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AbstratDedutive databases extend the power of traditional database query languages suh as SQL by allowingreursive de�nitions of prediates. Bottom-up query evaluation is an important query evaluation mehanismfor dedutive databases and logi programs. In reent years, dedutive databases have been extended byallowing fats to ontain omplex terms that an possibly inlude variables, and by allowing the use ofaggregate operations on sets of answers. This thesis addresses optimization issues related to these extensions.In the �rst part of the thesis we ompare bottom-up and Prolog query evaluation. We show that usingexisting tehniques, bottom-up evaluation performs no more \ations" than (a model of) Prolog for a re-strited lass of programs, but this does not hold for all programs. We develop rewrite-based optimizationtehniques that help us extend the above results to all logi programs. We then develop novel tehniquesfor evaluating these rewritten programs. We ompare bottom-up query evaluation (using our rewrite op-timizations along with our evaluation optimization) with Prolog query evaluation, and show the following.Suppose we are given a program; if (our model of) Prolog evaluation of a query takes time t on a database,bottom-up query evaluation on the database, without subsumption heking, takes time O(t � log log t). Fora restrited lass of programs, bottom-up query evaluation on the database, with subsumption heking,takes time at worst O(t). (In both ases, the time taken by bottom-up evaluation also depends on the sizeof the program, whih we assume to be small). On the other hand, for many programs, Prolog is arbitrarilyslower than bottom-up evaluation. Our optimization tehniques are of importane in evaluating programsthat generate fats ontaining variables.In the seond part of the thesis, we develop optimizations related to the use of aggregate operationssuh as min or max. We show how to view several suh operations as \seletions", and how to propagatethese seletions into programs. We demonstrate the power and utility of the optimization tehniques, usingprograms for problems suh as omputing shortest paths and ritial paths.
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Chapter 1IntrodutionDedutive databases extend the power of traditional databases by allowing derived relations (views) to bede�ned reursively using logi programs. In the area of query evaluation for logi programs, the de fatostandard is Prolog, whih is a top-down evaluation strategy. Bottom-up query evaluation has advantagesover Prolog with respet to ompleteness1 and IO osts [BR86, Ull89b℄. (In our model, bottom-up queryevaluation onsists of Magi rewriting of the program and query [BMSU86, BR87b, Ram88℄ (see Setion 2.2.1)followed by �xpoint evaluation of the rewritten program [BR87a, Ban85℄ (see Setion 2.2.3).)In reent years, dedutive databases have been extended by allowing fats to ontain omplex terms thatan possibly inlude variables, and by allowing the use of aggregate operations on sets of answers. Thisthesis addresses optimization issues related to these extensions.This thesis has two main parts. In the �rst part, we onsider the question of time-omplexity of bottom-upevaluation vs. Prolog evaluation for logi programs that an generate omplex terms that may ontain vari-ables. Motivated by this omparison, we develop several rewrite-based optimization tehniques for bottom-upevaluation. We summarize the ontributions of this part of the thesis in Setion 1.2. In the seond part of thethesis, we present optimization tehniques for an extension of logi programs that allows the use of aggregateoperations on sets of fats. We summarize the ontributions of this part of the thesis in Setion 1.3.1.1 Memoing vs. Non-Memoing Query Evaluation TehniquesA memoing evaluation tehnique for de�nite lause programs is one that stores subgoals and answers thatare generated during the evaluation. Bottom-up query evaluation is an example of a memoing evaluationtehnique. The term top-down evaluation is used for evaluation tehniques based on SLD resolution andits variants (e.g. SLDNF, SLD-AL, OLDT, et. | see, e.g., [Llo87, War92℄).2 There are a number ofmemoing top-down evaluation tehniques suh as the Query-Subquery (QSQ) approah and its extensions1Completeness of evaluation implies that given any answer to the query, there is a �nite point of time at whih evaluationgenerates the answer; there may be an in�nite number of answers, and evaluation may not terminate. Bottom-up evaluation isomplete for (�nite) de�nite lause programs with a �nite database.2This de�nition is not very preise. Bottom-up evaluation using Magi rewriting an be viewed as a ompiled form of OLDTresolution, although there are some di�erenes. However, the terms bottom-up and top-down have been used historially torefer to these two ategories of evaluation tehniques. 1



[Vie86, Vie88℄, and Extension Tables [Die87℄. SLD-AL resolution, and OLDT resolution are theoretialmodels of top-down evaluation tehniques that perform memoing of fats.The de fato standard for evaluating queries on logi programs is Prolog, and Prolog does not performmemoing as part of the built-in evaluation mehanism. (However, ad ho use of memoing is ommon inprograms written in Prolog.)Natural questions that arise are (1) \how do memoing evaluation tehniques ompare with non-memoingevaluation tehniques?", and (2) \how do bottom-up evaluation tehniques ompare with top-down evalua-tion tehniques?", To make omparison (1) preise, we have to talk of a spei� memoing evaluation tehniqueand a spei� non-memoing evaluation tehnique. To make (2) preise, we have to talk of a spei� top-downevaluation tehnique, and a spei� model for bottom-up evaluation.Initial omparisons of bottom-up evaluation and memoing top-down evaluation tehniques were basedon the number of distint fats derived by the di�erent tehniques. Thus, Ramakrishnan [Ram88, Ram90℄presents a lass of evaluations and shows that within this lass bottom-up �xpoint evaluation of a programrewritten using Magi Templates omputes an optimal number of fats. Seki [Sek89℄ presents a diretomparison between the set of fats omputed using Alexander Templates rewriting, and using SLD-ALresolution. Bry [Bry90℄ shows that several top-down and bottom-up evaluation tehniques an be viewedas speializations of a tehnique alled the Bakward Fixpoint Proedure; all these tehniques essentiallyompute the same set of fats and generate the same subgoals. These results ignore the number of timesfats are generated, ignore the atual time ost of evaluation, and ignore optimizations suh as tail-reursionoptimization (Setion 2.3) that are routinely performed by Prolog systems.There is a onsiderable amount of similarity between memoing top-down evaluation tehniques andbottom-up evaluation; we do not explore the di�erenes in this thesis. We onentrate instead on thedi�erenes between memoing and non-memoing evaluation tehniques. We use bottom-up evaluation as theanonial memoing evaluation tehnique in this thesis. We also use Prolog as the anonial non-memoingevaluation tehnique.Bottom-up query evaluation using Magi rewriting (as also several of the memoing top-down evaluationtehniques mentioned above) has three signi�ant advantages over non-memoing tehniques suh as Prolog:(1) Bottom-up evaluation using Magi Templates rewriting is omplete for de�nite lause programs, andthe delarative least Herbrand model semantis is always enumerated for de�nite lause programs. (2)Redundant derivations are avoided through memoing, leading to signi�ant improvements in time omplexityfor programs in whih goals or fats an be derived in many ways. (3) As a onsequene of (1), no operationalguarantees need be made, thereby making possible a number of semanti optimizations. The reader is referredto [RSS92℄ for a brief survey of several suh semanti optimization tehniques.On the other hand, some operations may be heaper if fats are not memoed. Therefore, it is importantto perform a omparison of bottom-up and non-memoing top-down evaluation tehniques in terms of theost of evaluation.Ullman ([Ull89a, Ull89b℄) has ompared bottom-up evaluation with top-down evaluation for the lass ofrange-restrited Datalog programs (programs that generate only ground fats (i.e., fats that do not ontainvariables) and do not use funtion symbols). His results show that bottom-up evaluation using Magi Setsalong with reti�ation (MSR) rewriting (BU-MSR evaluation for short) has time omplexity (i.e., ignoring2



onstant osts) less than or equal to Queue-based Rule Goal Tree (QRGT) evaluation (a top-down queryevaluation strategy).There are several limitations to Ullman's result. First, the omparison is only for range-restrited Datalog.Some of the assumptions made in the omparison do not hold if non-ground fats (i.e., fats that ontainvariables) are generated. Seond, Ullman's omparison ignores optimizations that are routinely performedon Prolog programs suh as tail-reursion optimization (Setion 2.3). Third, the omparison is with respetto a partiular top-down evaluation tehnique, and does not extend to Prolog, whih is the de fato standardfor evaluating logi programs. Fourth, the omparisons assume that all answers are required, and do notprovide insight for the ase that only one answer is required (although there is no hange in the worst aseomparison).In this thesis, we address the �rst three problems above. We ompare bottom-up evaluation with Prologevaluation, in terms of time omplexity of query evaluation, for the lass of all de�nite lause programs(whih an possibly generate non-ground fats).The fourth problem, namely the ase that only one answer is required, is harder. In partiular, thedepth-�rst searh strategy used by Prolog has advantages over the breadth-�rst searh strategy used bybottom-up evaluation with Magi rewriting in some ontexts where not all answers to a query are desired.There have been some attempts to provide the bene�ts of depth-�rst searh in the ontext of bottom-upevaluation; we mention these, and disuss open problems in Chapter 7.1.2 Bottom-Up vs. PrologAn important question in the area of logi programming and dedutive databases is \How does bottom-upquery evaluation ompare with Prolog query evaluation in terms of time omplexity?".There are programs for whih bottom-up query evaluation is onsiderably faster than Prolog. As anexample, onsider the path program with a query, shown below. We assume we are given a �nite set of fatsfor edge, although we do not show them below. On this program Prolog loops for ever if the edge relationhas a yle, whereas bottom-up evaluation terminates, generating all answers.path(X;Y ) : � edge(X;Y ):path(X;Y ) : � edge(X;Z); path(Z; Y ):Query: ?-path(X;Y ):However, there are programs for whih the time omplexity of Prolog evaluation is onsiderably less thanthat of bottom-up evaluation using urrent tehniques. In the �rst part of the thesis, we disuss the reasonsfor the ineÆieny, and present optimization tehniques that help us show that bottom-up evaluation anbe made almost as fast as Prolog evaluation, in the sense of time omplexity, over all programs. (The workin this thesis, like that of Ullman [Ull89a℄, ignores IO osts, and assumes that all answers are generated.)For the purpose of omparison, we use a model of Prolog evaluation that we all Prolog� evaluation; webelieve that this model reets urrent Prolog implementations fairly aurately.33Our model of Prolog evaluation inorporates tail-reursion optimization, but assumes that intelligent baktraking (see,e.g., [CD85℄) is not used. It also assumes that all answers are omputed.3



A lose look shows several problems in making bottom-up evaluation omparable to or better thanProlog for all programs. Magi Templates rewriting [Ram88℄ and Alexander Templates [Sek89℄ are the mainbottom-up evaluation tehniques that deal with general logi programs. (Ullman's MSR rewriting does notdeal with general logi programs, whih an generate fats ontaining omplex terms built from funtionsymbols, onstants and variables.) Let us denote bottom-up query evaluation using Magi Templates (resp.Alexander Templates) as BU-MT evaluation (resp. BU-AT evaluation). There are three problems with boththe above evaluation tehniques when non-ground fats are generated.1. Both tehniques an make onsiderably more inferenes than Prolog, even for Datalog programs, evenignoring the e�et of optimization suh as tail-reursion optimization. The basi problem was notedby Codish, Dams and Yardeni [CDY90℄, but is not widely reognized. Consider the following programR1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:On this program, the only subgoal generated for the prediate r by Prolog evaluation is ?r(X).4Bottom-up evaluation using Magi Templates rewriting generates an answer fat p(a), and uses thiswith literal p(X) to generate a query ?r(a). A fat p(X) is generated later, and p(a) is found to besubsumed, but the query ?r(a) is generated before the subsumption is deteted. (The query ?r(X) isgenerated after the answer p(X) is generated.) Thus bottom-up evaluation an generate subgoals (andgenerate orresponding answers) that Prolog evaluation avoids.We extend this observation in Example 3.1.2, and illustrate how it an lead to BU-MT query evaluationperforming asymptotially worse than Prolog. We formalize the problem through the de�nition of mgu-subgoals and mgu-answers (Setion 3.1); the problem is that Magi Templates rewriting an generateanswers (and subgoals) that are not mgu-answers (resp. mgu-subgoals).Our ontribution in this respet is as follows:� We re�ne Magi Templates rewriting to avoid the problems noted by Codish et al.; we all thisre�nement MGU Magi Templates (MGU MT) rewriting. Bottom-up query evaluation usingMGU MT rewriting generates only mgu-subgoals and mgu-answers. This re�nement is desribedin Setion 3.3.2. Prolog performs tail-reursion optimization, whih we desribe in Setion 2.3. Even for safe Datalogprograms, tail-reursion optimization an redue the number of inferenes made by Prolog evaluationto muh less than the inferenes made by Ullman's BU-MSR evaluation tehnique, or by BU-MTevaluation. Example 2.3.1 illustrates this problem. Ross [Ros91℄ presents a variant of Magi Templatesto inorporate tail-reursion optimization (we all Ross' rewriting MTTR rewriting).MTTR rewriting su�ers from the same problems with subsumed answers (desribed above) as do MagiTemplates and Alexander Templates rewriting. Our ontributions in this ontext are as follows:4To keep the example simple, we do not have any rules de�ning r, and hene the subgoal fails.4



� We use the ideas behind MGU MT rewriting to re�ne Ross' MTTR rewriting; we all this re�ne-ment MGU MTTR rewriting. MGU MTTR rewriting is desribed in Setion 3.4. This re�nementis important sine it enables us to aount for tail-reursion optimization while also dealing withthe problem of using non-mgu-answers in derivations.� We show (in Setion 4.3) that bottom-up evaluation using MGU MTTR rewriting performs nomore \ations" than a small onstant number of times the number of \ations" performed byProlog� evaluation of the query on the program. In many ases bottom-up evaluation performsfar fewer ations than the number of ations performed by Prolog� evaluation.3. The ost per inferene in bottom-up evaluation an be more than for Prolog evaluation. For instane,queries on the well-known prediate append run on Prolog in time linear in the size of the lists in thequery. If the query ontains lists with variables, an unoptimized query evaluation using MT rewriting(or any of its variants mentioned above suh as MGU MT rewriting or MGU MTTR rewriting) takestime quadrati in the size of the lists (although the number of inferenes does not hange). The basireason is that bottom-up evaluation of the Magi rewritten program performs some uni�ations thatProlog evaluation does not perform, when answers are returned for a query. We all suh uni�ationanswer-return uni�ations. Uni�ation is in general linear in the size of the terms to be uni�ed, andan be ostly for large non-ground terms.5 This is disussed in Example 5.1.1.It is important that bottom-up evaluation of programs that generate non-ground fats be done eÆ-iently. Non-ground data-strutures suh as di�erene lists (Example 5.1.1) are important in someappliations, and support some operations (suh as list append) more eÆiently than ground data-strutures in the ontext of Prolog. Many appliations that bene�t from bottom-up evaluation wouldalso bene�t from the use of non-ground data-strutures, if bottom-up evaluation using non-groundfats an be done eÆiently. Example 5.9.2 shows a shortest-path program that keeps trak of theatual path that is omputed, and bene�ts from using a di�erene list representation. Chart parsing ofDe�nite Clause Grammars is another area where non-ground data-strutures and bottom-up evaluationare both useful.Our main ontribution in this area is as follows:� We present (in Chapter 5) a version of bottom-up evaluation that inorporates several optimiza-tions that are appliable to programs that have been rewritten using MGU MTTR (or MGU MT)rewriting. These optimizations are able to redue the ost of answer-return uni�ations performedby bottom-up evaluation to nearly a onstant per uni�ation. These optimizations are importantsine we are also able to show the following important result:Suppose we are given a logi program and a query. If the time taken by Prolog� to evaluate thequery 6 on a given database is t, then evaluating the query using MGU MTTR rewriting and theabove mentioned optimizations, on the given database, takes time O(t � log log t), provided that wedo not hek for subsumption.7 (The size of the program is assumed to be �xed, and is not taken5Uni�ation an be done in onstant time for ground terms in ertain ases, by using a tehnique alled hash-onsing [Got74,SG76℄. This requires that all fats generated by the program be ground, and is not appliable to non-ground terms.6Where evaluating the query is interpreted as generating all answers to the query.7Reall that Ullman's result, while more limited in several respets, did aount for the ost of subsumption heking inbottom-up evaluation. We disuss the issue of subsumption heking later in this setion.5



into aount in the time omplexity measure.) Subsumption-heking has a ost, but may alsohave signi�ant bene�ts if subgoals are repeated; it an be done where desired. The above resultprovides an upper bound on how muh worse bottom-up evaluation an be ompared to Prolog�evaluation. For the other diretion, there are programs where Prolog� evaluation is arbitrarilyworse than bottom-up evaluation with subsumption-heking.Equally importantly, our optimization tehniques allow eÆient evaluation of programs that gen-erate non-ground fats, and must be evaluated with memoing (for instane, the program in Ex-ample 5.9.2).We have also developed an eÆient evaluation tehnique for a restrited lass of programs [SR92b℄.Using this evaluation tehnique, we have shown that for a lass of programs that properly ontains safeDatalog, the time omplexity of optimized bottom-up query evaluation with MTTR rewriting is nevermore than that of Prolog� evaluation, even taking the ost of subsumption heking into aount.8This result extends those of Ullman [Ull89a℄ sine it handles a larger lass of programs. We disussthese results briey in Setion 5.10.What these results show is that we an optimize bottom-up evaluation so that its time omplexity is atworst marginally greater than that of Prolog� evaluation, and at best muh better.There are a few points that must be kept in mind when interpreting these results. First, the resultsleave open the question of onstants. We expet that for purely in-memory implementations, the onstantosts will favor Prolog for programs that do not perform dupliate omputation, and are not set-oriented.For data-intensive programs as well as programs that repeat omputations (suh as programs for dynamiprogramming problems), bottom-up evaluation is likely to beat Prolog evaluation. However, suh questionsan only be settled by atual optimized implementations. Seond, the results assume that all answers to thequery are required; the ase that only some answers are required is not addressed. (See Chapter 7 for a briefdisussion of this ase). Third, these results do not inorporate spae omplexity. However, independentof the time and spae osts of evaluation, bottom-up evaluation, even without subsumption-heking, isomplete, unlike Prolog | a desirable property in many irumstanes.1.3 Optimizations Related to Aggregate OperationsDatabase query languages suh as SQL provide aggregation operations, that let one ompute aggregatevalues over sets of answers. For example, SQL provides the group-by onstrut that an be used along with avariety of aggregate operations. The use of aggregation with reursive queries has been onsidered by severalresearhers (e.g., [BNR+87, MPR90℄).In Chapter 6 we develop an optimization tehnique for bottom-up evaluation, using a notion of relevane offats to some aggregate operations suh asmin andmax. Our notion of relevane an be seen as an extensionof the notion of relevane used in optimizations suh as Magi sets rewriting [BMSU86, BR87b, Ram88℄.One an think of the aggregate operations as providing a form of \seletion" on generated fats; we refer tosuh seletions as \aggregate seletions".8As before, we assume that all answers are generated by Prolog� evaluation.6



The optimization tehnique onsists of two parts | a rewriting tehnique that \pushes" aggregate se-letions into rules in the program, and an evaluation tehnique that makes use of aggregate seletions whenevaluating the rewritten program. The ombined tehnique is able to detet many fats as irrelevant, andavoids using them to make derivations. As an example of the power of our tehniques, we onsider a naiveprogram to �nd shortest paths. The program �rst omputes all paths, and then selets shortest paths. Therewriting tehnique dedues that for any pair of nodes, any path between them that is not shortest is irrele-vant for omputing shortest paths. Thus the \optimality priniple" is dedued automatially. The evaluationtehnique when applied to this rewritten program is essentially an extension of Dijkstra's algorithm.The evaluation tehniques developed in this setion of the thesis are orthogonal to the optimizationtehniques developed in the �rst part of the thesis. We present an example (Example 5.9.2) where bothkinds of optimizations are very useful.1.4 Organization of the ThesisThis thesis is organized as follows. In Chapter 2, we present bakground material. In Chapters 3, 4, and 5we develop our main result omparing optimized bottom-up evaluation and Prolog evaluation. In Chapter 3,we present rewriting re�nements to Magi Templates rewriting and to MTTR rewriting, to avoid problemsdue to subsumed answers. In Chapter 4 we present a model of Prolog� evaluation and a model of bottom-up�xpoint evaluation. We then present our results omparing Prolog� evaluation with a �xpoint evaluation ofthe MGU MTTR rewritten program, at the level of number of inferenes. In Chapter 5 we onsider the ostof derivations, and present an optimized �xpoint evaluation tehnique, whih we all Opt-NG-SN evaluation.In Setion 5.7 we present our results omparing the time ost of query evaluation using Prolog� evaluationwith the time ost of Opt-NG-SN evaluation of the MGU MTTR rewritten program. In Chapter 6 wedesribe our rewriting and evaluation tehniques for programs that use aggregate operations.
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Chapter 2Bakground Material
2.1 Notation and Preliminary De�nitionsThe language used in this thesis is that of Horn logi (see, e.g., [Llo87℄). In this setion we present somebasi de�nitions for the onveniene of the reader.2.1.1 First Order LanguagesA �rst-order language has a ountably in�nite set of variables and ountable sets of funtion and prediatesymbols, these sets being mutually disjoint. It is assumed, without loss of generality, that with eah funtionsymbol1 f and eah prediate symbol p, is assoiated a unique natural number n, referred to as the arity ofthe symbol; f and p are then said to be n-ary symbols. A 0-ary funtion symbol is referred to as a onstant.A term in a �rst order language is a variable, a onstant, or a ompound term f(t1; : : : ; tn) where f is ann-ary funtion symbol and the ti are terms. A tuple of terms is sometimes denoted simply by the use of anoverbar, e.g., �t. Compound terms are also referred to as strutured terms.If p is a prediate symbol with arity n, and t1; : : : ; tn are terms, then p(t1; : : : ; tn) is an atom, and:p(t1; : : : ; tn) is the negation of an atom. A literal is an atom or the negation of an atom. A positive literalis an atom, and a negative literal is a negation of an atom.A simple expression is either a term or an atom. An expression is either a simple expression, a literal,or a disjuntion of literals. An expression is said to be ground if it ontains no variables, and non-groundotherwise. A substitution � is a �nite set of the form fv1=t1; : : : ; vn=tng, where eah vi is a variable, eah tiis a term distint from vi, and the variables v1; : : : ; vn are distint. Eah element vi=ti is alled a binding forvi. � is alled a ground substitution if all the ti are ground. Substitutions are denoted by lower ase Greekletters �; �; �, et.Let � = fv1=t1; : : : ; vn=tng be a substitution, and E an expression. Then E[�℄, the instane of E by �, isthe expression obtained from E by simultaneously replaing eah ourrene of the variable vi by the termti (i = 1; : : : ; n). If S = fE1; : : : ; Eng is a �nite set of expressions, and � a substitution, then S[�℄ denotesthe set fE1[�℄; : : : ; En[�℄g. We sometimes omit the [ ℄, and write E[�℄ as E�.1Funtion symbols are also referred to as uninterpreted funtion symbols.8



