techniques, there is no overhead in some cases, and a constantoverhead of one to a few integers per stored fact in other cases. For monotonicity based techniques, wecan choose to either store various function values with each stored fact, or recompute them on demandand thus avoid all space overheads. There is at most a constant space overhead per stored fact, even if wedecide to store the function values. When the number of facts stored is reduced by an order of magnitude,a constant space overhead per stored fact is clearly negligible.10 ConclusionIn this paper we have described how to reduce the space required during bottom-up evaluation of logic programsand recursively de�ned views on databases by discarding facts. We showed that any space optimization methodthat discards facts during the evaluation has three basic components: (1) ensuring that all derivations are made,(2) ensuring that derivations are not repeated, and (3) synchronizing the derivation and use of facts. We presented39
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