Let � = fu1=s1; : : : ; um=smg and � = fv1=t1; : : : ; vn=tng be substitutions. Then the omposition �[�℄ of� and � is the substitution obtained from the setfu1=s1[�℄; : : : ; um=sm[�℄; v1=t1; : : : ; vn=tngby deleting any bindings ui=si[�℄ for whih ui = si[�℄ and deleting any binding vj=tj for whih vj 2fu1; : : : ; umg.For example, the omposition of substitutions fx=a; y=f(Z); t=xg and fx=; r=dg is the substitutionfx=a; y=f(Z); t=; r=dg.Let E and F be expressions. We say that E and F are variants if there exist substitutions � and � suhthat E = F [�℄ and F = E[�℄. We also say that E is a variant of F , or F is a variant of E. Let E be anexpression, and V be the set of all variables ourring in E. A renaming substitution for E is a substitutionfx1=y1; : : : ; xn=yng suh that fx1; : : : ; xng � V , the yi are all distint variables, and(V nfx1; : : : ; xng) \ fy1; : : : ; yng = �Expressions E and F are variants i� there is a renaming substitution � for F , suh that E = F [�℄.For example, fx=y; y=x; z=wg, where x; y; z and w are variables, is a renaming substitution for an expres-sion that does not ontain the variable w. But if an expression does ontain w, z and w are mapped to wby this substitution. We annot distinguish between them after applying the substitution, and hene thereannot be an inverse substitution as required in the de�nition of variants.A substitution � is more general than a substitution � if there is a substitution ' suh that � = �['℄.Two simple expressions t1 and t2 are said to be uni�able if there is a substitution � suh that t1[�℄ = t2[�℄.� is said to be a uni�er of t1 and t2. A uni�er � of simple expressions t1 and t2 is said to be a most generaluni�er of t1 and t2 if, for eah uni�er � of t1 and t2, there exists a substitution  suh that � = �[℄. If twosimple expressions have a uni�er, they have a most general uni�er that is unique up to renaming of variables.Given two simple expressions t1 and t2, MGU(t1; t2) denotes the set of most general uni�ers of t1 and t2;all the elements of this set are equivalent up to renaming. We let mgu(t1; t2) denote an arbitrary elementof MGU(t1; t2).For example, given terms f(x; y) and f(a; g(z)), where x; y; z are variables, the substitution fx=a; y=g(b)gis a uni�er, while fx=a; y=g(z)g is a most general uni�er.2.1.2 De�nite Clause ProgramsA lause is a formula of the form8X1; : : : ;8Xs(L1 _ : : : _ Lm)where L1; : : : ; Lm are literals, and X1; : : : ; Xs are all the variables ourring in L1_ : : :_Lm. A Horn lauseis a lause with at most one positive literal. A Horn lause with exatly one positive literal is referred toas a de�nite lause. Following the syntax of Edinburgh Prolog, de�nite lauses (usually referred to as rules)are written asp : �q1; : : : ; qn: 9



where p is the positive literal and :q1; : : : ;:qn are the negative literals in the de�nite lause. Let the variablesin the rule be denoted by X. Then the rule is read delaratively as 8X(q1 ^ q2 ^ : : :^ qn ! p). The positiveliteral in a de�nite lause is its head, and the remaining literals, if any, onstitute its body.2 The notationR : p: �q1; : : : ; qn:denotes a rule with a name R. We use the name to refer to the rule. A fat is a rule with empty body.A prediate de�nition onsists of a set of de�nite lauses, whose heads all have the same prediate symbol.A de�nite lause program is a �nite set of de�nite lauses. A goal is a negative literal, and is usually writtenas ?p(t1; : : : ; tn).3 We also refer to a goal as a subgoal or a query.We use the onvention that names of variables begin with upper ase letters, while names of non-variable(i.e., funtion and prediate) symbols begin with lower ase letters. We use the following speial notationfor lists. The empty list is a onstant symbol [ ℄. A list is either an empty list, or ons(h; t) where h and tare terms. We use the speial notation [hjt℄ to denote ons(h; t). We refer to h as the head of the list andt as the tail of the list. We use the notation [h1; h2; : : : ; hnjt℄ to denote the list [h1j[h2j : : : [hn�1j[hnjt℄℄ : : :℄.Further, [h1; h2; : : : ; hn℄ denotes [h1; h2; : : : ; hnj[ ℄℄.2.1.3 Models of ProgramsA universe is a set of elements. In order to give a semantis for a de�nite lause program, we have to �rsthoose a universe for the program. Given a �rst order language L, the Herbrand universe UL of L is theset of all ground terms in the language. (In ase L has no onstants, we add some onstant, say, a, to formground terms.) The Herbrand base BL for L is the set of all ground atoms in the language.An interpretation I of a de�nite lause program maps eah funtion symbol of arity n in (the languageof) the program to a total funtion of arity n on the universe, and eah prediate symbol of arity n in(the language of) the program to a set of n-tuples from the universe. Thus eah onstant, whih is a 0-aryfuntion symbol, is mapped to an element in the universe. Suh a mapping an be uniquely extended toa mapping from ground terms to elements of the universe. A model M of a de�nite lause program is aninterpretation that is losed under rule impliation, i.e., ifh(t): �b1(t1); b2(t2); : : : ; bn(tn):is a rule in the program, and � is a ground substitution suh that(8i; 1 � i � n;M(ti[�℄) 2M(bi))thenM(t[�℄) 2M(h).A Herbrand interpretation of a de�nite lause program is an interpretation of the program that satis�esthe following properties. Let L be the language of the program.1. The universe of the interpretation is the Herbrand universe UL.2. Constants in L are mapped to themselves in UL.2We assume that no literal is repeated in the body of a de�nite lause.3This de�nition is more restrited than that of Lloyd [Llo87℄, whih onsiders a goal to be a disjuntion of negative literals.In this thesis, we only onsider the ase where all goals have a single literal, for ease of exposition.10



3. If f is an n-ary funtion symbol in L, then the mapping from (UL)n into UL de�ned by(t1; : : : ; tn)! f(t1; : : : ; tn)is assigned to f .When we use a Herbrand interpretation, we do not need to distinguish between a term and its mapping underthe interpretation.4 A Herbrand model is a Herbrand interpretation that is a model. The least Herbrandmodel semantis of a logi program is given by its least Herbrand model; for de�nite lause programs, suha model always exists (see Lloyd [Llo87℄).Sine the Herbrand model semantis of a program is a model, it supports the delarative reading oflauses as \if body is true, then head is true".Example 2.1.1 Consider the following program, whose language has a onstant a and a 1-ary funtionsymbol f .p(X) : � q(X):q(f(a)):The Herbrand universe of this program is fa; f(a); f(f(a)); f(f(f(a))); : : :g. The least Herbrand model ofthe program isfq(f(a)); p(f(a))gThe following is a Herband model that is not a least Herbrand model:fq(f(a)); q(a); p(f(a)); p(a)g2 An alternative way of de�ning the semantis of a program is by means of a `least �xpoint', de�ned asbelow. (See Lloyd [Llo87℄ for more details.)Let P be a de�nite lause program. The mapping TP : 2BP ! 2BP is de�ned as follows. Let I be aHerbrand interpretation, and let P = fR1; : : : ; Rpg. We de�neTRi(I) = fA 2 BP : A A1; : : : ; An is a ground instane of Ri;and fA1; : : : ; Ang � Igand TP (I) = [pi=1TRi(I)For de�nite lause programs, TP is monotonially inreasing. The least �xpoint semantis of P is de�ned asthe least �xpoint5 of the funtion TP (I). For de�nite lause programs, the least �xpoint always exists, andthe least Herbrand model of P is equivalent to the least �xpoint of TP [vEK76℄.4In a Herbrand interpretation, funtion symbols an be viewed as \reord onstrutors".5That is, the least set that is mapped to itself by the funtion.11



The least �xpoint of TP an be omputed as follows. De�ne T 0P (I) = �, and de�ne T i+1P (I) as TP (T iP (I)),and T!P (I) = [i<!(T iP (I))Then the least �xpoint of TP is equivalent to T!P (I) [Llo87℄. We do not neessarily have to ompute thein�nite set of values T iP (I) for all i. If T j+1P (I) = T jP (I) for some j, then T!P (I) = T jP (I).In this thesis, unless otherwise spei�ed, we assume that the universe for a de�nite lause program is itsHerbrand universe, and the semantis of the program is the least �xpoint semantis. We shall refer to thissemantis as the semantis of the de�nite lause program.2.1.4 Databases and ProgramsA de�nite lause program onsists of a �nite set of de�nite lauses. In the ontext of databases, a largenumber of these lauses are likely to be fats. We follow the onvention in dedutive database literature ofseparating the program P from the database D. The database onsists of a set of fats, while the programontains rules. The motivation is that the rewriting algorithms to be disussed are applied only to theprogram, and not to the database. This is important in the database ontext sine the set of fats an bevery large. However, the distintion is arti�ial, and we may hoose to onsider (a subset of) fats to berules if we wish. In most ases, we refer only to the program; the database is used impliitly.We assume that the prediates de�ned in the database (referred to variously as database prediates, baseprediates or Extensional DB (EDB) prediates) are distint from the prediates de�ned in the program(referred to as derived prediates), whih an be ensured as follows: Rename all prediates in the databasewith new names, and for eah n-ary prediate pi renamed to ri, add a rulepi(X1; : : : ; Xn): �ri(X1; : : : ; Xn):to the program. A base literal is a literal whose prediate is base, and a derived literal is a literal whoseprediate is derived.We use the notation hP;Qi to denote a program P with a query Q; we all hP;Qi a program-query pair.A relation is a �nite set of fats. A relation is said to be ground if all fats in it are ground; otherwisethe relation is said to be non-ground. We assume knowledge of the basi relational operators suh as selet(�), projet (�) and join (./). See [Ull88℄ for de�nitions of these operators.By virtue of having its variables universally quanti�ed, a non-ground fat represents the set of its groundinstanes in the Herbrand base. Given a fat f , let gnd(f) denote the set of ground fats represented by f . Arelation R with non-ground fats represents the relation ontaining the union of the ground fats representedby the fats in R. Given a relation R, let gnd(R) denote the set of ground fats represented by R. Two fatsf1 and f2 are equivalent if gnd(f1) = gnd(f2). Two fats are equivalent i� they are variants of eah other(in other words, they are equal up to renaming). Whenever we say that two fats are equal, unless otherwisespei�ed we mean that they are equivalent.A fat f1 is subsumed by a fat f2 if gnd(f1) � gnd(f2). Given a fat f and a relation R, we say thatf is subsumed by R if gnd(f) � gnd(R).Sine variables in a fat are universally quanti�ed, testing subsumption of a fat by another requiresrenaming of variables to avoid name lashes. A fat f1 subsumes a fat f2 i� there is a variant f10 of f112



and a substitution � suh that f10[�℄ = f2. If a fat f1 subsumes a fat f2, we say that f1 is more generalthan f2, or equivalently, f2 is more spei� than f1.Consider a program. Let R be a rule in the program, � a substitution, and I an interpretation for theprogram. Then R[�℄ is an instantiation of R. R[�℄ is said to be a suessful instantiation in interpretation Iif for eah literal pi(ti) in the body of R, pi(ti)[�℄ is subsumed by I .A de�nite lause program is said to be a Datalog program if it does not use any funtion symbols otherthan onstants, and the database fats do not use any funtion symbols other than onstants. A rule is saidto be range-restrited if every variable that appears in the head also appears in a literal in the body. (For thease of rules with empty body, this is equivalent to there being no variables in the rule.) A program is said tobe range-restrited if all fats in the database are ground, and every rule in the program is range-restrited.62.2 The Bottom-Up ApproahThe bottom-up approah to answering queries onsists of a two-part proess. First, the program-query pairis rewritten in a form so that the bottom-up �xpoint evaluation of the program will be more eÆient; next,the �xpoint of the rewritten program is omputed by bottom-up iteration. Setion 2.2.1 desribes the initialrewriting, while Setion 2.2.3 investigates the omputation of the �xpoint of the rewritten program. Boththese steps an be re�ned further as disussed in later hapters.2.2.1 The Magi Templates Rewriting AlgorithmSuppose we are given a query ?q() on a program that de�nes prediate q. An evaluation of the �xpointof the program would generate all fats implied by the program, inluding many that are irrelevant to thequery. Magi rewriting [BMSU86, BR87b, Ram88℄ addresses this problem.We present below a simpli�ed version of the Magi Templates rewriting algorithm [Ram88℄.7 The idea is toompute an auxiliary prediate query that stores subgoals generated on derivated prediates in the program.A fat of the form query(p(t)) denotes that ?p(t) is a subgoal generated on p. In the fat query(p(t)), p isformally treated as a funtion symbol, rather than a prediate, sine the language is �rst order. We thushave a prediate and a funtion symbol of the same name | they are distinguished based on where theyour in the rule.The rules in the program are then modi�ed by attahing a literal to the rule body that uses the queryprediate to at as a �lter that prevents the rule from generating irrelevant fats. Further, the rewritinggenerates rules that de�ne how to generate a query fat for a body literal, given a query fat on the headliteral.De�nition 2.2.1 The Magi Templates AlgorithmLet P be a program, and ?q() a query on the program. We onstrut a new program Pmg . Initially, Pmg6The motivation for this de�nition is that the �xpoint evaluation of a range-restrited program generates only ground fats.7As desribed in [BR87b, Ram88℄, the initial rewriting of a program and query is guided by a hoie of sideways informationpassing strategies, or sips. For eah rule, the assoiated sip determines the order in whih the body literals are evaluated. Theversion we present is tailored to the ase that sips orrespond to left-to-right evaluation with all arguments onsidered \bound"(perhaps to a free variable), as in Prolog. 13



is empty.1. For eah rule in P , add the modi�ed version of the rule to Pmg. If rule r has head, say, p(�t), themodi�ed version is obtained by adding the literal query(p(�t)) to the body.2. For eah rule r in P with head, say, p(�t), and for eah ourrene of a derived literal qi(�ti) in its body,add a query rule to Pmg . The head is query(qi(�ti)). The body ontains the literal query(p(�t)), and allliterals that preede qi(�ti) in the rule.3. Create a seed fat query(q()) from the query on the program.2 We refer to the rules de�ning the query prediate as query rules. We sometimes refer to query rulesas magi rules, and the query prediate as the magi prediate, when we need to be onsistent with theterminology used in [BMSU86, BR87b, Ram88℄.Example 2.2.1 Consider the following program. (In this program sg stands for \same generation".)R1 : sg(X;Y ) : � flat(X;Y ):R2 : sg(X;Y ) : � up(X;U); sg(U; V ); down(V; Y ):?� sg(john; Z)The Magi Templates algorithm rewrites it as follows:sg(X;Y ) : � query(sg(X;Y )); f lat(X;Y ): [Mod. Rule R1℄sg(X;Y ) : � query(sg(X;Y )); up(X;U);sg(U; V ); down(V; Y ): [Mod. Rule R2℄query(sg(U; V )) : � query(sg(X;Y )); up(X;U): [Query Rule℄query(sg(john; Z)): [Seed Query℄The �rst two rules above are the original rules, modi�ed by adding �lters. The third rule de�nes how togenerate queries on the body of the seond rule (in the original program), given queries on its head prediate.The last rule is a fat that orresponds to the original query on the program, and it is alled the seed queryfat. 2The following theorem ensures the soundness and ompleteness of the transformed program Pmg withrespet to the query on the original program P .Theorem 2.2.1 [Ram88℄ P is equivalent to Pmg with respet to the set of answers to the query.De�nition 2.2.2 We de�ne the Magi Templates Evaluation Method as follows:1. Rewrite the program and query (hP;Qi) using the Magi Templates algorithm.2. Evaluate the �xpoint of the rewritten program.2 14



Although the evaluation method and the rewriting algorithm both have the same name, the distintionshould be lear from the ontext. The seond step above is presented in more detail in Setion 2.2.3.The rewriting has the important e�et of mimiking Prolog in that (modulo optimizations suh as tailreursion optimization and intelligent baktraking, and modulo some ineÆienies when non-ground fatsare generated) only goals and fats generated by Prolog are generated.Magi Templates is often presented along with an adornment rewriting that annotates prediates witha string omposed of haraters `f' and `b', with one harater for eah argument. This step, along with amodi�ation of Magi Templates rewriting that projets out of query prediates those arguments that havean f adornment, is used to ensure that the rewritten program generates only ground fats if the originalprogram generated only ground fats. The bene�t of generating only ground fats is ahieved at the possibleost of some redundant omputation, but is important sine it permits the use of database systems thathandle only ground fats. For simpliity, we omit this step.2.2.2 Supplementary Magi Templates RewritingSome joins are repeated in the bodies of rules in the Magi Templates rewritten program. SupplementaryMagi Templates rewriting is a version of Magi Templates rewriting that essentially identi�es these ommonsub-expressions and stores them (with some optimizations that allow us to delete some olumns from theseintermediate, or supplementary, relations). We refer the reader to [BR87b℄ for details, but present below anexample that gives some intuition.Example 2.2.2 We ontinue with Example 2.2.1. The program generated by Magi Templates rewriting isas follows.sg(X;Y ) : � query(sg(X;Y )); f lat(X;Y ):sg(X;Y ) : � query(sg(X;Y )); up(X;U); sg(U; V ); down(V; Y ):query(sg(U; V )) : � query(sg(X;Y )); up(X;U):query(sg(john; Z)):Notie that the seond and third rule above have a ommon pre�x; this pre�x is fatored out to get thefollowing rule set.sg(X;Y ) : � query(sg(X;Y )); f lat(X;Y ):sup1;1(X;Y; U) : � query(sg(X;Y )); up(X;U):query(sg(U; V )) : � sup1;1(X;Y; U):sg(X;Y ) : � sup1;1(X;Y; U); sg(U; V ); down(V; Y ):query(sg(john; Z)):The prediate sup1;1 is referred to as a supplementary prediate. The two subsripts denote the numberof the rule it is generated from and the position of the next literal in the rule (with numbering startingfrom 0). Suh prediates an be thought of as intermediate prediates used for ommon-subexpressionelimination. However, supplementary prediates atually have a deeper signi�ane. In the above program,sup1;1(X;Y; U) stores bindings of the rule variables X;Y; U generated when a top-down evaluation of a query?sg(X;Y ) on the rulesg(X;Y ): �up(X;U); sg(U; V ); down(V; Y ): 15



set up a subquery on up(X;Y ) and got bak an answer up(X;Y ). Fats for supplementary prediatesmaintain, in some sense, variable bindings in a \ontext" of the evaluation of the rule. We generate queryfats for derived literals in the rule by using the variable bindings in the supplementary fats, just as wewould generate queries in a top-down evaluation oming left-to-right in the body of the rule.In the above example we generated supplementary rules by fatoring ommon subexpressions out ofrules generated by Magi Templates rewriting. In desribing variants of Magi rewriting, we �nd it easier togenerate supplementary prediates in a more uniform manner. We store all variables in the rule as argumentsof eah supplementary prediate, and we introdue a supplementary prediate orresponding to eah literalin the body of the rule. Thus the program is rewritten as follows.R1:1 : sup1;0(X;Y ) : � query(sg(X;Y )):R1:2 : sg(X;Y ) : � sup1;0(X;Y ); f lat(X;Y ):R2:1 : sup2;0(X;Y; U; V ) : � query(sg(X;Y )):R2:2 : sup2;1(X;Y; U; V ) : � sup2;0(X;Y; U; V ); up(X;U):Q2:2 : query(sg(U; V )) : � sup2;1(X;Y; U; V ):R2:3 : sup2;2(X;Y; U; V ) : � sup2;1(X;Y; U; V ); sg(U; V ):R2:4 : sg(X;Y ) : � sup2;2(X;Y; U; V ); down(V; Y ):Query : query(sg(john; Z)):The �rst two rule are derived from R1 of the original program, and the next �ve rules are derived fromR2. The last rule is the query fat.Generating the nier form of the rewritten program presented earlier from this form an be ahievedby some simple transformations suh as projeting out \unneessary" variables from eah supplementaryprediate, and \unfolding"8 literals that use supplementary prediates. We do not go into details here. 22.2.3 Iterative Fixpoint EvaluationA derivation in a �xpoint evaluation generates a fat, using a rule R and a fat for eah body literal of therule; there must be a substitution � for the rule, suh that1. the fat generated by the derivation is the head of R[�℄, and2. for eah body literal pi(ti) in R, the fat used for the literal subsumes pi(ti)[�℄, and3. � is the most general suh substitution.A naive evaluation of the �xpoint of a program performs iterations, with eah iteration generating allfats that an be derived using the program rules, base fats, and the fats derived in earlier iterations.Iteration proeeds until a �xpoint is reahed. In suh a naive evaluation of the �xpoint, eah iterationrepeats all derivations made in earlier iterations.We desribe an inremental version of �xpoint evaluation alled Semi-Naive �xpoint evaluation. Semi-Naive evaluation avoids the repetition of derivations by performing in eah iteration an inremental ompu-tation using fats generated in the previous iteration.8For the ase where there is only one rule R de�ning a prediate p, unfolding a literal p(t) in a rule R0 onsists of replaingp(t) by the body of R[�℄ where � is the mgu of p(t) and the head of R (w.l.o.g, we assume that the variables in R and R0 aredistint). For the general ase, refer to [TS84, GS91℄. 16



Semi-Naive evaluation (SN evaluation) of de�nite lause programs was developed by several researhers[Ban85, Bay85, BR87a℄. We look at a simpli�ed form of SN evaluation. Without loss of generality, weassume that rules have at most two body literals; rules not in this form an be easily rewritten to be in thisform. For eah derived prediate qi in the program we introdue four relations qi, qoldi ; Æqoldi ; and Æqnewi .9We then rewrite eah rule as follows.Semi-Naive Rewriting(R):1. If the rule is of the form: R : p(: : :): �q1(: : :); q2(: : :)where both q1 and q2 are derived prediates, we rewrite R as follows:R0 : Æpnew(: : :) : � Æqold1 (: : :); qold2 (: : :):R00 : Æpnew(: : :) : � Æqold2 (: : :); q1(: : :):2. If the rule is of the form: R : p(: : :): �q1(: : :); b2(: : :)where q1 is a derived prediate and b2 is a base prediate, we rewrite it as follows:R0 : Æpnew(: : :): �Æqold1 (: : :); b2(: : :):3. If the rule is of the form: R : p(: : :): �q1(: : :)where q1 is a derived prediate, we rewrite it as:R0 : Æpnew(: : :): �Æqold1 (: : :):4. If the rule is of the form: R : p(: : :): � : : :where the body has no derived prediates, we rewrite it as follows:R0 : Æpnew(: : :): � : : : :The above rewriting is alled Semi-Naive rewriting [BR87a, Ban85℄. Given a program P , let the programgenerated by Semi-Naive rewriting be denoted PSN .Semi-Naive evaluation is desribed in Algorithm SN Iterate. Proedure Apply(Ri) performs the opera-tions of making all derivations that an be performed using rule Ri and the fats in the urrent extents ofthe relations,10 and inserting all derived fats into the relation for the head of Ri. We assume that Applyperforms a left-to-right nested-loops join with indexing11 on the rule. (This is important for some of ourlater theoretial results onerning time omplexity, but not for orretness.)In Semi-Naive iteration, the set of fats produed in iteration n is ompared with the set of known fatsto identify the new fats produed. Dupliates generated within the same iteration are eliminated impliitly,by the de�nition of sets.9The distintion between the prediate and the relation should be lear from the ontext.10In ase non-ground fats are derived, it suÆes to dedue a set of fats that subsumes the set of all fats that follow fromrule Ri and urrent extents of the relations. This an be done by using most-general uni�ers when unifying fats with the rulebody.11See, e.g., Ullman [Ull88℄ for a de�nition of nested-loops join with indexing.17



Algorithm SN Iterate(PSN )1. Foreah rule Ri in PSN that has no derived literal in its bodyApply( Ri).2. Repeat2.1 Foreah rule Ri in PSN that has a derived literal in its bodyApply(Ri).2.2 Foreah derived prediate qi in PSNa. qoldi := qoldi [ Æqoldi .b. Æqoldi := Æqnewi � qoldi .. qi := qoldi [ Æqoldi .d. Æqnewi := �.Until all relations Æqoldi are empty.We all the set of updates in Step 2.2 of the above algorithm as Semi-Naive updates. For eah prediateqi, Æqoldi denotes the set of qi fats that were omputed in the previous iteration but not in earlier iterations,and qoldi denotes the set of qi fats derived before the previous iteration. The relation qi is the union of qoldiand Æqoldi . We all the fats in relations of the form qoldi as old fats, and fats in relations of the form Æqoldias new fats.The di�erene operation in Step 2.2.b ensures that Æqoldi and qoldi are disjoint when Step 2.2.a is exeuted.Hene the union operation in Step 2.2.a does not need to hek for dupliates; it an simply move fats fromÆqoldi to qoldi . We do not materialize qi (Step 2.2.), but treat it as an un-materialized union of the relationsqoldi and Æqoldi . To hek if a fat is in qi, we hek if it is either in qoldi or in Æqoldi .The proedure Apply does not repeat derivations within a single exeution of the proedure. Hene noderivations are repeated within an iteration of SN Iterate. Due to Semi-Naive rewriting and the updatesin Step 2.2 of SN Iterate, in eah iteration only derivations that use at least one new fat are arried out.Any derivation performed in an earlier iteration would have used only old fats, and hene no derivation isrepeated in the evaluation. Further, any derivation that uses only old fats would have been made in anearlier iteration. Semi-Naive evaluation terminates when no new fats are generated. Thus the algorithmterminates if and only if the set of fats generated is �nite.We all literals of the form Æpold or Æpnew as Æ literals. With the Semi-Naive rewriting presented above,if a rewritten rule has a Æ literal in the body, the �rst literal in the rewritten rule (and hene in the joinorder that we assume) is a Æ literal.Performing the join with non-ground fats involves details, suh as renaming of variables, disussed inSetion 4.2. We use subsumption heking instead of dupliate heking, if non-ground fats are generated,Thus when we add a fat to a relation, we need to hek if the fat is subsumed by a fat in the relation,or if it subsumes fats in the relation, and delete fats that are subsumed. Similarly, the operators \�" and\[" used in SN Iterate perform subsumption heks, rather than dupliate heks, if non-ground fats aregenerated. 18



Not-So-Naive (NSN) evaluation [MR89℄ is the same as Semi-Naive evaluation exept for the followingdi�erenes.1. Æqnewi is a multi-set of fats rather than a set of fats2. The step Æqoldi := Æqnewi � qoldi is replaed by the step Æqoldi := Æqnewi .3. The [ operator does a multi-set union, i.e., it does not hek for dupliates.In the ase of NSN evaluation, Æqoldi is the multi-set of qi fats that were omputed in the previous iteration,and qoldi is the multi-set of qi fats derived before the previous iteration.We also use the terms Semi-Naive evaluation without dupliate elimination or Semi-Naive evaluationwithout subsumption-heking12 to refer to NSN evaluation.We have the following standard result on ompleteness of Semi-Naive and Not-So-Naive evaluation (seee.g. [MR89, RSS91℄).Theorem 2.2.2 (Completeness) Suppose a program P is evaluated using Semi-Naive or Not-So-Naiveevaluation. If a fat is in the least �xpoint of P , then there is a �nite i suh that the fat is subsumed byfats derived before iteration i. 2A derivation sequene is a total ordering of derivations in a bottom-up �xpoint evaluation, suh that thefats used in any derivation are either base fats, or are generated by earlier derivations. We often use suha total ordering of the derivations in a bottom-up �xpoint evaluation to prove properties of the evaluation.2.2.4 Related Bakground MaterialThe Alexander method [RLK86℄ was proposed independently of the Magi Sets approah. It is essentiallythe supplementary variant of the Magi Templates method, desribed in [BR87b℄. Seki has generalized themethod to deal with non-ground fats and funtion symbols, and has alled the generalized version AlexanderTemplates [Sek89℄.The Magi Templates idea was developed in a series of papers ([BMSU86, BR87b, Ram88℄). Severalvariants of the Magi Templates idea have also been proposed. For example, it is possible to ompute su-persets of the magi sets (in our notation, the set of fats for query is the magi set) without ompromisingsoundness. Although this variant results in some irrelevant omputation, it may be possible to omputesupersets more eÆiently than the magi sets themselves [SS88℄. The tehnique an be extended to dealwith SQL programs, inluding those ontaining features like group-by, aggregation and arithmeti ondi-tions [MPR90, MFPR90b, MFPR90a℄. A performane omparison presented in Mumik et al. [MFPR90a℄shows that Magi Sets performs at least omparably to standard query evaluation tehniques, and is oftensigni�antly better.The Magi and Alexander methods are based on program transformations. Other methods use a ombi-nation of top-down and bottom-up ontrol to propagate bindings. Pereira and Warren presented a memoingtop-down evaluation proedure based on Earley dedution [PW83℄. Vieille has proposed a method alled12It is possible to oneive of Semi-Naive evaluation with dupliate elimination, but without full subsumption-heking.However, we use the term Semi-Naive evaluation without subsumption-heking exlusively to refer to Semi-Naive evaluationwithout dupliate elimination. 19



QSQ [Vie86, Vie87, Vie88℄ that an be viewed as follows. Goals are generated with a top-down invoationof rules, as in Prolog. However, there are two important di�erenes: 1) whenever possible, goals and fatsare propagated set-at-a-time, and 2) all generated goals and fats are memoed. If a subgoal is found to havebeen generated earlier, it is not solved again, but answers derived for the �rst generation of the subgoal areused for the new subgoal. Dietrih has proposed a method alled Extension Tables [Die87℄. This method isvery similar to QSQ, but performs omputation tuple-at-a-time.The reader is referred to [NR91, RSS92℄ for a more detailed disussion of related work.2.3 Magi Templates and Tail-ReursionConsider a rule of the form: R : p(t): �q1(t1); q2(t2); : : : ; qn(tn). Suppose we had a subgoal p(a), and inanswering this subgoal in a top-down fashion, we had set up and solved subgoals q1(a1); : : : ; qn�1(an�1), andhave now set up a subgoal qn(an).The subgoal ?qn(an) will return zero or more suessful answers. When eah answer is returned, no moreomputation is done at rule R, but ontrol merely passes bak to the point where the subgoal ?p(a) wasinvoked. Prolog an therefore hange the return address so that the all to ?qn(an) returns diretly to thequery on R, bypassing R. This optimization is alled tail reursion optimization (see for instane [MW88℄).In partiular, when qn is reursive with (possible even the same as) p, Prolog evaluation may returndiretly past a large number of invoations of R. By bypassing R, Prolog� in e�et bypasses a step where abottom-up evaluation using Magi Templates rewriting would have reated a fat for the head prediate pof rule R.The following example illustrates how Prolog evaluation of a query, using tail-reursion optimization, anbe muh faster than bottom-up query evaluation using Magi Templates rewriting.Example 2.3.1 This example is from [Ros91℄. Let P be the programR1 : p(X;Z) : � e(X;Y ); p(Y; Z):R2 : p(n;X) : � t(X):e(1; 2):...e(n� 1; n):t(1):...t(m):Query: ?-p(1; X):Given the subgoal ?p(1; X) Prolog sets up subgoal ?e(1; X) and gets an answer that binds X to 2. Using thisbinding Prolog sets up a subgoal ?p(2; X), whih in turn sets up subgoal ?p(3; X) and so on till the subgoal?p(n;X) is set up. However, Prolog an dedue that there are no more answers to e(1; X), and when ananswer for ?p(2; X) is found, it an diretly return (with bindings for variable X) to the subgoal ?p(1; X),bypassing the subgoal ?p(2; X). By applying this optimization repeatedly, when Prolog �nds an answer for20



subgoal ?p(n;X), it returns diretly (in unit time, with bindings for X) to the subgoal ?p(1; X), bypassingall intermediate subgoals. Applying this optimization again to the subgoal ?t(X) generated from ?p(n;X),when an answer is generated for ?t(X), evaluation an return diretly to the subgoal ?p(1; X). Sine thereare m answers for ?t(X), Prolog baktraks to ?t(X) a total of m times, and evaluates the program in timeO(n+m).Prolog \generates" only fats p(1; j); 1 � j � m (here \generating" a fat is interpreted as the at ofProlog's ontrol returning, with appropriate variable bindings, to the point where a subgoal was set up).Bottom-up evaluation (using Magi Templates rewriting), on the other hand, works as follows. For eahProlog subgoal ?p(i;X), a fat query(p(i;X)) is generated. Fats p(n; 1); : : : ; p(n;m) are generated using themodi�ed rule R2. These fats are used with the modi�ed rule R1 to generate fats p(n�1; 1); : : : ; p(n�1;m),whih in turn are used to generate more fats using the modi�ed rule R2. Eventually, all fats p(i; j); 1 �i � n; 1 � j � m are generated. Thus at least m � n fats are generated, and evaluation takes o(m � n) time.2 If bottom-up evaluation is to perform as well as Prolog� on this program, it too must bypass the stepof omputing a fat for the head of rule R1.13 This is preisely the optimization ahieved by the programrewriting tehnique of Ross [Ros91℄, whih we desribe in Setion 2.3.2. We note that QoSaQ [Vie88℄,whih is a set-oriented top-down evaluation tehnique that implements memoing, also inorporates a formof tail-reursion optimization.2.3.1 Hilog SyntaxBefore we desribe Ross' rewriting tehnique, we briey desribe an extension of de�nite lause syntax thatis used in the rewriting. The extended syntax is part of Hilog [CKW89℄. We desribe the extended syntaxand its semantis informally. The extension to de�nite lause syntax allows rules suh as the following:R1 : A: �query(pj(X;Y ); A); pk(X;Y ):The head of a de�nite lause rule must be an atom, whereas the the head of rule R1 is a variable | thusthe syntax used is higher order.We require that in rules that use this extended syntax, the variable in the head of the rule must getbound to a term of the form pi(t) when the rule is suessfully instantiated in bottom-up evaluation. Theterm pi(t) is interpreted as a literal when reating the head fat. For example, suppose we have fatsquery(pj(a;X); pm(b;X)); pk(a; ) and pk(a; d). Then R1 implies that the fats pm(b; ) and pm(b; d) aretrue. The semantis of rules using the extended syntax is �rst-order. The use of this higher-order syntax isnot essential for our disussion, but it makes the presentation onise.We an use Semi-Naive evaluation for programs using the above syntati features, with very minorhanges, whih we now briey disuss. The only hange to Semi-Naive rewriting is to not transform the13We assume that b and t are base prediates. The time omplexity measure used in this thesis ignores the size of theprogram, based on the assumption that the number of rules is small. We use m and n in the time omplexity measures forthis program, and annot assume the number of rules to be small if fats for b and t are treated as rules. We do not applytail-reursion optimization to base literals. However, applying tail-reursion optimization to base literals provides no bene�ts,sine the omputation to solve a query on a base literal in the bottom-up ontext onsists merely of looking up a table, anddoes not invoke a new rule. 21



heads of rules that use the above extended syntax. When the body of suh an extended rule is satis�ed,the head variable is instantiated to a term. This term is treated as a fat; suppose this fat is p(a). Thesemi-naive version Æpnew(a) of this fat is then inferred.2.3.2 MTTR RewritingRoss ([Ros91℄) proposed a modi�ation to Magi Templates ([Ram88℄). We desribe Ross' tehnique, whihwe all Magi Templates with Tail Reursion (MTTR) rewriting, in this setion. The set of prediates to betreated as tail-reursive is a parameter to Ross' rewriting as desribed in [Ros91℄ | thus the tail-reursionoptimization an be applied to a seleted set of prediates. Unless otherwise spei�ed, we assume that theoptimization is used for all derived prediates, but not for base prediates. MTTR rewriting may performworse than Magi Templates rewriting on some programs (see [Ros91℄ for an example). However, it is usefulfor the purposes of omparison with Prolog�, sine MTTR rewriting an perform tail-reursion optimizationwhenever Prolog� does so.Intuitively, the di�erene between MTTR rewriting and Supplementary Magi rewriting (Setion 2.2.2) isas follows. Magi rewriting generates fats of the form query(p(s)), that indiate that there is a query ?p(s).The rules in the program are modi�ed to generate answers to suh queries. With tail reursion optimizationin Prolog, answers are not \generated" for a tail-reursive query; instead, answers are \generated" for somequery that is an anestor of the query. This e�et is ahieved in MTTR rewriting by generating fats of theform query(p(s); q(t)). Suh a fat says that there is a query ?p(s); after instantiating a rule to solve thisquery, instead of generating answers for the query, answers should be diretly generated for ?q(t), whih isan anestor of ?p(s). A solution to ?p(s) provides bindings for variables in t; applying these bindings to q(t)gives us answers for q(t).To handle the ase of non-tail-reursive literals, any query fat generated due to suh literals is of theform query(p(s); p(s)) (i.e., the �rst and seond arguments of query are the same). Suh a fat says that?p(s) is a query, and answers must be generated for it.We now present the rewriting; we give some intuition after presenting the rewriting.MTTR Rewriting: Given program P and a query ?q(t) on P , we generate a program using the followingrewrite rules. We all the resultant rewritten program P T .0. Generate the rule (atually a fat)query(q(t); q(t)):Call this a Type 0 rule.Consider eah rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. Generate the rulesupj;0(V ;A): �query(h(t); A): 22



Call suh rules Type 1 rules.2. If the body of Rj is non-empty, generate the following rules and all them Type 2 rules:supj;1(V ;A) : � supj;0(V ;A); p1(t1):...supj;n�1(V ;A) : � supj;n�2(V ;A); pn�1(tn�1):3. If the body of Rj is empty, generate the ruleA: �supj;0(V ;A):If the body of the rule is not-empty, and the last literal is base, or is not treated as tail-reursive, generatethe ruleA: �supj;n�1(V ;A); pn(tn):Call suh rules Type 3 rules.4. If the body of Rj is non-empty, for eah derived literal pi(ti), i 6= n in the body of Rj generate a rulequery(pi(ti); pi(ti)): �supj;i�1(V ;A):If the body of the rule is non-empty, and pn(tn) is a derived literal, but is not treated as tail-reursive,generate the rule:query(pn(tn); pn(tn)): �supj;n�1(V ;A):Call suh rules Type 4 rules.5. If the body of Rj is non-empty and pn(tn) is a derived literal and is treated as tail-reursive, generate thefollowing rule:query(pn(tn); A): �supj;n�1(V ;A):Call suh rules Type 5 rules.We say that P T generates a subgoal ?p(t) if it derives a fat query(p(t); : : :). Type 0 and Type 4 rulesgenerate subgoals that must be expliitly solved; however, Type 5 rules provide tail reursion optimization|in e�et they say \solve the last subgoal in rule Rj , but instead of generating answers for it, use the bindingsto diretly generate answers for the goal that invoked the rule". Type 1, 2 and 3 rules olletively performthe same funtion as rules in the original program, exept that they are restrited to generate fats only ifthere is a orresponding subgoal; thus they avoid generating many irrelevant fats.Example 2.3.2 [Ros91℄ The rewritten version of the program from Example 2.3.1 is as follows. We treat eand t as base prediates in this rewriting.R1:1 : sup1;0(X;Y; Z;A) : � query(p(X;Z); A):R1:2 : sup1;1(X;Y; Z;A) : � sup1;0(X;Z;A); e(X;Y ):R1:3 : query(p(Y; Z); A) : � sup1;1(X;Y; Z;A):R2:1 : sup2;0(X;A) : � query(p(n;X); A):R2:2 : A : � sup2;0(X;A); t(X):23



e(1; 2):� � �e(n� 1; n):t(1):� � �t(m):query(p(1; X); p(1; X)):Rules R1:1 is a Type 1 rule generated from rule R1 of the original program, and R1:2 is a Type 2 rulegenerated from R1. Rule R1:3 is a Type 5 rule generated from R1. Rule R2:1 is a Type 1 rule generatedfrom rule R2 of the original program, and rule R2:2 is a Type 3 rule generated from R2.The query fats derived by the Semi-Naive evaluation of this program are of the form query(p(i; Z); p(1; Z)); 1 � i � n. Rule R2:2 derives fats p(1; j); 1 � j � m. Also, supplementary fats sup1;0(i; Y; Z; p(1; Z)),1 � i � n, sup1;1(i; i + 1; Z; p(1; Z)), 1 � i < n, and sup2;0(Z; p(1; Z)) are derived. Finally answer fatsp(1; i); 1 � i � m are derived. Overall, Semi-Naive evaluation of the program derives O(n+m) fats, whihis the same as the number of inferenes made by Prolog evaluation. On the other hand, evaluation of theMagi Templates rewriting of the program makes O(n �m) inferenes, as desribed in Example 2.3.1. 2Semi-Naive evaluation of P T may in some ases generate many more fats that Semi-Naive evaluation ofthe Magi Templates rewritten form of P [Ros91℄. However, it has the advantage (for our purposes) that itis never more than a onstant fator worse than (a model for) Prolog evaluation, in terms of the number ofinferenes made, provided that P is range-restrited (see Setion 5.10). There are many program/query pairsfor whih the MTTR rewritten program makes far fewer inferenes than Prolog; as an extreme example,there are program/query pairs for whih Prolog does not terminate, but Semi-Naive evaluation of the MTTRrewritten program does terminate. In Setion 3.4 we present a version of the rewriting that is never morethan a onstant fator worse than (our model of) Prolog evaluation in terms of the number of inferenesmade, for all programs.The Hilog notation is not ritial for MTTR rewriting | we an generate an equivalent rewritten programin de�nite lause syntax. The basi idea is that for any ruleR : A: �p1(t1); : : : ; pn(tn):in the extended syntax, the variable A in the head an only get bound to terms built from one of a �nitenumber of funtion symbols (orresponding to the prediates in the program). Hene, for eah n-ary prediatep in the original program, we reate an instantiated version R[A=p(Xn)℄ of R, where Xn is an n-tuple ofdistint variables that do not appear in R. We then replae R by the set of its instantiated versions. Byperforming this transformation for eah rule of an MTTR rewritten program, we derive an equivalent de�nitelause program. Clearly, the Hilog notation is more onise.
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Chapter 3Magi Rewriting forNon-Range-Restrited ProgramsIn this hapter we desribe extensions of Magi rewriting tehniques for programs that generate non-groundfats. We begin the hapter by showing some pitfalls that bottom-up evaluation using Magi Templates (withor without Tail Reursion) an run into when non-ground fats are generated. The basi problem was notedby Codish, Dams and Yardeni [CDY90℄, but is not widely reognized. In Example 3.1.2 we extend theirobservation to show that bottom-up evaluation an make many more inferenes than Prolog evaluation. Weformalize the problem through the de�nition of mgu-subgoals and mgu-answers; Magi Templates rewritingan generate answers (and queries) that are not mgu-answers (resp. mgu-subgoals).We re�ne Magi Templates rewriting (in Setion 3.3) to avoid the problems noted by Codish et al.;we all this re�nement MGU Magi rewriting. Bottom-up query evaluation using MGU Magi rewritinggenerates only mgu-subgoals and mgu-answers. MGU Magi rewriting generates programs that ontain\meta-prediates"; in Setion 3.2 we disuss the operational semantis of meta-prediates and of programsthat use meta-prediates. We use the ideas behind the re�nement of Magi Templates rewriting to also re�neMTTR rewriting; we all this re�nement MGU MTTR rewriting (Setion 3.4).MGU MTTR rewriting is important sine it enables us to aount for tail-reursion optimization whilealso dealing with the problems noted by Codish et al. We show in Chapter 4 (Setion 4.3) that bottom-upevaluation using MGU MTTR rewriting performs no more \ations" than a small onstant times the numberof \ations" performed by Prolog� evaluation (a model of Prolog evaluation). (In many ases bottom-upevaluation performs far fewer ations than the number of ations performed by Prolog� evaluation.)3.1 Problems With Subsumed AnswersSubsumption-heking bottom-up evaluation an make some derivations using subsumed fats that Prologavoids even though it does not perform any subsumption heking. This observation was made by Codish,Dams and Yardeni [CDY90℄, using the following example.25



Example 3.1.1 [CDY90℄R1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:On this program, the only goal generated for the prediate r by Prolog evaluation is ?r(X). (To keep theexample simple, we do not have any rules de�ning r | this means that subgoals on r will fail, but this isirrelevant to the point we seek to make.) The Magi Templates rewriting of this program is as follows.R10 : q : � query(q); p(a); p(X); r(X):M1:1 : query(p(a)) : � query(q):M1:2 : query(p(X)) : � query(q); p(a):M1:3 : query(r(X)) : � query(q); p(a); p(X):R20 : p(X) : � query(p(X)):Q : query(q):Semi-Naive evaluation of the rewritten program generates the fat query(p(a)) �rst, followed by p(a).The fat p(a) is used for the literals p(a) and p(X) in rule M1:3, and a fat query(r(a)) is generated. Notethat Prolog evaluation does not generate the subgoal ?r(a). The query generated from the literal p(X) in thisrule is ?p(X), whih has a most general answer p(X); thus a less general answer is being used for a query thathas a more general answer. The answer p(X) is generated later, and p(a) is found to be subsumed (but p(a)has already been used to derive query(r(a))). Rule M1:3 uses p(X) to generate a query fat query(r(X)).2 The above example illustrates the following problem. If a fat p(X) is an answer to a subgoal ?p(X), thenso is every fat of the form p(a), for every a in the universe of disourse. Suh fats may be generated in anevaluation, in response to more spei� subgoals, and may be used unneessarily for more general subgoals.It is important to avoid using answers omputed for less general subgoals as answers for more generalsubgoals sine there are programs where doing so an result in a large loss in eÆieny.1 The followingexample illustrates an asymptoti slow-down.Example 3.1.2 Consider the following program and query.R1 : q(X) : � b(X); p(X):R2 : q(X) : � q2(1); q2(2); p(X); r(X):R3 : p(X):R4 : r(X) : � r2(X;n):R5 : r2(X;Y ) : � Y > 0; r2(X;Y � 1):R6 : r2(X; 0):q2(1):q2(2):1Another motivation is that in the ontext of abstrat interpretation (see e.g. [CDY90℄), using answers omputed for lessgeneral subgoals to solve more general subgoals an lead to answers that are overly onservative. However, using answers insuh a fashion does not a�et orretness. 26



Query0 : query(q(X)):MR1 : query(p(X)) : � query(q(X)); b(X):R10 : q(X) : � query(q(X)); b(X); p(X):MR2 : query(q2(1)) : � query(q(X)):MR20 : query(q2(2)) : � query(q(X)); q2(1):MR200 : query(p(X)) : � query(q(X)); q2(1); q2(2):MR2000 : query(r(X)) : � query(q(X)); q2(1); q2(2); p(X):R20 : q(X) : � query(q(X)); q2(1); q2(2); p(X); r(X):R30 : p(X) : � query(p(X)):MR40 : query(r2(X;n)) : � query(r(X)):R40 : r(X) : � query(r(X)); r2(X;n):MR50 : query(r2(X;Y � 1)) : � query(r2(X;Y )); Y > 0:R50 : r2(X;Y ) : � query(r2(X;Y )); Y > 0; r2(X;Y � 1):R60 : r2(X; 0) : � query(r2(X; 0)):q2(1) : � query(q2(1)):q2(2) : � query(q2(2)):b(1):...b(m):Figure 1: Magi Templates Rewritten Form of Program from Example 3.1.2b(0):b(1):...b(m):Query: ?-q(X):If we used Prolog to run this query on this program, rule R1 would be used to set up a subquery ?b(X),whih returns m answers (one at a time). For eah of these answers, a subquery ?p(i) is set up, whihsueeds right away, generating an answer q(i). After trying all alternatives for rule R1, Prolog then triesR2, whih generates goal ?q2(1) whih sueeds and ?q2(2) whih also sueeds. It then generates subgoal?p(X), whih gets an answer p(X). A subgoal r(X) is set up, whih is solved in O(n) time by rules R4; R5and R6. Rule R2 is deterministi, and hene there are no more answers, and Prolog solves this query inO(m+ n) time.Consider now what happens if this query is run using Magi Templates rewriting, and Semi-Naive evalu-ation. The program obtained by Magi Templates rewriting of the above program is shown in Figure 1. Wetreat b as a base prediate sine it has a large number of fats.The set of fats omputed in eah iteration of a subsumption-heking Semi-Naive evaluation of the aboveprogram is shown in Table 1. (To keep the table ompat, we use Q instead of query.)It is lear from Table 1 that Semi-Naive evaluation of the Magi Templates rewritten program derivesO(m � n) fats, and would take at least time O(m � n), even though it performs subsumption heking. 227



Iteration Fats Computed0 Q(q(X))1 Q(q2(1));Q(p(0));Q(p(1)); : : : ;Q(p(m))2 q2(1); p(0); p(1); : : : ; p(m)3 Q(q2(2)); q(0); q(1); : : : ; q(m)4 q2(2)5 Q(p(X));Q(r(0));Q(r(1)); : : : ;Q(r(m))6 p(X);Q(r2(0; n));Q(r2(1; n)); : : : ;Q(r2(m;n))7 Q(r2(X;n));Q(r2(0; n� 1));Q(r2(1; n� 1)); : : : ;Q(r2(m;n� 1))...n+ 6 Q(r2(X; 1));Q(r2(0; 0));Q(r2(1; 0)); : : : ;Q(r2(m; 0))n+ 7 Q(r2(X; 0)); r2(0; 0); r2(1; 0); : : : ; r2(m; 0)n+ 8 r2(X; 0); r2(0; 1); r2(1; 1); : : : ; r2(m; 1)...2n+ 7 r2(X;n� 1); r2(0; n); r2(1; n); : : : ; r2(m;n)2n+ 8 r2(X;n); r(0); r(1); : : : ; r(m)2n+ 9 r(X); q(0); q(1); : : : ; q(m)2n+ 10 q(X)Table 1: Semi-Naive Evaluation of Program from Figure 1Although we used Magi Templates rewriting in the above example, the problems we desribed wouldalso our with Supplementary Magi Templates rewriting. It is also not hard to modify the above exampleto show that the problems illustrated in the example also our with Magi Templates with Tail Reursionrewriting.3.1.1 Mgu-Subgoals and Mgu-AnswersWe now de�ne mgu-subgoals and mgu-answers. The basi idea behind these de�nitions is to ensure that if asubgoal is generated from a literal in a rule, only answers to that subgoal or more general subgoals are used forthat literal; answers to less general subgoals are not permitted to be used. The order of evaluation of literalsin a top-down evaluation of a rule (a.k.a. sideways information passing strategies, or sips, in the ontextof Magi rewriting [BR87b, Ram88℄) a�ets the subgoals that are generated from the rule. We assume aleft-to-right order of evaluation (left-to-right sips) in the following de�nitions, although the de�nitions anbe extended to the general ase.Reall that given two terms t1 and t2, MGU(t1; t2) denotes the set of most general uni�ers of t1 and t2,mgu(t1; t2) denotes a an arbitrary element of this set.De�nition 3.1.1 (mgu-subgoals and mgu-answers)Let P be a program with a given query ?query(u).The given query ?query(u) is de�ned to be an mgu-subgoal.Let R be any rule in the program, and ?q(s) an mgu-subgoal.1. Suppose rule R is of the form q(t) (i.e., its body is empty), and � 2MGU(s; t0), where t0 is a renamingof t that shares no variables with s. Then q(s)[�℄ is an mgu-answer to the subgoal ?q(s).28



2. Suppose R is of the form:R : q(t): �p1(t1); : : : ; pn(tn):suh that n � 1 and for some k; 1 � k � n, and eah i, 1 � i � k there are subgoals ?pi(si), andanswers p(ai) that satisfy all the following onditions: (W.l.o.g. assume that the ai's share no variableswith eah other or with rule R.)(a) pi(ai) is an mgu-answer to ?pi(si).(b) Let �i = mgu(hq(t); p1(t1); : : : ; pi�1(ti�1)i; hq(s); p1(a1); : : : ; pi�1(ai�1)i)Then pi(si) = pi(ti)[�i℄.Then ?pk(sk) is an mgu-subgoal generated from ?q(s).Further, if k = n, and� 2MGU(hq(t); p1(t1); : : : ; pn(tn)i; hq(s); p1(a1); : : : ; pn(an)i)Then q(s)[�℄ is an mgu-answer to subgoal ?q(s).2 Note that the de�nition of mgu-subgoals and mgu-answers is yli. This auses no problems, sine eahanswer generated by a program must have an ayli derivation. The following example illustrates the useof this de�nition.Example 3.1.3 Consider a modi�ed version of the program from Example 3.1.1.2R1 : q(X) : � p(a); p(X); r(X):R2 : p(X):R3 : r(X):R4 : q(1):Query: ?-q(X):Given a query ?q(X), by Part 1 of De�nition 3.1.1 and rule R4, q(1) is an mgu-answer to ?q(X). Given aquery ?q(X), ?p(a) is an mgu-subgoal, by Part 2 of De�nition 3.1.1 and rule R1. Using R2, p(a) is an mgu-answer to ?p(a), by Part 1 of the de�nition. Now, ?p(X) is an mgu-subgoal, by Part 2 of the de�nition, usingthe pre�x of R1 up to p(X). Using R2, p(X) is an mgu-answer to ?p(X). Next, ?r(X) is an mgu-subgoal,by Part 2 of the de�nition, and r(X) is an mgu-answer to ?r(X), using rule R3. Finally, by Part 2 of thede�nition, q(X) is an mgu-answer to ?q(X). Note that ?q(X) has two mgu-answers, one of whih subsumesthe other. 22The modi�ation to the program is in order to illustrate some aspets of the de�nition of mgu-answers that are not illustratedby the original program.
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3.2 The goal id Meta-PrediateA meta-prediate is a prediate that does not have a logial semantis. A meta-literal is a literal thatuses as prediate a meta-prediate. The rewritten programs that we generate using our re�nements ofMagi Templates rewriting uses a meta-prediate goal id(goal; id) that assigns identi�ers to goals that aregenerated in the ourse of bottom-up evaluation. Before we start desribing our re�nements of MagiTemplates rewriting, we need to de�ne the semantis of programs that ontain the meta-prediate goal id.Meta-prediates are di�erent from ordinary prediates in two ways. First, given a normal prediate p,if a query ?p(X; 1) sueeds, eah query ?p(a; 1) also sueeds, where a is an element of the universe of theprogram. However, if ?goal id(p(X); 1) sueeds, it does not follow that ?goal id(p(a); 1) sueeds, sine p(X)and p(a) may be given di�erent identi�ers. Seond, two ourrenes of the same query on a meta-prediatean return di�erent answers, as we illustrate after de�ning the goal id meta-prediate.We do not assign semantis to meta-prediates in the usual manner of assigning sets of fats to prediates.Instead, we assign semantis to meta-prediates operationally in terms of \answers" that are returned toqueries on the meta-prediates.De�nition 3.2.1 (goal id) The meta-prediate goal id(g; n) is de�ned as follows. When it is alled with agoal g(t), it returns an integer identi�er n for the goal, where the identi�er satis�es the following onditions:� If subsumption-heking is to be used, (a) all variants of a goal are given the same identi�er, and (b)if two goals are not variants of eah other, they are given distint identi�ers.� If subsumption-heking is not to be used, the all returns an identi�er that is distint from thosereturned by any other alls to goal id.� 0 is not generated as the identi�er of any goal.2 For example, a all ?goal id(p(X); ID) may bind ID to 10. If subsumption-heking is used, all furtheralls ?goal id(p(X); ID) will bind ID to 10. However, a all ?goal id(p(a); ID) will bind ID to some valueother than 10. If subsumption-heking is not used, even further alls ?goal id(p(X); ID) will bind ID tosome value other than 10.As de�ned above, goal id does not perform full subsumption-heking on goals | if it did, and gave thesame identi�er to two goals, one of whih subsumes the other, and we will not be able to use the identi�erfor the purpose of keeping trak of mgu-answers to goals. In Setion 3.3.4 we disuss how the evaluationtehnique an be extended in order to allow goal id to perform some degree of subsumption-heking. It isstraightforward to implement the meta prediate goal id, and we do not disuss details.It is not possible in general to use the traditional least model or least �x-point semantis for programs withmeta-prediates. Instead we de�ne the operational semantis to the programs generated by our rewritingtehniques to be the result of Semi-Naive evaluation (either with or without subsumption-heking). Witheither semantis, the answers generated for the query on the original program are the same for the rewrittenprograms (as we show when proving the orretness of the rewriting algorithms).30



Semi-Naive evaluation works in a straightforward manner with meta-prediates. Meta-prediates aretreated in a fashion similar to base prediates. However, instead of indexing a relation for a base prediateand getting an answer, a query is set up on the meta-prediate, and solved.3.3 MGU Magi TemplatesIn this setion we present a version of Magi Templates rewriting; the Semi-Naive evaluation (using mostgeneral uni�ers) of the rewritten program generates subgoals and answers only if they are mgu-subgoals ormgu-answers. We all this rewriting tehnique MGU Magi Templates.For simpliity we desribe the supplementary version of the rewriting.3The idea behind MGU Magi Templates rewriting is to keep with eah answer the goal for whih it wasgenerated as an mgu answer; this lets us avoid using answers to less general subgoals with rules instanes(supplementary fats) that generated more general subgoals. If we stored the atual goal in the supplementaryfats (without renaming variables in the goal), the proess of uni�ation during the generation of the answerwould instantiate the goal. We store instead an identi�er that tells us what the original goal is; this identi�eris generated using the meta-prediate goal id.Intuitively, the main di�erene between Supplementary Magi Templates rewriting (Setion 2.2.2) andMGU Magi Templates desribed below is that for eah query fat, answer fat and supplementary fat,we have an extra argument that stores the identi�er of a query. Fats of the form answer(id; q(a2)) aregenerated in the bottom-up evaluation of the MGU Magi Templates rewritten program. Intuitively, suh afat says that id is the identi�er of a subgoal on q, and q(a2) is (at least as general as some) mgu-answer tothe subgoal. Similarly, fats of the form query(q(a2); id) are generated in the bottom-up evaluation of theMGU Magi Templates rewritten program. Intuitively, suh a fat says that q(a2) is a subgoal, and id is theidenti�er of the subgoal.Finally, there are fats of the form supi;j(i; v; i1). Intuitively, suh a fat represents an instane of thepre�x of a rule Ri up to the jth derived literal in Ri, suh that Ri is being used to solve a subgoal withidenti�er i, and i1 is the identi�er of a subgoal on the jth derived literal of the rule. The rules in therewritten program (Type 2 rules below) are suh that only answers for a query with identi�er i1 an be usedin a derivation with the supplementary fat supi;j(i; v; i1). Thus, the only answer fats that an be usedwith a supplementary fat are those that are mgu-answers to the query generated from the supplementaryfat.MGU Magi Templates Rewriting: Let P be a program, and ?q(t) a query on P . The following rewriterules generate a rewritten program whih we all PMGUQ from P and ?q(t).Generate the rules:QR1 : initial query(q(t); ID) : � goal id(q(t); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : q(A) : � initial query( ; ID); answer(ID; q(A)):3The rewriting assumes left-to-right sips (Setion 2.2.1). 31



from the initial query q(t), where A is a vetor of distint new free variables, of the same arity as q.Call all the above rules Type 0 rules.Consider eah rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. If the body of Rj is empty generate the rulesupj;0(HId; V ; 0): �query(h(t); HId):else generate the rules:sup1j;0(HId; V ; p1(t1)) : � query(h(t); HId):supj;0(HId; V ; I1) : � sup1j;0(HId; V ;G); goal id(G; I1):Call the above rules Type 1 rules.2. If the body of rule Rj is not empty, for eah i, 1 � i � n� 1, generate the following rules:sup1j;i(HId; V ; pi+1(ti+1)) : � supj;i�1(HId; V ; I1); answer(I1; pi(ti)):supj;i(HId; V ; I1) : � sup1j;i(HId; V ;G); goal id(G; I1):Call these rules Type 2 rules.3. If the body of Rj is empty generate the rule:answer(HId; h(t)): �supj;0(HId; V ; ):otherwise generate the rule:answer(HId; h(t)): �supj;n�1(HId; V ; I1); answer(I1; pn(tn)):Call these rules Type 3 rules.4. For eah literal pi(ti) in the body of Rj generate a rulequery(pi(ti); ID1): �supj;i�1(HId; V ; ID1):Call suh rules Type 4 rules.For eah base prediate bi used in the program generate a rule:answer(ID; bi(Xi)): �query(bi(Xi); ID); bi(Xi):where Xi is a tuple of distint variables, with arity equal to that of bi. Call suh rules Type 6 rules.Note that there are no Type 5 rules above | the numbering is designed to be onsistent with thenumbering of rule types used in MTTR rewriting as desribed in Setion 2.3.2.Rule QR1 generates an initial query fat orresponding to the initial query on the program. This fat isused to generate a query fat using rule QR2. Rule QR3 selets fats that are answers to the initial query.The struture of rule QR3 ensures that the id �eld of any answer fat used in a suessful instantiation of the32



QR1 : initial query(an(X;Y ); ID) : �goal id(an(X;Y ); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : an(X;Y ) : � initial query( ; ID); answer(ID; an(X;Y )):S1:0 : sup11;0(HId;X; Y; parent(X;Y )) : �query(an(X;Y ); HId):S1:1 : sup1;0(HId;X; Y; ID) : � sup11;0(HId;X; Y;G); goal id(G; ID):M1:0 : query(parent(X;Y ); ID) : � sup1;0(HId;X; Y; ID):R10 : answer(HId; an(X;Y )) : � sup1;0(HId;X; Y; ID); answer(ID; parent(X;Y )):S2:0 : sup12;0(HId;X; Y; Z; parent(X;Z)) : �query(an(X;Y ); HId):S2:1 : sup2;0(HId;X; Y; Z; ID) : � sup12;0(HId;X; Y; Z;G); goal id(G; ID):M2:0 : query(parent(X;Z); ID) : � sup2;0(HId;X; Y; Z; ID):S2:2 : sup12;1(HId;X; Y; Z; an(Z; Y )) : �sup2;0(HId;X; Y; Z; ID); answer(ID; parent(X;Z)):S2:3 : sup2;1(HId;X; Y; Z; ID) : � sup12;1(HId;X; Y; Z;G); goal id(G; ID):M2:1 : query(an(Z; Y ); ID) : � sup2;1(HId;X; Y; Z; ID):R20 : answer(HId; an(X;Y )) : � sup2;1(HId;X; Y; Z; ID); answer(ID; an(Z; Y ))B1 : answer(ID; parent(X1; X2)) : �query(parent(X1; X2); ID); parent(X1; X2):Figure 2: MGU Magi Rewriting of Anestor Programrule must math the id �eld of the initial query fat. Hene there is no need to atually unify the answerwith the initial query.We all the rewritten version of a program P with query Q as PMGUQ ; we often refer to PMGUQ as PMGUwhen the query Q is understood from the ontext, or is not relevant to the disussion.The following is an example of MGU Magi Templates rewriting. We presented a simple version of therewriting above in order to keep the proofs simple. If we use the simple version of the rewriting, there are alarge number of rules in the rewritten program for eah rule in the original program (although the numberof rules is linear in the number of literals in the original rule). After presenting the example, we disuss howto improve the rewriting to redue the number of rules generated.Example 3.3.1 Suppose we had the programR1 : an(X;Y ) : � parent(X;Y ):R2 : an(X;Y ) : � parent(X;Z); an(Z; Y ):Here the only derived prediate is an, and the only base prediate is parent. Given a query ?an(X;Y ),the rewritten program is as shown in Figure 2.The �rst three rules above are generated from the query. The next four rules are generated from rule R1.The �rst two generate a supplementary fat ontaining an identi�er for the query on the �rst body literal.The third rule generates a query on the body literal parent(X;Y ). The fourth rule generates answers forthe head from answers for the body literal. The rules generated from R2 are similar to the above. The lastrule in the program is a Type 6 rule, that generates answer fats for the base prediate parent. 2In an atual implementation, we would generate all the above rules exept QR1 above at ompile time(when we do not have an atual query). At run time, we would generate a fat for initial query from theatual query fat, and add it to the database. 33



3.3.1 Optimizations of MGU Magi Templates RewritingSeveral optimizations are possible on the above rewritten program. Heneforth we use these optimizationsin the examples in this thesis , but to keep our proofs simple we use the original version of the rewriting inthe proofs. We justify the orretness of the optimizations using simple arguments.First, we an treat base prediates speially in the rewriting. We apply the following transformation tothe rewritten program, for eah base prediate bi. First, eah literal answer(ID; bi(ti)) where bi is a baseprediate is replaed by the literal bi(ti). Thus a rulesup1j;i+1(HId; V ; pi+1(ti+1)): �supj;i(HId; V ; I1); answer(I1; bi(ti)):is replaed by a rulesup1j;i+1(HId; V ; pi+1(ti+1)): �supj;i(HId; V ; I1); bi(ti):Next onsider rules of the following form:sup1j;i�1(HId; V ; bi(ti)): �supj;i�2(HId; V ; I1); answer(I1; pi�1(ti�1)):supj;i�1(HId; V ; I1): �sup1j;i�1(HId; V ;G); goal id(G; I1):We replae these rules by the rulesupj;i�1(HId; V ; 0): �supj;i�2(HId; V ; I1); answer(I1; pi�1(ti�1)):Note that any fat generated for answer(I1; bi(ti)) must be generated from a fat for base prediate bi.For any derivation made using a fat answer(id; bi(: : :)), there is an equivalent derivation in the modi�edprogram, using a fat for the base prediate bi. Finally, we delete all rules that generate queries on bi, andwe delete the Type 6 rule that generates answer fats for bi.Seond, although as desribed above, V is a tuple of all variables in the rule, and is used in eah of thesupplementary rules, it is possible to optimize the rewriting by storing in eah supj;i and sup1j;i literal onlythose variables that satisfy both the following onditions: (1) the variable appears either in the head of therule, or in or after the i+1th literal of the rule, and (2) the variable appears either in the head of the rule,4or in or before the ith literal in the body of the rule. This optimization has no e�et on the fats reatedfor other prediates, sine for eah literal any variable that does not satisfy this ondition is either not usedanywhere (if the variable does not satisfy ondition 1 above), or is guaranteed to be a free variable (if thevariable does not satisfy ondition 2 above). This optimization is the same as that desribed in [BR87b℄ forSupplementary Magi Sets rewriting.3.3.2 ExamplesExample 3.3.2 We onsider the program in Example 3.3.1 again, and rewrite it using the optimizationsoutlined above, to illustrate the e�et of the optimizations to MGU Magi rewriting. The rewritten programis shown in Figure 3.4If adornment is used, the variable must appear in a bound argument of the head of the rule.34



QR1 : initial query(an(X;Y ); ID) : �goal id(an(X;Y ); ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : an(X;Y ) : � initial query( ; ID); answer(ID; an(X;Y ))S1:0 : sup1;0(HId;X; Y; 0) : � query(an(X;Y ); HId):R10 : answer(HId; an(X;Y )) : � sup1;0(HId;X; Y; ID); parent(X;Y )S2:0 : sup2;0(HId;X; Y; 0) : � query(an(X;Y ); HId):S2:2 : sup12;1(HId;X; Y; Z; an(Z; Y )) : �sup2;0(HId;X; Y; ID); parent(X;Z):S2:3 : sup2;1(HId;X; Y; Z; ID) : � sup12;1(HId;X; Y; Z;G); goal id(G; ID)M2:1 : query(an(Z; Y ); ID) : � sup2;1(HId;X; Y; Z; ID):R20 : answer(HId; an(X;Y )) : � sup2;1(HId;X; Y; Z; ID); answer(ID; an(Z; Y ))Figure 3: Optimized MGU Magi Rewriting of anestor programQR1 : initial query(q; ID) : � goal id(q; ID):QR2 : query(Q; ID) : � initial query(Q; ID):QR3 : q : � initial query( ; ID); answer(ID; q):S1:0 : sup11;0(HId; p(a)) : � query(q; ID):S1:00 : sup1;0(HId; ID1) : � sup11;0(HId;G); goal id(G; ID1):M1:0 : query(p(a); ID1) : � sup1;0(HId; ID1):S1:1 : sup11;1(HId;X; p(X)) : � sup1;0(HId; ID1); answer(ID1; p(a)):S1:10 : sup1;1(HId;X; ID1) : � sup11;1(HId;X;G); goal id(G; ID1):M1:1 : query(p(X); ID1) : � sup1;1(HId;X; ID1):S1:2 : sup11;2(HId;X; r(X)) : � sup1;1(HId;X; ID1); answer(ID1; p(X)):S1:20 : sup1;2(HId;X; ID1) : � sup1;1(HId;X;G); goal id(G; ID1):M1:2 : query(r(X); ID1) : � sup1;2(HId;X; ID1):R10 : answer(HId; q) : � sup1;2(ID;X; ID1); answer(ID1; r(X)):S2:0 : sup2;0(HId;X) : � query(p(X); HId):R20 : answer(HId; p(X)) : � sup2;0(HId;X):Figure 4: MGU Magi Templates Rewriting of Program from Example 3.3.3The e�et of the optimizations are as follows. Queries are no longer generated for parent, sine parent isa base prediate, and the Type 6 rule that generates answer fats for parent has been removed. The numberof supplementary rules has dereased sine there is no need to ompute goal-ids for base literals in the rulebody. The number of variable bindings stored in the supplementary prediates sup2;0 is less than before.2Example 3.3.3 We use the following program from Example 3.1.1 to illustrate the di�erenes betweenevaluation of the Magi Templates and the MGU Magi Templates rewritten programs.R1 : q : � p(a); p(X); r(X):R2 : p(X):Query: ?-q:The MGU Magi Templates rewritten version of the program, PMGU MT , is shown in Figure 4.35



We assume that goal id generates identi�ers 1; 2; : : : in sequene. The evaluation of this program �rstgenerates the following fats (in sequene): initial query(q; 1), query(q; 1), sup11;0(1; p(a)), sup1;0(1; 2),query(p(a); 2). At this stage, rules S2:0 and R20 generate the fats: sup2;0(2; a) and answer(2; p(a)). Nowrules S1:1; S1:10 and M1:10 generate the fats: sup11;1(1; X; p(X)), sup1;1(1; X; 3), and query(p(X); 3).The evaluation of the Magi Templates rewriting of the program generates orresponding fats query(p(a)),p(a), query(p(X)), and p(X). Up to this stage, the evaluation of the MGU Magi rewritten program essen-tially parallels the evaluation of the supplementary Magi rewritten program:The di�erene between the two versions of the rewriting is that the MGU Magi rewriting does not useanswer(2; p(a)) in rule S1:2 (orresponding to the literal p(X)), sine the supplementary fat sup1;1(1; X; 3)ontains the goal-identi�er 3. Rather, only answer(3; p(X)) is used in Rule S1:2. Following this deriva-tion, fats sup11;2(1; X; r(X)); sup1;2(1; X; 4); and query(r(X); 4) are generated. No query fat of the formquery(r(a); n) is generated. On the other hand, the Supplementary Magi rewritten program generates thefat query(r(a)) followed an iteration later by the fats query(r(X)), and r(a), followed an iteration later byr(X). MGU Magi rewriting has avoided generating a query (resp., an answer) that is not an mgu-subgoal(resp., an mgu-answer).We do not go into details of the evaluation of the MGU Magi rewriting of Example 3.1.2, but note that(by a similar proess as above) the subgoal query(r(X)) is generated, while the subgoalsquery(r(0)); : : : ; query(r(m))are not generated. The evaluation would derive O(m + n) fats rather than the O(m � n) fats that theevaluation of the Magi rewritten program would generate. 23.3.3 Corretness of MGU Magi TemplatesWe de�ne the following property to make the statements of several of our lemmas and theorems onise.Property 3.3.1 (MGU-Prop) Let P be any program, and Q a query on P . We say that an evaluationof PMGUQ has property MGU-Prop if1. Every fat answer(id; p(a)) generated in the evaluation is suh that p(a) is an mgu-answer to a subgoalon p that has identi�er id.2. Every fat query(p(a); id) generated in the evaluation is suh that ?p(a) is an mgu-subgoal with iden-ti�er id. 2The following lemma provides some intuition behind the variable bindings that are stored in the supple-mentary fats.Lemma 3.3.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequene forPMGUQ suh that the evaluation prior to that step has property MGU-Prop.Suppose a supplementary fat supj;i(id; vi; idi+1) is derived at this step. Let supj;i be a supplementaryprediate generated from a rule Rj of P ,Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn): 36



suh that the body of Rj is non-empty.Then there are fats answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fat query(p(s); id), suhthat1. Eah idm; 1 � m � i, is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spei�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)2 The proof of this lemma is presented in Appendix A.1.Theorem 3.3.2 Given any program P and query Q, the bottom-up evaluation of PMGUQ has property MGU-Prop. 2The proof is by indution on derivation sequenes for PMGU , and the full proof is presented in Appendix A.1.Theorem 3.3.3 Given any program P and query Q, the bottom-up evaluation of PMGUQ is omplete withrespet to Q, i.e., if a fat p that is an answer to Q is present in the least model of P , then p is subsumedby a fat omputed in the bottom-up evaluation of PMGUQ . 2The proof of this theorem is presented in Appendix A.1. We sketh the idea below. The theorem isproved by proving the following more general result (p stands for any prediate, in the following): if a fatquery(p(b); id) is available to the evaluation of PMGUQ , then for every fat p(a) that uni�es with p(b), and isgenerated by a bottom-up evaluation of program P (the original program), evaluation of PMGUQ generates afat answer(id; p()) suh that p() subsumes p(a)[mgu(a; b)℄. The proof of the above result is by indutionon derivation sequenes for the original program P . Consider a step (i.e., a rule along with fats used in thederivation) in the derivation sequene. Suppose that the theorem holds for all fats used in the derivationstep. An indution going left-to-right on the body of the rule shows that needed query fats are generated(and the outer indution shows that the orresponding answer fats for these queries are also generated).These fats are used to generate the required answer fat for the head of the rule.3.3.4 DisussionThe sequene of results above show that given a program P and a query Q, the bottom-up evaluation ofPMGUQ is sound, generates all answers to query Q on P , and further, the evaluation of PMGUQ generates onlymgu-subgoals and mgu-answers. By not generating answers that are not mgu-answer, with programs suh asthose disussed in Setion 3.1, bottom-up evaluation does not generate the subsumed answers that aused itto be less eÆient than Prolog evaluation. Prolog evaluation may still be more eÆient due to tail-reursionoptimization, whih is not performed by the MGU Magi rewriting. In the next setion we desribe how toinorporate the ideas from this setion into Magi Templates with Tail Reursion rewriting.The goal-ids that we generate are very similar to the lid/lont sheme used for indexing answers andgoals in QSQR [Vie86, Vie88℄. We used them primarily to avoid the use of answers to a query to diretly37



answer a more general query. However, we an also use these goal-identi�ers for the purpose of indexinganswers and goals, as is done in QSQR. Suppose we have a supplementary fat (resp. answer fat) with agoal-id value id, and suppose that the fat uni�es with the body literal of a (supplementary) rule. Then ananswer fat (resp. supplementary fat) uni�es with the other body literal of the instantiated rule if and onlyif it has the same goal-id value as the supplementary fat (resp. answer fat). The only if part is easy to seefrom the struture of the supplementary rule. The if part follows sine the answer fat must be an answerto a query generated from the supplementary fat sine it has the same goal-id.The ids are ground values, so indexing on the id �elds of relations an be done eÆiently (in onstanttime using hash tables). This form of indexing is useful for linking supplementary fats with answer fats;any supplementary and answer fats fethed using the index are guaranteed to unify. We have implementedsuh an indexing sheme in the CORAL dedutive database system [RSS92b℄.Semi-Naive evaluation of an MGU Magi Templates rewritten program heks for variants of a goal,but does not perform full subsumption-heking on goals, due to the de�nition of the goal id prediate, andsine a goal id is stored with eah goal. If there are two goals that are not equivalent up to renaming,both goals are stored. Not being able to do full subsumption-heking is a prie we pay for keeping trak ofwhih answer is an mgu-answer to whih goal. We an extend the de�nition of the meta-prediate goal idto allow some subsumption heking on goals. If a new goal ng is subsumed by an old goal og, we give thesame identi�er to ng as we gave to og earlier. Let this identi�er be id. It is ritial that any query fatquery(ng; id) is eliminated by subsumption-heking before it is used, for otherwise we will generate answersfor id that are not mgu-answers. It is possible to extend the rewriting, as well as the subsumption-hekingin the evaluation algorithm to perform a greater degree of subsumption-heking. We do not go into detailshere.3.4 MGU MTTR RewritingIn this setion we ombine ideas from the MGU Magi Templates rewriting and Magi Templates with TailReursion rewriting to get a ombined tehnique, whih we all MGU Magi Templates with Tail Reursionrewriting, or MGU MTTR rewriting for short. In Chapter 4 we ompare the semi-naive evaluation of theMGU MTTR rewriting with Prolog� evaluation (a model for Prolog evaluation), and prove that it makes nomore inferenes than Prolog� evaluation.We desribe MGU MTTR rewriting as an extension of MTTR rewriting that inorporates the ideas thatwe used in MGU Magi rewriting. The basi extension is to add goal-identi�er �elds to query, supplementaryand answer prediates. As is the ase with MGU Magi Templates rewriting, the goal-identi�er �eld is usedto ensure that an answer that is an mgu-answer for some query will not be used as an answer for a moregeneral query. For simpliity, we assume that all prediates are tail-reursive when desribing the rewriting,and later indiate how to relax this assumption. MGU MTTR rewriting is desribed below.MGU MTTR Rewriting:Let P be a program, and ?q(t) a query on P . The following rewrite rules generate a rewritten program whih38



we all PMGU TQ from P and ?q(t).0. Generate the rules:QR1 : initial query(q(t); ID; answer(ID; q(t))): �goal id(q(t); ID)QR2 : query(Q; ID;Ans) : � initial query(Q; ID;Ans):QR3 : q(A) : � initial query( ; ID; ); answer(ID; q(A)):from the initial query q(t), where A is a vetor of distint new free variables, of the same arity as q.Call all the above rules Type 0 rules.Consider eah rule Rj in the program P . Let rule Rj be of the formRj : h(t): �p1(t1); p2(t2); : : : ; pn(tn):Let V denote a tuple of all variables that appear in Rj .1. If the body of Rj is empty generate the rulesupj;0(HId; V ; 0; A): �query(h(t); HId;A):else generate the rules:sup1j;0(HId; V ; p1(t1); A) : � query(h(t); HId;A):supj;0(HId; V ; I1; A) : � sup1j;0(HId; V ;G;A); goal id(G; I1):Call these rules Type 1 rules.2. If the body of rule Rj is not empty, for eah i, 1 � i � n� 1, generate the following rules.sup1j;i(HId; V ; pi+1(ti+1); A) : � supj;i�1(HId; V ; I1; A);answer(I1; pi(ti)):supj;i(HId; V ; I1; A) : � sup1j;i(HId; V ;G;A); goal id(G; I1):Call these rules Type 2 rules.3. If the body of Rj is empty generate the rule:A: �supj;0(HId; V ; ; A):Call suh rules Type 3 rules.4. For eah literal pi(ti) in the body of Rj other than the last literal, generate a rulequery(pi(ti); ID1; answer(ID1; pi(ti))): �supj;i�1(HId; V ; ID1):Call suh rules Type 4 rules.5. If the body of Rj is non-empty, generate the following rule:query(pn(tn); ID1; A): �supj;n�1(HId; V ; ID1; A):Call suh rules Type 5 rules. 39



QR1 : initial query(append([1; 2; 3℄; [4℄; X); ID; append([1; 2; 3℄; [4℄; X)) : �goal id(append([1; 2; 3℄; [4℄; X); ID):QR2 : query(Q; ID;Ans) : � initial query(Q; ID;Ans):QR3 : append(X1; X2; X3) : �initial query( ; ID; ); answer(ID; append(X1; X2; X3)):S1:0 : sup1;0(HId;X; 0; A) : �query(append([℄; X;X); HId;A):R10 : A : � sup1;0(HId;X; ID;A):S2:00 : sup12;0(HId;H; T; L; L1; append(T; L; L1); A) : �query(append([H jT ℄; L; [H jL1℄); HId;A):S2:0 : sup2;0(HId;H; T; L; L1; ID;A) : �sup12;0(HId;H; T; L; L1; G;A); goal id(G; ID):Q2:1 : query(append(T; L; L1); ID;A) : �sup2;0(HId;H; T; L; L1; ID;A):Figure 5: MGU MTTR Rewriting of the append ProgramFor eah base prediate bi used in the program generate a rule:A: �query(bi(Xi); ID;A); bi(Xi):where Xi is a tuple of distint variables, with arity equal to that of bi.Call suh rules Type 6 rules.Rule QR1 generates an initial query fat orresponding to the initial query on the program. This fat isused to generate a query fat using rule QR2. Rule QR3 selets answer fats that are answers to the initialquery. Note that sine the id �eld of the answer mathes the id �eld of the initial query, there is no need toatually unify the answer and query arguments.Example 3.4.1 The append program is de�ned as follows.R1 : append([℄; X;X):R2 : append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):Suppose the given query is ?append([1; 2; 3℄; [4℄; X). The rewritten program is shown in Figure 5. The�rst three rules in the rewritten program are Type 0 rules. Rule S1:0 is a Type 1 rule generated from ruleR1, while R10 is a Type 3 rule generated from rule R1. Rules S2:00 and S2:0 are Type 1 rules generatedfrom R2, and rule Q2:1 is a Type 5 rule generated from R2.In Setion 3.4.1 we disuss some optimizations that simplify the rewritten program, and in Example 3.4.2we disuss the evaluation of the optimized rewritten program. 23.4.1 Optimizations of MGU MTTR RewritingAs in the ase of MGU Magi rewriting, we an optimize MGU MTTR rewriting in several ways. Forsimpliity, our proofs are for the version of MGU MTTR rewriting without these optimizations.We an hoose to treat some literals as non-tail-reursive, even though they appear as the last literal inthe rule. The hanges to the rewriting are fairly straightforward. An alternative way of ensuring that thelast literal in a rule is treated in a non-tail-reursive fashion is by introduing an extra literal true() at the40



end of the rule, and adding true() as a rule (with an empty body). This extra literal does not signi�antlyhange the number of derivations made.Some of the optimizations desribed in Setion 3.3.1 are appliable to MGU MTTR rewriting. Forinstane, we an projet out variables from supplementary literals as desribed in that setion.We an treat base prediates speially in the rewriting, by applying the following transformation tothe rewritten program, for eah base prediate bi. First, eah literal answer(ID; bi(ti)) where bi is a baseprediate is replaed by the literal bi(ti). Next rules of the form:sup1j;i�1(HId; V ; bi(ti); A): �supj;i�2(HId; V ; I1; A); answer(I1; pi�1(ti�1)):supj;i�1(HId; V ; I1; A): �sup1j;i�1(HId; V ;G;A); goal id(G; I1):are replaed by the rule:supj;i�1(HId; V ; 0; A) : � supj;i�2(HId; V ; I1; A); answer(I1; pi�1(ti�1)):All Type 4 rules that generate queries on bi are deleted. (Note that any fat answer(id; pi(ti)) mustbe generated from a fat for base prediate pi. For any derivation made using the answer fat, there isan equivalent derivation made using the new rule with the original fat for pi.) If there is no Type 5 rulethat generates a query on bi, we delete the Type 6 rule that generates answer fats for bi. We an ensurethat there is no Type 5 rule that generates a query on any base literal bi by treating all ourrenes of baseliterals as non-tail-reursive.The query rules that are removed are Type 4 rules. Suh rules generate queries of the formquery(pi(t); ID; answer(ID; pi(t)))that result in fats of the form answer(id; pi(: : :)) being generated; suh rules are not useful one the answerprediate is replaed by the base prediate pi. This optimization is not appliable for Type 5 rules, sinequeries generated by suh rules do not generate answers for the base prediate.Projeting out extra variables from the supplementary prediates an be done as desribed in Se-tion 3.3.1.We an simplify the set of rules QR1; QR2 and QR3 by generating a query whose seond argument is of theform q(t) rather than answer(ID; q(t)). Thus answers to the original query on the program get generateddiretly. The initial query prediate and the rule QR3 are used only for generating answers of the form q(a)for the original query on the program, from fats of the form answer(id; q(a)). We an therefore drop QR3.We merge the rules QR1 and QR2 to get the following rule:Q0R1 : query(q(t); ID; q(t)): �goal id(q(t); ID):3.4.2 An ExampleWe now onsider an example of MGU MTTR rewriting with some of the optimizations desribed above.Example 3.4.2 Consider the append program from Example 3.4.1.R1 : append([℄; X;X):R2 : append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):41



Q0R1 : query(append([1; 2; 3℄; [4℄; X); ID; append([1; 2; 3℄; [4℄; X)) : �goal id(append([1; 2; 3℄; [4℄; X); ID):S1:0 : sup1;0(HId;X; 0; A) : �query(append([℄; X;X); HId;A):R10 : A : � sup1;0(HId;X; ID;A):S2:00 : sup12;0(HId;H; T; L; L1; append(T; L; L1); A) : �query(append([H jT ℄; L; [H jL1℄); HId;A):S2:0 : sup2;0(HId;H; T; L; L1; ID;A) : �sup12;0(HId;H; T; L; L1; G;A); goal id(G; ID):Q2:1 : query(append(T; L; L1); ID;A) : �sup2;0(HId;H; T; L; L1; ID;A):Figure 6: Optimized MGU MTTR Rewritten version of the append programSuppose the given query is ?append([1; 2; 3℄; [4℄; X). The optimized MGU MTTR rewritten program isshown in Figure 6. The main di�erene between the optimized rewritten program and the MGU MTTRrewritten program generated in Example 3.4.1 is that the initial query rules QR1; QR2 and QR3 have beenreplaed by Q0R1.In the Semi-Naive evaluation of the above rewritten program, rule Q0R1 generates a fatquery(append([1; 2; 3℄; [4℄; X); 0; append([1; 2; 3℄; [4℄; X))(whih orresponds to the given query on the program). The last argument of this fat is the fat to beinstantiated and generated as an answer to the query on the program.Rules S2:00 and S2:0 generate a supplementary fat ontaining variable bindings and the identi�er for aquery on the append literal in the body of rule R2. Q2:1 generates the atual query fat using this identi�er.Thus after three iterations, a query fatquery(append([2; 3℄; [4℄; X); 1; append([1; 2; 3℄; [4℄; [1jX ℄))is generated. Three iterations laterquery(append([3℄; [4℄; X); 2; append([1; 2; 3℄; [4℄; [1; 2jX ℄))is generated.query(append([℄; [4℄; X); 3; append([1; 2; 3℄; [4℄; [1; 2; 3jX℄))is then generated. This fat is used with rules S1:0 and R10; X gets bound to [4℄, and a fatappend([1; 2; 3℄; [4℄; [1; 2; 3; 4℄)is generated. This ompletes the evaluation of the program.In this partiular example, the goal identi�ers stored with the fats are not of partiular use. They areuseful if there is a supplementary rule that uni�es supplementary fats with answer fats, as is the ase forderived literals that are not the last literal in the body of a rule. 2
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3.4.3 Corretness of MGU MTTR RewritingFor simpliity, we prove orretness with respet to the unoptimized version of MGU MTTR rewriting. Wede�ne the following property of the evaluation of PMGU T , and prove it as an intermediate step in provingorretness.Property 3.4.1 (MGU T-Prop) Let P be any program and Q a query on P . We say that an evaluationof PMGU TQ has property MGU T-Prop if1. Every fat answer(id; a) generated in the evaluation is suh that a is an mgu-answer to a subgoal withidenti�er id.2. Every fat query(p(a); id1; answer(id2; q(b))) generated in the evaluation is suh that (a) ?p(a) is anmgu-subgoal, and id1 is the identi�er of ?p(a), and (b) if p(a0) is an mgu-answer to the subgoal ?p(a)(wlog assume that a and b share no variables with a0), and � = mgu(p(a); p(a0)), then q(b)[�℄ is anmgu-answer to the subgoal with identi�er id2. 2Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU T hasproperty MGU T-Prop. 2The above theorem shows that bottom-up evaluation of PMGU T is sound, and generates only mgu-answers to mgu-subgoals. The proof is by indution on derivation sequenes for PMGU T , and is presentedin the Appendix A.2. The following theorem shows ompleteness of bottom-up evaluation of PMGU T withrespet to the query on the program. The proof of the theorem may be found in Appendix A.2.Theorem 3.4.2 Given any program P and query Q, the bottom-up evaluation of PMGU TQ is omplete withrespet to Q, i.e., if the bottom-up evaluation of P generates a fat p that is an answer to Q, then p issubsumed by a fat omputed in the bottom-up evaluation of PMGU TQ . 2To summarize this setion, we have shown the following. Given a program P and a query Q, the bottom-up evaluation of PMGU TQ is sound, generates all answers to query Q on P , and further, the evaluationof PMGU TQ generates only mgu-subgoals and mgu-answers. Finally, we note that PMGU TQ performs tail-reursion optimization in the same fashion as P T .
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Chapter 4Bottom-up vs. Prolog� | A HighLevel ComparisonIn this hapter, we �rst present a ost model, whih we all Prolog�, of Prolog evaluation of a query, anda model of a Semi-Naive evaluation of a program. We then use these models to perform a high levelomparison of Prolog� with bottom-up evaluation using MGU MTTR rewriting. The omparison is at thelevel of \ations", and applies to all de�nite lause programs. We also use these models in Chapter 5 toperform a more detailed omparison (at the level of time omplexity) of Prolog� with bottom-up evaluationusing MGU MTTR rewriting.The hapter is organized as follows. We present our model of Prolog evaluation in Setion 4.1. This modelaounts for tail-reursion optimization. In Setion 4.2 we present a model for Semi-Naive evaluation. Thismodel helps redue the ations in Semi-Naive evaluation of a program to a series of attempted derivations. InSetion 4.3 we use this model to ompare the Semi-Naive evaluation of the MGU MTTR rewritten programwith Prolog� query evaluation.In our models, we onsider only de�nite lause programs, whih do not have negated literals in the bodiesof rules.14.1 A Model for Prolog EvaluationIn this setion we present a ost model for Prolog evaluation of de�nite lause logi programs, in order tomake preise the omparison of bottom-up evaluation and Prolog that we make in later setions. Sine thereis no suh thing as a \standard implementation" of Prolog, we de�ne what we mean by a Prolog evaluation.The formal model for Prolog omputation is a depth-�rst exploration of the SLD tree for the query on theprogram (see e.g. [Llo87℄). However, the SLD tree model leaves some important aspets of the evaluationunspei�ed. For instane, it does not speify if tail-reursion optimization is used or not.We present the Prolog� ost model of Prolog query evaluation below. The main purpose of this ostmodel is to provide a lower bound on the ost of Prolog evaluation. Hene we take the liberty of ignoring1We an extend this lass to over ertain restrited forms of negation suh as modularly strati�ed negation, by usingextended bottom-up evaluation tehniques suh as Ordered Searh [RSS92a℄. Details are beyond the sope of this thesis.44



details that are not ritial for our ost analysis. Prolog� is intended to model Prolog evaluation with tailreursion optimization, but without using any other optimizations that a�et the number of subgoals set up,or the number of answers generated.2If a Prolog� evaluation is not omplete, or does not terminate, bottom-up evaluation an ertainly dono worse. Hene, we only onsider Prolog� evaluations that terminate and are omplete. This also has thebene�t of simplifying our proofs onsiderably. The Prolog� model of subgoal evaluation ignores many detailsof ontrol ow. In partiular, the depth-�rst searh strategy used by Prolog is not reeted in the model.Eah subgoal g set up in Prolog� evaluation has a \return-point" r that is either the subgoal itself, or ananestor of the subgoal. The subgoal r is referred to as the return-point subgoal for g. The \return-point"indiates to whih subgoal ontrol must return when an answer is generated for the subgoal, and is usedto implement tail-reursion optimization (Setions 2.3 and 4.1.1). (In ase of failure to generate an answer,ontrol does not return to the return-point subgoal; rather the baktraking mehanism deides whih goalto retry. The details of ontrol are irrelevant to our model, and we ignore them.) In the ourse of generatingan answer to a return-point subgoal r, the subgoal is progressively instantiated. Thus when some subgoalg0 is generated, suh that the return-point of g0 is r, the variables in r have been instantiated. Let theinstantiated version of r at the point when g0 is generated be r0. Then r0 is said to be the instantiatedreturn-point subgoal of g0.As a base ase, the return-point as well as the instantiated return-point subgoal of the initial query onthe program are de�ned to be the initial query itself. If a subgoal g is generated from a literal other thanthe last literal in the rule, both its return-point and its instantiated return-point subgoal are set to g. Ifa subgoal g is generated from the last literal of a rule, its return-point is de�ned to be the return-point ofthe subgoal on the head of the rule. Let the return-point subgoal of g be r. The instantiated return-pointsubgoal of g is de�ned to be the instantiation of r at the point when g was generated.De�nition 4.1.1 (Prolog�) We de�ne the Prolog� ost model of query evaluation through the proedure\Prolog� Evaluation of a Subgoal" shown below. We assume that Prolog� evaluation proeeds till all answersare generated (i.e., Prolog� does not stop at the request of the user), and that Prolog� evaluation terminatesand is sound.The return-point as well as the instantiated return-point subgoal of the initial query on the program arede�ned to be the initial query.Prolog� Evaluation of a Subgoal:Suppose we have a subgoal g =?p(t), with instantiated return point subgoal gr, and a set of rules de�ning p.For eah rule R de�ning p, Prolog� does the following:Let rule R be of the following form:R : p(t0): �q1(t1); q2(t2); : : : ; qn(tn):1. Prolog� �rst attempts to unify the subgoal g with the head of R. If the uni�ation fails, the attempt tosolve g using R fails.If uni�ation sueeds, let � be the most general uni�er of g and p(t0).2For instane, we disallow Intelligent Baktraking (see eg. [CD85℄).45



2. If the body of the rule is empty, Prolog� evaluation returns an answer gr[�℄ to the return-point of g.Otherwise, next literal is set to the �rst literal in the body.3. Prolog� evaluation generates a subgoal next literal[�℄.The return-point and the instantiated return-point subgoal of the generated subgoal are set to the subgoalitself, if next literal is not the last literal in the body of the rule, or if tail-reursion optimization is notused for the last literal.Otherwise, the return point of the subgoal is set to the return point of g, and the instantiated return pointsubgoal is set to gr[�℄.(Coneptually, in the �rst ase, � is saved at this point, to be used when an answer is returned for thesubgoal. In pratie in Prolog, the use of depth-�rst searh with baktraking implies that we do not haveto physially save �. We do not assign any ost to this oneptual \saving" of �.)4. Prolog� then omputes answers to the subgoal.If next literal is not the last literal in the body of the rule, or if tail-reursion optimization is not used forthe literal, answers are returned for the generated subgoal.5. For eah answer a returned for a subgoal l[�℄ on a literal l, Prolog� evaluation does the following:Coneptually, a must be uni�ed with l[�℄, where � is the binding saved (oneptually) in Step 3. Theuni�ation is done impliitly by Prolog evaluation when generating the answer a. (We do not assign anyost to this oneptual uni�ation.) Let �0 be the mgu of a and l[�℄.If there are more literals in the rule body, next literal is set to the next literal in the rule body, and � isset to �0. Computation proeeds as in Step 3.If there are no more literals in the body of the rule, the return-point subgoal has been solved. gr[�℄ isreturned as an answer to the return-point of g.2 The above model is a simpli�ed desription of Prolog evaluation, and omits many details suh as howontrol ow is direted. The details of ontrol ow are important as far as the atual osts of Prolog evaluationare onerned. However, sine our goal is to obtain a lower bound for the ost of Prolog evaluation, andthe ost of implementing ontrol ow is not ounted in our model, we an ignore the details. We an getthe depth-�rst searh strategy used by Prolog by using the proedure desribing subgoal evaluation as aoroutine. Control passes to the proedure whenever a (new) answer is required for the subgoal, and theproedure returns ontrol to its alling point when an answer is generated, and also when no (more) answersan be generated.The important point to note is that eah of the steps desribed is assumed to take 
(1) time, andthe omputation an be viewed as a sequene of suh steps. We refer to eah of these steps in a Prolog�evaluation as an ation performed in the evaluation. We often view the step where an answer is returned toa return-point subgoal as two ations | the �rst ation being the \generation of an answer" and the seond46



ation being the return of the answer to the point where the subgoal was generated. This view is valid, sinewe assign 
(1) ost to eah step, and the sum of their osts is still 
(1).The above model is used in Setion 4.3 to show that Prolog� evaluation of a query performs at least asmany ations as the number of attempted derivations made by bottom-up evaluation of the MGU MTTRrewriting of the program and the query.To inorporate the time ost of evaluation into the omparison, we need to assign osts to eah step.We assume that all the steps above, exept the uni�ation of a query with a rule head in Step 1, take unittime. (This assumption provides a lower bound on their ost.) Step 1 performs a uni�ation, and maytake more than O(1) time; when omparing Prolog� evaluation with bottom-up evaluation, we show that foreah uni�ation ation performed by bottom-up evaluation of an MGU MTTR rewritten program, Prolog�evaluation performs a orresponding uni�ation.4.1.1 Tail Reursion OptimizationTail-reursion optimization and its bene�ts are desribed in Setion 2.3. In many implementations of Prolog,tail-reursion optimization would be performed only if the last literal in a rule was reursive with the head,sine this is ase where it o�ers the maximum bene�t. We assume for simpliity that it is done always.Further, in many implementations of Prolog, tail-reursion optimization is atually done only under morestringent onditions, when the spae alloated for the all to R an be dealloated. Suh an optimization,although often loosely assoiated with tail-reursion optimization, is better termed last-all optimization[MW88℄. Last-all optimization helps redue spae utilization; however, we onentrate on time utilizationin this thesis, and do not take the spae savings into aount in our model.4.2 A Model for Semi-Naive and Not-So-Naive EvaluationWe now onsider a model for the ations in Semi-Naive and Not-So-Naive bottom-up evaluation of an MGUMTTR rewritten program (or an MGU Magi Rewritten program). We assume that the body of eah rulehas at most two literals. Rules in MGU Magi and MGU MTTR rewritten programs are in this form. Weuse the term evaluable prediate to refer to a base prediate whose set of fats is not stored expliitly, but isomputed using imperative ode.Let us denote the rewritten program as PMGU T . Step 1 of Algorithm SN Iterate (desribed in Se-tion 2.2.3) derives fats using rules that have no derived prediates in their bodies. There is only one suhrule, QR1, and it performs only one derivation.We model the ations performed in Step 2.1 of Algorithm SN Iterate as a sequene of uses of derivedfats to derive other fats, as shown below.As noted in Setion 2.2.3, we assume that a left-to-right nested-loops join with indexing is used to evaluateSemi-Naive rewritten rules. Consider a all Apply (Rs; I) in Step 2.1 of Algorithm SN Iterate. ProedureApply performs a nested-loops join. Proedure Make Inferenes(Rs; pi(ai)), shown below, is a model ofthe ations in a single iteration of the outer loop of the nested-loops join. The model also inorporatessubsumption-heking ations. 47



Make Inferenes(R; pi(ai)).1. Standardize apart pi(ai) from R, i.e., make variable names in pi(ai) distint from those in R by renamingvariables if required.32. Compute an mgu �1 of (the renamed version of) pi(ai) with the �rst literal in the body of (the renamedversion of) R.3. If R has only one body literal, set �3 to �1./* Else R has two body literals */Else perform the following ations:(a) Let the seond literal of (the renamed version of) R be pj(tj). Index the relation pj , to feth fats thatunify with pj(tj)[�1℄ (in ase the prediate is an evaluable prediate, a query is set up and evaluatedinstead).(b) When eah fat is fethed, standardize it apart from the (renamed versions of) R and pi(ai).() Compute an mgu �2 of the fethed fat and pj(tj)[�1℄. Let �3 = �1[�2℄.4. Let the head literal of (the renamed version of) R be p(t). Create a fat p(t)[�3℄ for eah mgu �2 as above.5. Chek if p(t)[�3℄ is subsumed by previously generated fats for p. If it is not subsumed, disard all p fatsthat are subsumed by it, insert it into the p relation, and mark it as a newly derived fat. (In the ase ofNot-So-Naive evaluation, the subsumption hek is omitted, and the fat is inserted into the relation evenif it is subsumed.) The newly derived fat p(t)[�3℄ is not used for making inferenes until the next iteration.We split the omputation desribed above into `attempted derivation steps', whih we de�ne below. Thislets us alloate the ost of evaluation to di�erent attempted derivation steps. We split attempted derivationsteps into two ases, depending on whether the derivation is suessful or unsuessful. In the ase wheresuessful derivations are made using a fat, we split the omputation into `suessful derivation steps',one for suessful derivation. In the ase that no suessful derivation is made using a fat, we have an`unsuessful derivation step'. We de�ne these formally below.De�nition 4.2.1 (Derivation Steps) Consider a all Make Inferenes(R; pi(ai)). The following ationsare performed in the all.Steps 1 and 2 of Make Inferenes attempt to unify the fat pi(ai) with the literal pi(ti).1. If the uni�ation in Step 2 of Make Inferenes fails, the ations performed by Steps 1 and 2 with thegiven fat pi(ai) onstitute an unsuessful derivation step.2. If the uni�ation in Step 2 of Make Inferenes sueeds, and rule R has two body literals, the otherliteral in the body of R is indexed.(a) If no fat is fethed by the indexing, the ations performed by Steps 1, 2 and 3a with the givenfat pi(ai) onstitute an unsuessful derivation step.3We an standardize apart R and pi(ai) by renaming one of them. We do not speify whih one.48



(b) If fats are fethed by the indexing, for eah fethed fat pj(aj), Steps 3b, 3, 4 and 5 areperformed.The ations performed in Steps 1, 2 and 3a with fat pi(ai), and the ations in Steps 3b, 3, 4and 5 with fats pi(ai) and pj(aj) onstitute a suessful derivation step.3. If the uni�ation in Step 2 of Make Inferenes sueeds, and rule R has only one body literal, a headfat is reated, and inserted into the appropriate relation. The ations performed in Steps 1, 2, 4 and5 with the given fat pi(ai) onstitute a suessful derivation step.A suessful derivation step in an SN evaluation an be identi�ed4 by the rule R used in the step, and thefat used for eah body literal of R. Eah suessful derivation step has assoiated with it the fat derivedby the derivation step.An unsuessful derivation step in the evaluation an be identi�ed by the rule R used in the step, andthe fat pi(ai).An attempted derivation step is either a suessful or an unsuessful derivation step.In the ase of NSN evaluation, we assume that fats are labeled with integers.5 We extend the de�nitionsabove, to the ase where the fats used in the derivation steps are labeled fats, and thereby de�ne labeledsuessful derivation steps, labeled unsuessful derivation steps, and labeled attempted derivation steps. Wethen identify6 suessful and unsuessful derivation steps as above, but using labeled fats. 2For all Semi-Naive rewritten rules other than the rule QR1, the �rst literal in the rule is a literal ofthe form Æp. Hene, any fat used for suh a literal must be `newly derived' (i.e., derived in the previousiteration), and all derivation steps (other than those involving rule QR1) use a `newly derived' fat for the�rst literal.The ations performed in Steps 1, 2 and 3a may be identi�ed with several suessful derivation steps,and may hene be double ounted. When ounting the ost of evaluation (in Setion 5.7) we reognize this,and avoid double ounting.The de�nitions of derivation steps above are in terms of rules in the Semi-Naive rewritten version ofPMGU T . We often talk of derivation steps using rules from PMGU T rather than from the Semi-Naiverewritten version of PMGU T . Whenever we do so, we speify whih literal is used �rst in the derivationstep, and this uniquely identi�es whih Semi-Naive rewritten version of the rule is used.All the ations in making inferenes, given a fat for the �rst literal in a Semi-Naive rewritten rule, havebeen alloated to attempted derivation steps as desribed above. We still have to aount for two otherkinds of ations in Semi-Naive evaluation: (a) heking if there is a fat for the �rst literal in a Semi-Naiverewritten rule | this is done one per rule in eah iteration and (b) the Semi-Naive update steps, exeutedone in eah iteration. We now onsider how to map the osts of these ations to attempted derivation steps,so that we need not onsider the osts of these ations in the rest of the thesis.1. The ost of heking if a rule an be used in Step 2.1 of SN Iterate in an iteration is O(1). Sinewe assumed that the number of rules is a onstant, we map this ost to the ost of the derivation of4Uniquely, as we shall show.5The integer labels are used to distinguish repeated ourrenes of a fat, sine subsumption-heking is not performed.6Uniquely, as we shall show. 49



some (labeled) fat in some relation of the form Æpold. (There must be some suh fat, else Semi-Naiveevaluation would have terminated after the previous iteration.) Sine any suh fat is present in the Ærelation for at most one iteration, the ost of the derivation does not inrease by more than a onstant,and the inrease an be ignored.2. Subsumption heking ations have been aounted for by the model above. Apart from subsumption-heking, Semi-Naive update ations move fats from one relation to another. This is done at mosta onstant number of times per fat, and we assume this an be done at unit ost per fat (whih isreasonable, assuming hash-based indies are used). We map the ost of moving a fat between relationsto the derivation step that derived the fat; this does not inrease the ost of the derivation step bymore than a onstant, and an be ignored.Thus the ost of Semi-Naive evaluation is at most a onstant times the ost of attempted derivation steps(assuming that the size of the program is a onstant). In the rest of this thesis, we shall treat the ost ofattempted derivation steps as synonymous with the ost of Semi-Naive evaluation.4.2.1 The Non-Repetition PropertyDue to Semi-Naive rewriting, no attempted derivation step is repeated within an iteration. Every attemptedderivation uses at least one fat from a Æ relation. The Semi-Naive updates ensure that eah fat is in aÆ relation for preisely one iteration. Hene, Semi-Naive evaluation has the property that no attemptedderivation step is repeated in the evaluation. We all this property of Semi-Naive evaluation the non-repetition property (see e.g., [MR89, RSS90℄).Not-So-Naive evaluation has a weaker non-repetition property. Eah fat an have several ourrenes,derived by di�erent suessful derivation steps. In the ase of Not-So-Naive evaluation, we give an identi�erto eah suessful derivation step, and label eah ourrene of a fat with the identi�er of the derivationstep that derived it. There an thus be two or more ourrenes of a fat, but eah ourrene has a distintlabel. Eah labeled fat is in a Æ relation for exatly one iteration. Not-So-Naive evaluation has the propertythat no labeled attempted derivation step is repeated in the evaluation. We formalize this property throughthe following theorem.Theorem 4.2.1 (Non-Repetition) Consider a Semi-Naive (resp. Not-So-Naive) evaluation of a program.No attempted derivation step (resp. labeled attempted derivation step) is repeated in the evaluation. 24.2.2 DisussionWe made the assumption above that the size of the program is a onstant; we do not take the size ofthe program into aount in our time omplexity analysis, even though it may ontribute to the ost ofevaluation. There are essentially two plaes where this assumption is used. First, eah iteration of Semi-Naive evaluation applies all the rules, but may �nd the Æ relations empty for all but one rule. To keep thenumber of rule appliations proportional to the number of attempted derivations, and independent of thenumber of rules in the program, we an devise a rule indexing sheme. We disuss the rule indexing shemebriey in Setion 5.9. Seond, there may be many relations, but semi-naive updates may be required only for50



a few of them, if only a few fats are derived in eah iteration. To avoid the ost of heking whih relationsneed to be updated, we keep trak of whih Æ relations are non-empty, and perform Semi-Naive updates onlyfor these relations. Thus the ost of updates an be kept proportional to the number of fats derived, andindependent of the number of prediates in the program.4.3 Bottom-Up Evaluation vs. Prolog� | Number of InferenesIn this setion we present a high-level omparison (based on the number of \ations" performed) of bottom-up evaluation using MGU MTTR rewriting with Prolog� evaluation. In Chapter 5 (Setion 5.7), we extendthis omparison by taking into aount the ost of eah ation.The omparison is performed essentially by mapping eah attempted derivation in bottom-up evaluationto a orresponding ation of Prolog� evaluation, and showing that not more than a onstant number ofattempted derivations map on to the same Prolog� ation. We prove this by showing how to onstrut suha mapping, given a derivation sequene for the MGU MTTR rewritten program.In order to speify the mapping, we assume that eah attempted derivation step has a unique identi�er,and we label fats derived by SN evaluation with the identi�er of the derivation step that generated the fat.In a similar fashion, we label ations (suh as generation of a query or answer) performed by Prolog� in orderto distinguish between multiple ourrenes of the ation. Thus the mapping is in terms of labeled derivationsteps; if a derivation step is repeated (as is the ase if subsumption-heking is not performed), eah repetitionof the step uses fats with di�erent labels, due to the non-repetition property of NSN evaluation.The mapping is somewhat intriate, and we build it up indutively. We assume that we have a mappingwith the required properties for an initial part of a derivation sequene, and show how to extend it in amanner suh that the required properties are preserved. We present details of the mapping in Appendix B.The mapping is de�ned using a ase analysis on the types of rules in the rewritten program. The mappingfor Type 2 rules of the formsup1j;i(: : :): �supj;i�1(: : :); answer(ID; p(: : :)):is the ritial part of the mapping. We show that for eah suessful derivation using suh a rule with somefats supj;i�1(hid; v; id; ans) and answer(id; p(a)), (1) Prolog� evaluation returns an answer p(a) for a queryon the ith literal of rule Rj , and (2) the bindings of rule variables in the Prolog� evaluation when the querywas generated are the same as the bindings stored in v, and (3) the (instantiated) return-point query inProlog� evaluation, when the query on the i'th literal was generated, is equal to ans. We then have thefollowing theorem, whose proof is presented in Appendix B.Theorem 4.3.1 Let P be a de�nite lause program, and Q be a query on the program. There are onstants1 and 2 (that may depend on the size of P ) suh that the following is satis�ed.Let PMGU T be the MGU MTTR rewriting of hP;Qi. Given any database, let the number of labeledattempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption heking)of PMGU T be n, and let the number of ations performed by Prolog� evaluation of query Q with the samedatabase be m. Then n < 1 �m+ 2. 2 51



There may be many ations of Prolog� evaluation that are not in the image of any attempted derivationstep of bottom-up evaluation. Thus, the theorem helps establish an upper bound on how muh worse (interms of number of ations) Semi-Naive evaluation using MGU MTTR rewriting an be ompared to Prolog�evaluation. In ontrast, no suh bound exists for the opposite diretion. For queries on the following simpleprogram to detet reahability in a graph, Prolog� may not terminate if there are yles in the edge relation,whereas Semi-Naive evaluation of PMGU T always terminates if the edge relation is �nite.reahable(X;Y ) : � edge(X;Z); reahable(Z; Y ):reahable(X;Y ) : � edge(X;Y ):
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Chapter 5Evaluation of Non-Range-RestritedProgramsIn this hapter we onsider the eÆient evaluation of programs that have been rewritten using MGU MTTRrewriting. In Setion 5.1 we motivate the need for bottom-up evaluation of programs that generate non-ground fats; to the best of our knowledge, no eÆient bottom-up evaluation shemes for suh programs wereknown in the past. We develop a term representation using \persistent versioned" binding environments(Setion 5.3). We then develop an evaluation tehnique that keeps extra information with fats, and usesthis information to redue the ost of some uni�ations (Setion 5.4).The evaluation tehnique we develop is quite eÆient in terms of time omplexity. We show in Setion 5.7that given a program and a query, if Prolog� evaluation of the query on a database takes time t, the bottom-up evaluation of the MGU MTTR rewritten program using our evaluation tehnique, on the given database,without subsumption heking, takes time O(t�log log t). (The size of the program is not taken into aount inthe time omplexity measure.) If subsumption heking is used, in many ases bottom-up evaluation is muhmore eÆient than Prolog query evaluation. We disuss some extensions of our tehniques in Setion 5.9.In Setion 5.10 we summarize earlier results of ours on the evaluation of a restrited lass of programs thathave been rewritten using MTTR rewriting. We disuss related work in Setion 5.115.1 IntrodutionPrograms that generate non-ground terms are of onsiderable importane. For instane, di�erene-lists1 areused in Prolog to append lists in onstant time; they are an instane of a more general tehnique for reatingdata strutures top-down, �lling in \holes" as omputation proeeds. One suh appliation is the parsing ofDe�nite Clause Grammars | it is natural to reate the outer struture of the parse tree, and �ll in �elds asomputation proeeds. By doing so, attributes of one part of the parse tree are available for referene whenanother part of the tree is being onstruted. Meta-interpreters, partial evaluators, abstrat interpreters andother suh programs operate on data strutures that ontain variables. Memoing of goals and answers is very1Di�erene lists are a form of representation of lists. dlist(L;X) is suh that L is a list that ontains variable X at the end,rather than \nil". See Example 5.1.1 for a more detailed desription.53



important for some of these programs [War92℄. For instane, hart parsing of DCGs is naturally supportedusing memoing, and an be muh more eÆient than top-down parsing in some situations. It is thereforeneessary to support eÆient memoing evaluation of programs that generate non-ground fats.In the absene of non-ground fats, bottom-up evaluation using MGU MTTR rewriting is as fast (up toa data-independent onstant fator) as Prolog, as disussed in Sudarshan and Ramakrishnan [SR92b℄ (seeSetion 5.10). However, for logi programs that an generate non-ground fats there is a signi�ant overheadper inferene for unoptimized bottom-up evaluation tehniques; the overhead is no longer within a onstantfator of Prolog.In this hapter we present an eÆient evaluation mehanism for programs that have been rewrittenusing MGU MTTR rewriting. This evaluation mehanism is of partiular use for programs that generatenon-ground fats. We all this evaluation mehanism Opt-NG-SN evaluation (whih stands for OptimizedNonGround Semi-Naive evaluation). We use the term Opt-NGBU query evaluation for the query evaluationmehanism that �rst rewrites programs using MGU MTTR rewriting, and evaluates the rewritten programusing Opt-NG-SN evaluation.Using the Opt-NGBU evaluation mehanism, we show the following: modulo the ost of subsumption-heking, the overhead of atually memoing goals and fats and \looking up" the answers that orrespondto a given goal is quite small (O(log logm), where m is bounded by the ost of Prolog evaluation). (To bemore preise, we show that given a program and a query, if Prolog evaluation of the query on a databasetakes time t, then Opt-NGBU query evaluation on the given database, without subsumption-heking, takestime O(t � log log t). The size of the program is not taken into aount in the time omplexity measure.)In essene, our results show how to memo non-ground fats \almost" as eÆiently as ground fats. Animportant onsequene is that memoing tehniques an always perform \almost" as eÆiently as Prolog(often, muh better). This result assumes that the size of the program (but not the database) is a onstant.Cheking whether a goal (similarly, an answer) is already memoed an be expensive. The ost ofsubsumption-heking must be balaned against the ost of reomputation. (See Setion 5.8 for a more om-plete disussion.) Opt-NGBU evaluation an be faster if some redundant omputation is avoided throughsubsumption-heks; in fat, the time omplexity of evaluation may be signi�antly better. There are manyprograms where Prolog evaluation and Opt-NGBU evaluation without subsumption-heking run for ever,but Opt-NGBU evaluation with subsumption-heking terminates.In the light of these results, the biggest di�erene between Prolog and Opt-NGBU evaluation withoutsubsumption-heking is that between \pipelining" and \materialization" [CGK89℄. The onstants are higherfor memoing sine fats and goals are expliitly reated and stored, but there are bene�ts in many ases dueto avoided reomputation.However, we note that even without subsumption-heking, Opt-NGBU evaluation has several bene�ts.Opt-NGBU evaluation is omplete for de�nite lause programs | inluding programs with funtion symbols| even without subsumption-heking. Further, muh of the repeated omputation in iterative deepening (atehnique used to make Prolog evaluation omplete; see, e.g. [O'K90℄) is avoided, even without subsumption-heking.As an example of the power of the optimized evaluation tehnique, the bottom-up evaluation of appendwith non-ground lists of length n is performed in time O(n) by our optimized tehniques, as against O(n2) by54



unoptimized bottom-up query evaluation. Top-down evaluation tehniques that perform memoization, e.g.QSQR extended to deal with non-ground terms, are also quadrati. (These times are under the assumptionthat our-heks and subsumption-heking | the later being unneessary for this program| are omitted.)We present an example (Example 5.9.2) of the bene�ts to be had from the use of di�erene-lists (whihare non-ground strutures) in a program that is best evaluated bottom-up.5.1.1 A Motivating ExampleWe now onsider an example that motivates the results in this hapter, and illustrates the main issuesinvolved.Example 5.1.1 Di�erene lists (see e.g., [O'K90℄) are a representation for lists. The following is an exampleof a di�erene list.dlist([1j2jX ℄; X)It represents the list [1; 2℄. Di�erene list append is de�ned by following rule:dappend(dlist(X;Y ); dlist(Y; V ); dlist(X;V )):A goal?dappend(dlist([1j2jX ℄; X); dlist([3j4jZ℄; Z); Ans)would unify with the head of the above rule to give the struturedappend(dlist([1j2j3j4jZ℄; [3j4jZ℄); dlist([3j4jZ℄; Z); dlist([1j2j3j4jZ℄; Z) )Thus Ans gets bound todlist([1j2j3j4jZ℄; Z)whih is in the required format. Answering a query on dappend takes onstant time in Prolog. Note thatthe �rst argument of dappend is hanged when the query is solved.2Let us now onsider what happens if we use di�erene lists with bottom-up evaluation. Suppose we havethe following rule for omputing paths, as part of a larger program:path(X;Y; L) : � path(X;Z;L1); edge(Z; Y ); dappend(L1; dlist([ZjY jV ℄; V ); L):The path fats store potentially long paths represented as di�erene lists. The �rst problem in makingan inferene is that if we diretly use the di�erene list stored in the given path fat and try to append anedge to it, the di�erene list in the given path fat will get damaged, and annot be used to make furtherderivations. The evaluation mehanism (Opt-NG-SN evaluation) presented in this hapter uses a termrepresentation with binding environments for variables, and a \persistent versioning" sheme to address theproblem of modifying shared variables without damaging stored fats (Setion 5.3).32dappend is destrutive in the sense that it hanges its �rst input argument. In this example, the �rst argument an still beinterpreted as representing [1; 2℄ by \subtrating" the seond list, but it annot be meaningfully used in further alls to dappenduntil the destrutive update is undone during baktraking.3By not damaging stored fats, we get the same e�et as undoing of the update on baktraking. However, persistentversioning does not solve the problem that the �rst argument of dappend is hanged after uni�ation, This problem is inherentin the di�erene list representation, and is present with top-down evaluation too.55



The seond problem is less obvious, and is present with Magi rewriting as well as with its variants (MT-TR, MGU Magi Templates and MGU MTTR rewriting, and Alexander Templates). The SupplementaryMagi rewriting of the given rule (ignoring queries on path and edge) is as follows:R1 : sup1;0(X;Y; Z; L; L1) : �query(path(X;Y; L)); path(X;Z;L1); edge(Z; Y ):R2 : query(dappend(L1; dlist([ZjY jV ℄; V ); L)) : �sup1;0(X;Y; Z; L; L1):R3 : path(X;Y; L) : � sup1;0(X;Y; Z; L; L1); dappend(L1; dlist([ZjY jV ℄; V ); L):R4 : dappend(dlist(X;Y ); dlist(Y; V ); dlist(X;V )) : �query(dappend(dlist(X;Y ); dlist(Y; V ); dlist(X;V ))):Let us onentrate on the generation of queries and answers on dappend. The third argument of thesup1;0 fat is a list of nodes on a path, and an be quite large. From the sup1;0 fat we generate a query ondappend. In general, we have to rename variables in fats and rules before uni�ation, in order to avoid namelashes. We an be smart and rename the rule and the smaller fats, and avoid renaming the larger fats.Suh a renaming works well for rules R2 and R4, and we an reate an answer to the query on dappend (weuse the \persistent versioning" sheme to avoid damaging the stored path fat while doing this). But now wehave to unify two potentially large fats, one for sup1;0 and one for dappend with rule R3. Renaming eitherfat an be linear in the size of the fat. After renaming, the problem of atually unifying the renamed fatswith the rule still remains.We all the step of unifying an answer fat and a supplementary fat with a rule body as answer-returnuni�ation. Prolog evaluation does not perform any uni�ation when an answer is returned to a query, andhene does not perform any uni�ation equivalent to the answer-return uni�ation. In general, uni�ationtakes time linear in the size of the terms. (For the ase of ground terms, we an use hash-onsing to storepreomputed values to speed up uni�ation; no suh tehnique is known for the general ase.)To redue the ost of answer-return uni�ation, Opt-NG-SN evaluation stores part of the state of theomputation along with eah fat, and maintains information about the state through auxiliary identi�ersstored with fats (Setion 5.4). Using the stored state information, it is able to redue the time ost ofanswer-return uni�ations performed by bottom-up evaluation to almost a onstant per uni�ation in manyases (in all ases, if subsumption-heking is not used). 2Table 2 shows a omparison between various osts in unoptimized bottom-up evaluation of an MGUMTTR rewritten program and Prolog evaluation. After presenting our optimization tehniques, we presenta similar omparison of Prolog with optimized bottom-up evaluation.5.2 BasisIn this hapter we onsider query evaluation on de�nite lause programs.4 As the �rst stage of bottom-upquery evaluation, the given program and query are rewritten using MGU MTTR rewriting (Setion 3.4).Our evaluation mehanism is designed to evaluate the rewritten programs eÆiently.4We an extend this lass to over ertain forms of negation suh as strati�ed negation [CH85, ABW88℄ or modular nega-tion [Ros90℄, by using our optimizations in onjuntion with evaluation tehniques suh as \Ordered Searh" [RSS92a℄. We donot disuss this issue. 56



Operation Bot. Up (No Opt.) PrologUni�ationa. Answer-return O( size of terms ) O(1)b. Other O( size of terms ) O( size of terms )Indexinga. Answer-return O(Pfats size of fat ) O(1)b. Other O(Pfats size of fat ) O(Pfats size of fat )Subsumption Cheking | |Creation of head fat O( size of fat ) O(1)(Cannot instantiateshared variables)Table 2: Bottom-Up Evaluation using MGU MTTR rewriting vs. PrologWe note that programs rewritten using MGU MTTR rewriting ontain the meta-prediate goal id. Thesemantis of suh programs was disussed in Setion 3.2. We use the term program prediate to denote baseprediates (i.e. those de�ned in a database) as well as derived prediates (i.e. those de�ned in the program);meta-prediates (i.e., the goal id prediate) are not onsidered program prediates.5.2.1 PreproessingTo make our disussion and analysis simpler, we assume that all non-equality literals in rules of the programhave as arguments only distint free variables. This an be ahieved by the following straightforward trans-formation, without any inrease in the time omplexity of either Prolog evaluation of bottom-up evaluation.Suppose we have a rule:R : p(t0;1; t0;2; : : : ; t0;n0) : � q1(t1;1; t1;2; : : : ; t1;n1); q2(t2;1; t2;2; : : : ; t2;n2); : : : ; qk(tk;1; tk;2; : : : ; tk;nk):We transform the above rule into the following rule, where eah Xi;j is a new variable, distint from anyvariables in the rule.R : p(X0;1; X0;2; : : : ; X0;n0): �X0;1 = t0;1; X0;1 = t0;2; : : : ; X0;n0 = t0;n0;X1;1 = t1;1; X1;1 = t1;2; : : : ; X1;n1 = t1;n1; q1(X1;1; X1;2; : : : ; X1;n1);X2;1 = t2;1; X2;1 = t2;2; : : : ; X2;n1 = t2;n1; q2(X2;1; X2;2; : : : ; X2;n2);� � �Xk;1 = tk;1; Xk;1 = tk;2; : : : ; Xk;n1 = tk;n1; qk(Xk;1; Xk;2; : : : ; Xk;nk):It is straightforward to verify that this transformation does not result in any inrease in the time om-plexity of Prolog� evaluation.5 In partiular, it does not a�et the use of tail-reursion optimization. Thistransformation introdues equality literals. We assume that equality is a base prediate with a single fat\= (X;X)". Further, we assume queries are not generated for the equality prediate, and instead the opti-mization of MGU MTTR rewriting for uses of base prediates (desribed in Setion 3.4.1) is applied to our-renes of the equality prediate. This optimization allows the replaement of ourrenes of answer(ID; q(t))by q(t) in the bodies of rules, if q is a base prediate. No queries are generated for literals where this re-plaement is performed.5We assume that the size of the program is �xed. Thus, although the above transformation an defeat rule indexingtehniques used by Prolog, the loss of speed is by at most a onstant fator.57



As a result of this preproessing, body ourrenes of literals of the form supi;j(ti), answer(ID; pi(ti)),or query(pi(ti); ID) are suh that ti is a tuple of distint variables. This preproessing is not ritial, butsimpli�es the disussion onsiderably.5.3 Representation of Terms and FatsThe representation used for terms is important in bottom-up evaluation. Subterms are shared betweendi�erent goals and answers, both in bottom-up evaluation and in Prolog evaluation. Prolog uses a tuple at atime baktraking strategy, and hene it an destrutively modify variable bindings, and on baktraking itan undo the modi�ations in order to perform further derivations. On the other hand, bottom-up evaluationan generate several fats from a given fat (for instane, several query fats may be generated from a agiven query fat), and the fats may need to o-exist. Thus several instantiations of a variable may alsoneed to oexist. Hene destrutive modi�ation of variable bindings is ruled out. We note that this problemalso exists for non-depth-�rst evaluation strategies suh as parallel implementations of Prolog. We desribebelow the term representation we use in our evaluation mehanism. The ore of the representation is a\fully-persistent versioned" binding environment for variables.A binding environment (bindenv) stores bindings for variables. A variable in bindenv may be free, ormay be bound to a struture struture0 (whih is possibly an atomi value). Variables within struture0 arealso interpreted in bindenv. A bindenv di�ers from a substitution in the way in whih it is interpreted. Avariable X in the binding environmentfX ! f(Y ); Y ! agis interpreted as being bound to f(a) by dereferening variables ompletely, whereas a variable X in asubstitution fX=f(Y ); Y=ag is interpreted as being bound to f(Y ).We represent a fat as a pair hstruture; bindenvi. Here bindenv is a binding environment that reordsthe urrent binding of eah variable present in struture (and perhaps other variables as well). The followingis an example of our term representation:hg(W;Y ); fY ! X;Z ! 4;W ! f(Z;Z)giThis represents the fat g(f(4; 4); X).During rule appliation we allow variable bindings to span bindenvs; suh bindings are of the formhstruture0; bindenv0i. Variables within struture0 are interpreted in bindenv0. We do not allow suh bind-ings in fats, for reasons that we note later in this setion.Given a fat f , we use f:struture to refer to the struture of f , and f:bindenv to refer to the bindenv off . Thus f = hf:struture; f:bindenvi. We use the notation hs; ei, where s is a term, to denote s interpretedin bindenv e.De�nition 5.3.1 We say that terms hs1; e1i � hs2; e2i if both terms represent exatly the same term.Given a fat f = hf:struture; f:bindenvi, the variables in f:struture are said to be diretly aessiblefrom f:struture. By looking up the bindings of these variables in f:bindenv, more variables are reahable(transitively). All suh variables are said to be aessible from f:struture. Note that f:bindenv may ontainbindings for variables are not aessible (diretly or indiretly) from f:struture.58



The variables in the fat f are those variables that are aessible from f:struture. The free variables inthe fat f are those variables that are aessible from f:struture, and are free. The bound variables in thefat f are those that are aessible from f:struture, and are bound. 2Binding environments are implemented using \fully persistent versions of data strutures" [DSST86,Die89℄. When applied to bindenvs represented as arrays, a fully persistent versioning sheme permits us toarry out the following operations eÆiently:1. Create a new hild version of an existing bindenv (whih itself may have been reated as a hild versionof another bindenv, and so on). The new version has the same bindings as the old version when it isreated, but any hanges made to the new version will not a�et the old version.2. Add a new variable to a version of a bindenv.3. Lookup the binding of a variable in a version of a bindenv.4. Change the binding of a variable in a version of a bindenv.Variable names (internally) are just numbers, and looking up the binding of a variable is ahieved by indexingthe array. A null entry in the array represents a variable that is not bound. Adding a variable is equivalentto extending the array by adding a new variable binding. We assume that eah version of a bindenv keepstrak of the highest numbered variable in it, so that new variables an be added to a bindenv version.In this hapter, whenever we onsider the time omplexity of evaluation, we assume that the versioningsheme of Dietz [Die89℄ is used. Using Dietz's sheme, operation (1) an be done in onstant time, andoperations (2), (3) and (4) an be done in time O(min(log logm; logn)), where m is the total number ofversions of bindenvs that have been reated and n is the number of versions of the variable that have beenmodi�ed. For brevity, where several variables are versioned, we use the notation V (de�ned below).De�nition 5.3.2 (V) Consider an evaluation of a program. Let fV1; V2; : : :g be the variables used in theevaluation. Let ni denote the number of versions of Vi that have been modi�ed, and let m denote the totalnumber of versions of bindenvs that have been reated. Then V denotes maxi(min(log logm; logni)). 2We do not disuss the details of representation of versioned bindenvs, and refer the reader to [DSST86,Die89℄. We noted earlier that the representation we use for fats does not allow bindings of the form(struture; bindenv). This restrition is beause do not know how to reate versions of fats eÆiently usingthe representation without this restrition | the problem is related to the problem of onuent versioning(see, e.g., [DST90℄).5.3.1 Context Identi�ers for FatsWith eah supplementary and initial query fat we store two identi�ers. The �rst identi�er �eld is alledont id, whih stands for \ontext identi�er". Loosely speaking, this �eld stores a unique identi�er for thesupplementary / initial query fat. The semantis of this �eld are made more preise later. The seondidenti�er �eld is alled par id, whih stands for \parent ontext identi�er". Again loosely speaking, this�eld is used to store the ontext identi�er of the ontext (i.e., the supplementary/initial query fat) thatresulted in the generation of a query, and where answers to the query will be used. With all fats other thansupplementary and initial query fats, we store only the par id �eld.59



5.3.2 DisussionWe did not require updates on a parent version of a bindenv to be seen by hild versions that have beenreated earlier. However, suh a feature ould be useful for lazy path-ompression on hains of variablebindings. Suh path-ompression an be implemented if desired (at no extra ost) using the fully-persistentversioning shemes desribed in [DSST86, Die89℄.There is a variant of Dietz's versioning sheme ([Die89℄), with an aess ost of logn for eah variable,where n is the number of versions of the variable that have been modi�ed. This sheme has lower onstantosts than the V aess ost sheme. An alternative way of implementing bindenvs is as a balaned searhtree. Searhing for or modifying a variable binding takes O(logn) time, where n is the number of variablesin the bindenv. Searh trees an be made fully persistent using the tehniques or Drisoll et al.[DSST86℄,at no extra aess ost. The idea is fairly simple | whenever a node is hanged by an operation, the pathfrom the root to the node is opied, so that the hanges are not seen by other versions of the bindenv.There is a \virtual opy" sheme due to D.H.D. Warren ([War83℄, ited in [Per85℄) that allows reationof versions of bindenvs represented as tries. It di�ers from the shemes mentioned above in that it is not\fully persistent" | if you make an update on a parent version, it will not be seen by any hild versionsreated earlier. However, it is simpler than the fully-persistent versioning tehniques. We have implementedthis sheme in the CORAL dedutive database system [RSS92b℄.Several shemes have been proposed for representing variable bindings in the ontext of OR-ParallelProlog evaluation. It is pointed out in [GJ90℄ that eÆient implementation of the following operations isimportant for OR-parallel Prolog evaluation: (1) aess time to �nd variable bindings, (2) environmentreation time, and (3) task swithing time. Eah of these operations has an analogue in BU-evaluation. (Wenote that task-swithing as desribed in [GJ90℄ di�ers from the analogous operation in BU-evaluation, inwhih rule instantiations an be arried out essentially independently, exept for some onurreny ontrolto prevent oniting updates to persistent bindenvs. Hene, it appears that the lower bounds on the ostsof these operations shown in [GJ90℄ do not apply to BU-Evaluation.) Using Dietz's versioning sheme, weget bounds of O(V) for operations (1) and (2), and onstant time for (3).5.4 How to Apply a RuleThe basi operation in bottom-up evaluation is the appliation of a rule to produe new fats. In thissetion we present an algorithm to apply a rule, with several optimizations to handle non-ground fats moreeÆiently. We assume that the rules to be evaluated are those generated by the MGU MTTR rewritingpresented in Setion 3.4. The oneptual steps in applying a rule using a single fat were desribed inSetion 4.2. In this setion we onentrate on the details of how these steps are implemented.Proedure Apply Rule is shown below. It essentially performs a left to right nested loops join. Wedesribe informally some of the proedures that it uses, and present the details of these proedures later inthis setion.Proedure ApplyRule( R ).Let the rule to be applied be: 60



R : p(t): �q1(t1)[; q2(t2)℄:/* [ ℄ denotes an optional argument */1. Let r env = a new empty (non-persistent) bindenv for the variables in the rule.2. Feth fats for q1. /* q1 must be a base/derived prediate */For eah fethed fat hstr1; env1i do the following:2.1. Set env10 = new version of env1.2.2. Unify ( hq1(t1); r envi, hstr1; env10i).During this uni�ation, variables in the rule are bound preferentially.2.3. If the uni�ation in the Step 2.1 sueeds, Then2.3.1. If q2 is a program prediate, Thena. Feth q2 fats that unify with hq2(t2); r envi.b. For eah fethed fat hstr2; env2i do the following:Exeute Smart Unify (R; hstr1; env1i; hstr2; env2i; hR0; r env0i).If Smart Unify failure, ontinue with the next fethed fat.Else Insert Head Fat( hR0; r env0i)2.3.2. ElseRename and Reunify( R; hstr1; env1i; hR0; r env0i)If q2 is a meta-prediate, evaluate q2(t2)./* Else the rule has only one literal */Insert Head Fat( hR0; r env0i).2.4. Undo bindings in r env.end Apply Rule.An important point to note in Apply Rule is the reation of versions of bindenvs. Version reation ensuresthat the uni�ation operations do not a�et any stored fats. We do not present details of Unify, but desribeit informally. Unify uni�es its two arguments | bindings in the two environments are updated to reate theuni�ed result. During uni�ation, variables in its �rst argument are bound preferentially.6 Details of theindexing tehnique used to retrieve fats are disussed later.Smart Unify uni�es the two fethed fats with their respetive body literals. Notie that the fat bindenvsthat it is alled with are the original fat bindenvs, that do not inorporate the hanges due to the uni�ationin Step 2.1 of Apply Rule. The same is true for Rename and Reunify. Uni�ation in Step 2.1 of Apply Rulereates variable bindings that ross bindenvs. Sine we do not allow suh bindings in fats, we ignore thebindings reated in Step 2.1 one fats have been fethed in Step 2.3.1.a. Smart Unify inorporates our mainoptimization ideas, and is desribed in detail in Setion 5.4.1. Renaming of variables in the rule and thefats may need to be done in the ourse of Smart Unify. Smart Unify returns a renamed and instantiatedversion R0 of the rule R. (Instead of renaming rule variables during rule appliation, their renaming may bedeferred to the point when the head fat is reated. We disuss this optimization in Setion 5.9.)6In other words, if two free variables, one from the left argument and one from the right argument are to be uni�ed, thevariable from the left argument is bound to the other variable.61



In the ase when there is only one non-meta literal in the body of the rule, Smart Unify is not alled.Rename and Reunify is instead used to rename rule variables in a manner similar to Smart Unify, and toreate a renamed and instantiated version R0 of rule R.In general, the rule an ontain the meta-literal goal id. Suh a literal is evaluated after the literal toits left has been evaluated (it is important that meta-literals are evaluated after literals to their left areevaluated). The goal id literal generates a single answer eah time it is evaluated. Insert Head Fat reatesa head fat, and inserts it into the appropriate relation. It heks for subsumption of the fat (if required;in some ases subsumption-heking is not used) before inserting it.Let us now onsider proedure Smart Unify.Proedure Smart Unify (R; hs1; env1i; hs2; env2i; hR0; r env0i)./** Due to MGU MTTR rewriting, any rule with two program prediateshas a query/supplementary/initial query literal and an answer literal inits body. Hene one of hs1; env1i and hs2; env2i is a query/supplementary/initial query fat, and the other an answer fat.**/1. If hs1; env1i is the query/supplementary/initial query fat,set s = hs1; env1i; a = hs2; env2ielse set s = hs2; env2i; a = hs1; env1i.2. If R is a supplementary (Type 2) rule,Then exeute Return Unify (R; s; a; hR0; r env0i).If it sueeds, return suess.3. Return Rename Fat and Unify(R; s; a; hR0; r env0i).end Unify.Smart Unify makes use of knowledge about MGUMTTR rewriting. In a MGUMTTR rewritten program,any rule with two program prediates in its body must be either a Type 2 (supplementary) rule or a Type6 (base fat) rule. In either ase the body of the rule has a query/supplementary/initial query literal andan answer literal. Let us ignore for now the all to Return Unify, and assume that Smart Unify allsRename Fat and Unify (we will ome bak to Return Unify later).Rename Fat and Unify renames variables so that the variable names used in the two fats and the ruleare disjoint. First onsider the ase that the rule is not a Type 0 rule QR3. The main optimization here isthat variables in the query/supplementary fat are not renamed. Variables in the rule and in the answer fatare renamed instead. The reason for renaming fats in this manner is disussed later. After the variablesare renamed, the (renamed) fats are uni�ed with the renamed rule. The renamed rule R0, interpreted inbindenv r env0 is the result of unifying the fats with the rule. Note that sine both the fats and the ruleused the same bindenv after renaming, all bindings in the bindenv are loal to the bindenv (and hene inthe form required in Setion 5.3).If the rule is a Type 0 rule QR3, a further optimization is used. Suh a rule reates answers for the user's62



query from fats for answer, and is of the following form:QR3 : q(A): �initial query( ; ID; ); answer(ID; q(A)):Note that the arguments of initial query are all \don't are" (` ') exept for the ID argument. The valuestored in the ID argument is an integer, and the variable ID gets bound to this value. Hene no renamingis needed for initial query fats used in the rule.Note that r env0 is the bindenv from the versioned query/supplementary fat, and hene a versiondesendant of the bindenv of the original query/supplementary fat. The identi�ers stored in the bindenvsof fats are updated by Update Context Ids. We disuss details of updates to the identi�ers later. Thevalues in these identi�er �elds are used in Return Unify.Proedure Rename Fat and Unify(R; s; a; hR0; r env0i)1. Set r env0 = a new version of s:bindenv.2. Set s0 = hs:struture; r env0i.3. If R is not a Type 0 rule QR3Set a0 to be a fully dereferened version of a, with free variables renamedwith numbers starting from just above the highest numbered variablein r env0.Add all new variable to r env0.4. Set a0:bindenv = r env0.5. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.6. Unify the query/supplementary literal in hR0; r env0i with s0,preferentially binding variables in R0.7. Unify the answer literal in hR0; r env0i with a0,preferentially binding variables in R0.8. If the uni�ations fail, Then return failure.9. Update Context Ids( R0; r env0; s).10. Return suess.end Rename Fat and Unify.In the ase that Smart Unify is not alled from ApplyRule, Rename and Reunify is alled instead. Re-name and Reunify renames the variables in the rule so that they are disjoint from the variables in the solebody fat, and redoes the uni�ation performed in Step 2.2. The bindenv r env0 is now a hild of the bindenvof the fat hstr1; env1i.Insert Head Fat inserts the derived fat into the appropriate relation, after performing subsumption-heking if required. Before doing so, it dereferenes variables in the fat.Proedure Rename and Reunify(R; hstr1; env1i; hR0; r env0i)63



1. Set r env0 = new version of env1.2. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.3. Unify the body literal of hR0; r env0i with the fat hstr1; r env0i.4. Update Context Ids( R0; r env0; hstr1; env1i).end Rename and ReunifyProedure Insert Head Fat( hR0; r env0i)1. If subsumption-heking is to be done, and the head fat ofhR0; r env0i is subsumed by an existing fatThen return.3. Set h to be a dereferened version of the head of R0.5. Insert hh; r env0i into the appropriate relation.end Insert Head Fat.Ignoring the all to Return Unify, it is not hard to see that Apply Rule is orret (i.e., it generates alland only those fats that follow (using mgus) from the rule and the given fats). In all ases, versions of fatbindenvs are reated so that existing fats are not a�eted by the ations of Apply rule. Sine rules in theMGU MTTR rewritten program have at most two body literals, and the �rst literal is either a base or derivedliteral, for all suh rules Apply Rule performs the uni�ation of fats with the rule in a fairly straightforwardmanner if we ignore Return Unify. We desribe the ations of Return Unify and prove orretness in a moreformal fashion later.5.4.1 Context Identi�ers and Return-Uni�ationThe uni�ation of the answer fat with the answer literal in rules that use supplementary prediates (Type2 rules) has no ounterpart in Prolog. This answer-return uni�ation is done impliitly by Prolog whilegenerating the answer fat, sine answer fats are not shared by di�erent alls; Prolog does not have toperform a uni�ation on returning an answer. In bottom-up evaluation answer fats have to be expliitlyuni�ed with a rule in order to generate new fats. It is important that this operation be done eÆiently inbottom-up evaluation; else bottom-up evaluation ould be muh slower than Prolog.Proedure Return Unify performs answer-return uni�ation in O(V) time whenever it sueeds. It usesinformation stored with fats, that is maintained by proedure Update Context Ids. We desribe the proe-dures below. We refer to the test made in Step 1 of Proedure Return Unify as the test for return-uni�ation,and the ations performed by Return Unify as return-uni�ation.Proedure Update Context Ids( R0; r env0; fat)Let head be the head of hR; r env0i.1) Swith Type(R): 64



Type 0: /* Initialization rules*/Set head:par id = 0;If the head of R is initial querySet head:ont id = new Context identi�er.Else set head:par id = fat:ont id:Type 1: /* supplementary rule from query; fat = query fat*/Set head:par id = fat:par idSet head:ont id = new ontext identi�er.Type 2: /* supplementary rules; fat = supplementary fat */Set head:par id = fat:par id.Set head:ont id = new ontext identi�er.Type 3: /* answer rules; fat = supplementary fat */Set head:par id = fat:par id.Type 4: /* query rules, exept for last literal;fat = supplementary fat */Set head:par id = fat:ont id.Type 5: /* query rules, for last literal; fat = supplementary fat */Set head:par id = fat:par id.Type 6: /* answer rules, for base prediates; fat = query fat */Set head:par id = fat:par id.end Update Context IdsWe shall show several interesting properties about the propagation of ontext identi�ers. The essentialidea is that eah supplementary fat (whih an be viewed as a \ontext") has a distint ont id value. ForType 4 rules, the par id of the query fat generated is set to the ont id of the body supplementary fat.Suh query fats will result in answers being generated for the query, and used with the body supplementaryfat. Answers that have this value in their par id �elds will be used with this supplementary fat, and sharebindenvs with it in a manner made preise later. The par id value, in some sense, identi�es the representationof the fat. There an be more than one opy of eah fat, eah with its own representation and its ownpar id value. With subsumption-heking, all but one opy of eah fat are eliminated.For Type 5 rules, the par id of the query fat generated is set to the par id of the body supplementaryfat. Suh a query implements tail-reursion, and any answer generated will not be used with the bodysupplementary fat. Instead it will be used with a parent ontext (supplementary/initial query fat) whoseont id is equal to the par id of the body supplementary fat.The ontext identi�ers are quite di�erent from the lont and lid identi�ers used in QSQR evaluation[Vie86, Vie88℄. We disuss the di�erenes in Setion 5.11.Proedure Return Unify (R; s; a; hR0; r env0i)/* s is a supplementary fat, and a an answer fat. */65



1. If s:ont id 6= a:par idThen return failure.2. Set r env0 = new version of a:bindenv.3. Let R0 be a renamed version of R with variable names startingfrom after the highest numbered variable in r env0.Add all variables in R0 to r env0.4. Bind eah variable in the supplementary literal of hR0; r env0ito the orresponding argument of s:struture./* This step is well de�ned as desribed below. */5. Bind eah variable in the answer literal of hR0; r env0ito the orresponding argument of a:struture./* This step is well de�ned as desribed below. *//* This may hange some variable bindings that were made in Step 4. */6. Update Context Ids( R0; r env0; s).7. Return suess.end Return UnifyEah argument of the supplementary literal is a distint variable. Hene the onept of having foreah variable in the supplementary literal a \orresponding argument" in the fat (Step 4 of Return Unify)is well-de�ned. It is harder to see that the onept is well-de�ned for Step 5. Suh a literal is of theform answer(ID; q(X)), where X is a tuple of distint variables, due to the preproessing desribed inSetion 5.2.1. The onept is well de�ned only beause all fats used with the above literal are of the formanswer(id; q(a)).7 The arguments \orresponding" to the variables in X are the arguments of q(a) in theabove fat.The bindings reated by Return Unify when it sueeds are suh that hs; r env0i is the same as thesupplementary literal of hR0; r env0i, and ha; r env0i is the same as the answer literal of R0; r env0. That is,the ations of Return Unify ompute a uni�er for the (renamed) rule, the (renamed) supplementary fat andthe answer fat. Further, the uni�er is a most general uni�er. Return Unify makes use of the informationabout the fat representation that is stored in the par id and ont id �elds, in order to ompute the uni�ereÆiently.The idea is roughly as follows (we prove orretness formally later). When a query fat q is generatedfrom a supplementary fat s, q:bindenv is a new version of s:bindenv. Hene it inherits all variable bindingsthat are in s:bindenv. Suppose omputation proeeds and an answer is generated for the query fat. If thetest in Step 1 of Return Unify sueeds, then the bindenv of the answer fat is a desendant of the bindenvof the supplementary fat (as we shall show). The updates to the bindenv are suh that a free variable maybeome bound, but one a variable is bound, its binding does not hange. Thus, if we replae the bindenv ofthe supplementary fat s by a:bindenv, the resultant fat s0 is an instane of s. Thus bindenv replaementuni�es the supplementary and answer fats with the rule body. Most importantly, bindenv replaement anbe done very fast | in O(V) time. A full uni�ation (whih would have to be done in the absene of the7If we had fats of the form answer(id; Y ), the onept of orresponding arguments for the variables in X is ill-de�ned.66



information about the fat representation) ould take time linear in the size of the terms to be uni�ed.5.4.2 ExamplesWe now present examples of the use of our tehniques in the evaluation of the dappend and append programs.Example 5.4.1 Appending two di�erene lists an be done in time O(V) with our term representation. Weillustrate the use of Return Unify using the following program. We have added a literal test(1) to the end ofthe rule in order to suppress tail-reursion optimization for the all to dappend; the addition of this literalhelps illustrate our tehniques better.path(L1; L2; L) : � dappend(L1; L2; L); test(1)dappend(dlist(X;Y ); dlist(Y; V ); dlist(X;V )):The preproessed form of the above program is as follows:path(L1; L2; L) : � dappend(L1; L2; L); test(1):dappend(V 1; V 2; V 3) : � V 1 = dlist(X;Y ); V 2 = dlist(Y; V ); V 3 = dlist(X;V ):The MGU MTTR rewriting of this part of the program is as follows (we have applied some optimizationsto simplify the program; in partiular, we have unfolded some uses of goal id and =; also, we leave out Type0 rules for simpliity).R1 : sup1;0(HId; L1; L2; L; ID;A) : �query(path(L1; L2; L); ID;A);goal id(dappend(L1; L2; L); ID):R2 : query(dappend(L1; L2; L); ID; answer(ID; dappend(L1; L2; L))) : �sup1;0(HId; L1; L2; L; ID;A):R3 : sup1;1(HId; L1; L2; 0; A) : � sup1;0(HId; L1; L2; ID;A); answer(ID; dappend(L1; L2; L)):R4 : A : � sup1;1(HId; L1; L2; 0; A); test(1):R5 : A : � query(dappend(V 1; V 2; V 3); ID;A);V 1 = dlist(X;Y ); V 2 = dlist(Y; V ); V 3 = dlist(X;V ):Suppose we have a query fatquery(path(dlist([ajbjX ℄; X); dlist([jY ℄; Y ); P ); 0; answer(P )) : 0and a base fat test(1). Evaluation of the program on these fats is depited in Figure 7. The par id of eahfat is shown following the fat. For supplementary fats, the ont id is shown following the par id. Weuse pointers from fats to their bindenvs in the �gure. Several fats point to some of the bindenvs | thisnotation should be interpreted as eah fat having its own version of the bindenv, and is done only to keepthe �gure onise.The main points to note in the �gure are the following. When using rules R1, R2, and R5, there isonly one derived prediate in the rule body. No renaming is done exept for rule variables. Uni�ation isstraightforward, and the fats shown are reated. The bindenvs get progressively re�ned, and more variablesare added to the bindenv (we have used the optimization of deleting rule variables if they are not referred67
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Figure 7: Evaluation of Program That Uses dappend
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to in the head fat reated after dereferening). The par id �elds are shown for all fats. The ont id �eldsare shown for supplementary fats.We now ome to the use of rule R3. Return Unify sueeds on this rule sine the par id of the answerfat is equal to the ont id of the supplementary fat. The bindenv of the answer fat is suh that if theoriginal supplementary fat is interpreted in the new bindenv, the variable P is bound to the result ofdappending the two given lists. This is beause X and P have been bound appropriately in the answer fatbindenv. Sine Return Unify sueeds, no renaming is required, and uni�ation takes O(V) time. This stepwould have taken time proportional to the size of the di�erene lists, had bottom-up evaluation without ouroptimizations been used. Finally rule R4 is used to reate an answer to the query we were given. Here, thebase fat test(1) would have been renamed if it had variables. The supplementary fat is not renamed.Overall, the time ost of the evaluation shown is O(V), regardless of the sizes of the di�erene lists. 2Example 5.4.2 The append program is de�ned as follows.append([℄; X;X):append([H jT ℄; L; [H jL1℄) : � append(T; L; L1):Preproessing generates the following program (we have simpli�ed the program a little to keep the exampleonise):append(X1; X2; X3) : � X1 = [ ℄; X2 = X3:append(X1; L;X2) : � X1 = [H jT ℄; X2 = [H jL1℄; append(T; L; L1):The MGU MTTR rewriting of the original program was disussed in Setion 3.4.2. The MGU MTTRrewriting of the modi�ed program is very similar, provided we treat the equality literals as base literals. Weomit the program for brevity.We note that eah rule in the rewritten program has only one derived literal in the body. Hene only rulevariables are renamed. Uni�ation osts are O(V) per inferene8 | the derived literals all have as argumentsdistint variables, and the uni�ations performed by the equality literals are all straightforward. Returnuni�ation is not important for this program, but variables in the query fats are modi�ed and the versionedterm representation is ritial for eÆieny. Overall the ost of evaluation of a query on append is O(n � V),where the �rst argument of the query is a list of length n. 25.5 Corretness of Apply RuleWe present a sequene of lemmas that are used to show that the ations performed by Return Unify areorret, and hene Apply Rule is sound. We �rst show that given a supplementary fat s, if for any fat f ,f:par id = s:ont id, then f:bindenv is a desendant of s:bindenv. Further, we show that there is a query qgenerated from the supplementary fat, and any variable that is not aessible from q has the same bindingsin f:bindenv as in s:bindenv. This property is proved formally in Lemmas C.1.1 and C.1.2 in Appendix C.1.The idea is to show using indution on lengths of derivation sequenes, that if par id value of a fat isinherited from the ont id �eld of a supplementary fat, then so is the bindenv.8We assume that our heks are not used. 69



Lemma 5.5.1 Suppose that there is a query fatq = query(pi(ai); id1; answer(id1; pi(ai)))generated by a Type 4 rule (i.e., from a non-tail-reursive literal), and an answer fat a = answer(id1; pi(bi)).Suppose also that q:par id = a:par id. Let q str2 denote the last argument of q:struture. Thenhq str2; a:bindenvi � ha:struture; a:bindenvi2 The detailed proof is presented in Appendix C.1. The basi idea is to show that if the onditions of thelemma hold, the struture in the answer fat is a dereferened version of the struture in the query fat. Theformal proof is by indution on lengths of derivation sequenes, and uses a ase analysis of the di�erent ruletypes.Lemma 5.5.2 Suppose that Return Unify sueeds on rule R with fats s and a. Then hR0; r env0i is anmgu of R0 with (a renamed variant of)s and a. 2The detailed proof is presented in Appendix C.1. The idea is that if Return Unify sueeds, the instan-tiated rule generated is generated by a most general uni�er. We show that the instantiation is a uni�eressentially by using Lemma 5.5.1. We then show that it is a most-general uni�er by showing that anybindings introdued by the uni�er are neessary for uni�ation.5.5.1 Soundness and Completeness of EvaluationBy Lemma 5.5.2, Return Unify performs uni�ation orretly. The rest of Apply Rule is relatively straight-forward. Note that whenever we modify variables in a fat bindenv, we have ensured that the version weuse is a new version, and hene none of these steps a�et stored fats. Thus we have the following theorem.Theorem 5.5.3 Let PMGU T be a MGU MTTR rewritten program and R a Semi-Naive version of a rulein PMGU T . Then a all to Apply Rule(R) generates all and only those fats that follow from R using theset of fats available in the relations. 2We all a version of Semi-Naive evaluation (desribed in Setion 2.2.3) that uses proedure Apply Rule toperform rule appliation as Opt-NG-SN evaluation. We all the query evaluation tehnique that �rst rewritesthe program and query using MGU MTTR rewriting, and then evaluates it using Opt-NG-SN evaluation asOpt-NGBU evaluation.From the above theorem, and the soundness and ompleteness of Semi-Naive evaluation, we have thefollowing result.Theorem 5.5.4 Let PMGU T be a MGU MTTR rewritten program. Then Opt-NG-SN evaluation of PMGU Tis suh that (1) any fat generated is subsumed by fats in the least model of PMGU T , and (2) every fat inthe least model of PMGU T is subsumed by the fats generated. 2From the soundness and ompleteness results of MGU MTTR rewriting (Theorems 3.4.1 and 3.4.2), wethen have the following theorem. 70



Theorem 5.5.5 Let P be a program and Q a query on the program. Let PMGU T be the program generatedfrom P and Q by MGU MTTR rewriting. Then Opt-NG-SN evaluation of PMGU T is suh that (1) Everyfat generated as an answer for Q is an answer to Q, and (2) Every answer to Q is subsumed by the set ofanswers generated.5.6 Cost of Optimized EvaluationWe now examine the osts of the basi steps in bottom-up evaluation that are not present in top-downevaluation without memoing. Note that the extra osts mentioned below are also inurred by top-downevaluations that perform memoing. We have disussed versioning and its ost, in Setion 5.3, and havelooked at the ost of extra uni�ations, in Setion 5.4.1.Indexing of Fats: We index supplementary and answer fats using hash-indies on the goal-id �elds.The indexing was disussed in Setion 3.3.4. Retrieving fats an be done in onstant time per indexingoperation and retrieved fat, and fethes only fats that will unify. Inserting fats into the index an be donein onstant time.Subsumption Cheking: For the purpose of omparison of Opt-NGBU evaluation with Prolog� evaluation,we assume that no subsumption-heking is done.Subsumption-heking of non-ground fats is in general ostly, but provides bene�ts by avoiding repeatedomputation, and is is important in many ases. We disuss the osts and bene�ts of subsumption-hekingin Setion 5.8.5.6.1 Cost of Inferenes Using Apply RuleWe now examine the osts assoiated with inferenes made using Proedure Apply Rule. In general, whenunifying a variable with a term, we need to perform an \our hek" to ensure that the variable is notpresent within the term. Most implementations of Prolog do not perform the our hek, and unifying avariable with a term takes onstant time. In our ontext, the uni�ation would take O(V) time. However,if we do perform our heks in a naive fashion, Return Unify would take time linear in the size of thefats. But we an show that an our hek is not neessary for soundness in Return Unify. This is beausethe rule literals have distint variables that are not present in the fats; all the uni�ation operations inReturn Unify bind a rule variable to a term in one of the fats, and hene no our heks are needed.The following proposition is straightforward.Proposition 5.6.1 Proedure Return Unify runs in O(V) time. 2We also have the following lemma.Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluationwithout subsumption-heking. Then every all to Return Unify sueeds. 2The proof is presented in Appendix C.2. The essential idea is that the goal-id values and par id valuesare propagated through fats in lok-step if subsumption-heking is not used. A supplementary fat andan answer fat unify only if their goal-id values are the same. We show that if they are the same, then the71



ont id of the supplementary fat will be the same as the par id of the answer fat, and hene Return Unifywill always sueed.As a result of the preproessing, every body ourrene of literals of the form supi;j(ti) or answer(ID; pi(ti)) is suh that ti is a tuple of distint variables. Arguments similar to those for Return Unify then showthat our heks are not needed for Rename and Reunify. Hene proedure Rename and Reunify an beimplemented to run in O(V). Inserting fats into a hash-index on the goal-id �eld takes onstant time. Heneproedure Insert Head Fat runs in time O(V) + the ost of subsumption-heking (if it is performed). In allases below, we assume that the ost of renaming a rule and adding its variables to the appropriate bindenvis O(V).Suppose Return Unify is alled, and sueeds on a rule instantiation. Then the time taken by Apply Rulefor that rule instantiation, ignoring the time taken for subsumption-heking, is O(V).If Return Unify is not alled, or is alled and fails, there are four ases based on the type of the rule.1. The �rst ase is when there is only one literal in the rule body. In this ase, the ost of evaluation isessentially the ost of uni�ation of the fat and the literal. Due to our preproessing, the argumentsof the literal are distint variables, and evaluation takes O(V) time.2. The seond ase is when the seond literal in the rule body is an answer literal. If no subsumption-heking is performed, Return Unify always sueeds for this ase. We disuss the osts if subsumption-heking is performed, in Setion 5.8.3. The third ase is when the seond literal in the rule body uses the meta-prediate goal id. If subsump-tion-heking is not performed, the meta-prediate goal-id runs in onstant time per all.The �rst literal in the rule uses a supplementary prediate, and has as arguments distint variables.Hene uni�ation for this literal an be done in time O(V). The total ost of rule instantiation is O(V)in the absene of subsumption-heking.4. The fourth ase is when the seond literal in the rule body is a base literal. Rename Fats and Unifyrenames the base fat. Prolog evaluations based on struture opying make opies of base fats whenusing them, and have the same overhead. Typially, base fats is assumed to be of onstant size.5.7 A Comparison With Prolog�We now perform a detailed omparison of the osts of Opt-NGBU query evaluation (i.e., MGU MTTR+ Opt-NG-SN evaluation) without subsumption-heking and Prolog evaluation. We make the followingsimplifying assumption:A1: Given terms a, a1 and b, if a is equivalent to a1 then the time taken to unify a and b is the same asthe time taken to unify a1 and b.Two terms may be equivalent, but may be represented by di�erent strutures. The atual struturesreated depend on the details of the uni�ation algorithm; for instane, if the uni�ation algorithm delaysdereferening of variables when performing uni�ation, the resultant representation is di�erent from therepresentation if dereferening is always used. The main tradeo� is that in some ases dereferening ofunused terms is avoided by delayed dereferening, but on the other hand some variables may have to be72



dereferened several times. We do not fator this low level deision into our omparison. We also ignorethe e�ets of path-ompression when dereferening variables. Path ompression an result in a substantialimprovement in speed for some programs, if it is performed. Most Prolog implementations do not perform it,sine it ompliates the maintenane of trail information. Path ompression an be implemented in bottom-up evaluation using fully-persistent bindenvs (see Setion 5.3.2). We assume it is not done in either ase, inorder to simplify the disussion.We also assume that bottom-up evaluation as well as Prolog� evaluation use the same indexing tehniquefor base relations.Attempted derivations in Opt-NG-SN evaluation are split into ases based on the rule type, and we usethe same mapping that was used to prove Theorem 4.3.1, to show that for eah derivation in Opt-NGBUquery evaluation (without subsumption-heking), Prolog evaluation has an ation of \almost" the sameost.The details of the omparison are presented in Appendix C.3. We sketh the basi idea below. Attemptedderivations using Type 0, Type 3, Type 4 and Type 5 rules are shown to take O(V) time eah. If there aren suh derivations, the mapping shows that Prolog performs 
(n) ations, eah of at least unit ost. Theost of an attempted derivation using suh a rule is primarily the ost of evaluation of the equality literal.We show that Prolog� evaluation performs an equivalent uni�ation ation. For Type 2 rules that have ananswer literal in the body, Return Unify always sueeds, and hene the ost of an attempted derivationO(V). For Type 2 rules that have a goal id literal in the body, the ost of an attempted derivation is O(V),whih is mapped to an ation of Prolog� evaluation that takes at least unit time. For Type 2 rules that havea base literal (for e.g., an equality literal) in the body, we show that any attempted derivation is mapped toan ation of Prolog� evaluation that performs the same indexing operations and uni�ation. Thus the loss ofspeed of due to Opt-NGBU evaluation is at most a fator of O(V) in this ase. We then have the followingtheorem.Theorem 5.7.1 Let P be a program, and Q a query. Given any database, suppose the ost of Prolog�evaluation of Q is t units of time.9 Opt-NGBU evaluation without subsumption-heking evaluates the queryon the given database in time O(t � V). (The size of the program is not taken into aount in this timeomplexity measure.) 2The proof of the above theorem is presented in Appendix C.3.Table 3 summarizes a omparison of the ost of various steps in Opt-NGBU evaluation without subsump-tion-heking with the orresponding osts in Prolog evaluation. This table may be ontrasted with Table 2to see the bene�ts of Opt-NG-SN evaluation.With Dietz's versioning tehnique [Die89℄, V is O(log log t) for the following reason. As we noted inSetion 5.3, V is O(log logn), where n is the number of versions of bindenvs that are reated. Eah attemptedderivation reates at most three bindenv versions. The number of ations performed by Prolog� evaluationis at most t sine eah ation has at least unit ost. Hene the number of attempted derivation steps is atmost 1 � t + 2, for onstants 1 and 2 that are independent of t (Theorem 4.3.1). The O(log log t) boundon V then follows.9Where eah ation of Prolog� evaluation takes at least unit time.73



Operation Bot. Up (Opt.) PrologUni�ationa. Answer-return O(V) O(1)b. Other O(V� size of terms ) O( size of terms )Indexinga. Answer-return O(1) O(1)b. Other O(V �Pfats size of fat ) O(Pfats size of fat )Subsumption Cheking | |Creation of head fat O(1) O(1)Table 3: Opt-NGBU Evaluation (without subsumption-heking) vs. PrologCorollary 5.7.2 Let P be a program, and Q a query. Given any database, suppose the ost of Prolog�evaluation of Q is t units of time. Opt-NGBU evaluation without subsumption-heking evaluates the queryon the given database in time O(t � log log t). (The size of the program is not taken into aount in this timeomplexity measure.) 2The above result shows that the ost of memoing fats (ignoring the ost of heking for subsumption)an be made quite small, in the sense of time omplexity. The optimization tehniques we developed in thishapter are of onsiderable theoretial importane, sine they help us establish the above result. This resultassumes that the size of the program is a onstant, We an relax the assumption that the size of the programis onstant, as disussed briey in Setion 5.9.The question of how bottom-up and top-down methods ompare is onsidered important, and has beenunder investigation by several researhers [Ull89a, Bry90, Ram88, Sek89℄. Most of this researh, with theexeption of [Ull89a℄, has restrited itself to omparisons in terms of the number of fats generated or thenumber of inferenes made. Our result arries the omparison of top-down and bottom-up methods fartherthan the results of Ullman [Ull89a℄.1. Our result extends the lass of programs onsidered from safe Datalog to full logi programs.2. Our result ompares bottom-up evaluation with a sophistiated model of Prolog evaluation, whihinorporates tail-reursion optimization, unlike earlier work.We remind the reader that our analysis ignores onstant osts, and the e�et of fators suh as virtualmemory.5.8 Subsumption Cheking in Bottom-Up EvaluationIn general, subsumption-heking is a ostly operation, and we are not aware of eÆient subsumption-heking tehniques for the ase of arbitrary non-ground fats. However, there are speial ases for whihsubsumption-heking an be done eÆiently.For ground fats, subsumption is the same as equality, and hash-onsing [Got74, SG76℄ an be used toperform subsumption-heking in onstant time in many ases.10 In Setion 5.10 we disuss an eÆient10EÆient hash-onsing requires that the ground terms are built up from smaller ground terms. This is not true if groundterms an be reated by instantiating variables within an existing non-ground term.74



subsumption-heking tehnique for a restrited lass of non-ground fats. We use this tehnique to optimizeSemi-Naive evaluation for a restrited lass of programs.Without subsumption-heking, Semi-Naive evaluation is still sound and omplete. However, derivationsan be repeated, and in the worst ase a omputation that terminates with subsumption-heking may loopfor ever, repeating derivations, if subsumption-heking is not used.Subsumption-heking an be done for some prediates and not for others, and need be done only if thebene�ts from avoiding repeated omputation and possible avoiding of in�nite loops is worth the ost. Forinstane, there are ases where query fats (after adornment as in [BR87b℄) are ground, although answerfats may not be ground. In many suh ases, it suÆes to perform subsumption-heking on the groundquery fats.If subsumption-heking is performed, Return Unify may fail for for some answer-return uni�ations.These uni�ations our with Type 2 rules of the following form:: : : : �supj;i(: : : ; ID;A); answer(ID; : : :):Our indexing sheme ensures that any answer fat and supplementary fats fethed by indexing will unifywith the rule. Suppose fats supj;i(v; id; ans) and answer(id; p(b)) are fethed by indexing. If Return Unifydoes not sueed with these fats, it means that the answer fat was generated from a query fat that isequivalent to (but not the same as) the query fat that was generated using supj;i(a; id; ans). This meansthat the query fat generated from supj;i(a; id; and) was eliminated by subsumption-heking.Prolog would have solved the above repeated subgoal, whereas bottom-up evaluation with subsumption-heking avoids the repeated omputation. The bene�t of avoiding repeated omputation has to be balanedagainst the ost of heking for subsumption, and the ost of rule appliation when Return Unify fails. Theseond of these osts is as follows.Let n be the size of the answer fat. Then the fat an be renamed in time O(n � V). Uni�ation anbe done in time linear in the size of the result of uni�ation, and the overall ost of rule instantiation is Vtimes the size of the answer fat after uni�ation. If the omputation of the answer fat would have takenmore time than V times the size of the answer fat after uni�ation, opying the fat is no more expensivethan reomputing it. To deide if subsumption-heking for goals is useful in a given ontext, we also haveto inlude the ost of subsumption-heking.5.9 Optimizations and DisussionThe evaluation tehnique we desribed an be extended and optimized in several di�erent ways. The teh-niques desribed in this hapter an be adapted in a straightforward manner to work with the MGU MagiTemplates rewriting instead of MGU MTTR rewriting. In fat, MGU Magi Templates an be onsidereda speial ase of MGU MTTR rewriting where the last literals in the rules are not treated as tail-reursive(and Type 4 query rules generated for these literals instead of Type 5 query rules). The proofs of orretnesshange a little due to the di�erenes in the form of the query fats generated.We an use adornments (see e.g. [BR87b℄) with MGU MTTR rewriting (or with MGU Magi rewriting)under some restritions on how adornments are generated. The idea is as follows. Consider any argumentof a literal that is a a free variable that appears nowhere else in or before the literal in the rule. Any query75



fat reated from this literal will have a distint free variable in suh an argument. Only suh argumentsmay be onsidered free when adorning a literal. Arguments adorned f are projeted out of the query literalsand fats. The proof that Return Unify works orretly beomes a little more ompliated, but Opt-NG-SNevaluation does work orretly if the adornment is done subjet to the above restritions.Rule variables are added at the end of bindenv of the head fat. We dereferene head variables beforereating the head fat. This often (always, in the ase when the program generates only ground fats) resultsin none of the rule variables being referened from the head fat that is reated. In ase none of the rulevariables are referened from the reated head fat, we an drop these variables from the versioned bindenv(and the number of the highest numbered variable in the bindenv hanges appropriately).Dropping rule variables from the bindenv of the head fat an be quite useful for the following reason.Throughout our disussion we assumed a loss in eÆieny of O(V) ompared to Prolog� evaluation. In thease of range-restrited programs, where no non-ground fats are generated, the optimization of removingunreferened rule variables from the bindenv results in bindenvs that have no variables at all. Suh bindenvsneed not be stored expliitly. Hene we an evaluate suh a program without any O(V) overhead. Similarly,if if variables in non-ground fats are not instantiated (for example in the append program on non-groundlists), O(V) redues to O(1).In the disussion earlier, we assumed that the rule is renamed during Apply Rule. The renaming neednot be done expliitly, but an be ahieved by a two step proess. During rule appliation we maintaina separate bindenv for rule variables. During uni�ation we maintain a trail of variable bindings. Whenreating the head fat, we add the rule variables to the bindenv of the head fat, and use the trail to bak-path all variables that were bound to rule variables. We an ombine this optimization with the optimizationmentioned above, to avoid reating slots for rule variables in the bindenv of the head fat.The reation of a new version of env1 in Step 2.1 of Apply Rule is not really neessary in a sequentialimplementation. Unify binds variables in its �rst argument preferentially. For preproessed MGU MTTRrewritten programs, in the all to Unify in Step 2.2 of Apply Rule, only variables in the rule get bound;variables in the fat bindenv are not a�eted. Thus we do not need to reate a new version of env1 in thisstep; if required, a version of env1 is reated later by Rename Fats and Unify.Theorem 5.7.1 assumes that the size of the program is a onstant. The primary reason for this assumptionis that eah iteration of Semi-Naive evaluation applies all the rules, and may make only one derivation. Themapping of osts desribed in Setion 4.2 depends on this assumption.We an relax this assumption using a rule indexing sheme for MGU MTTR (and MGUMagi Templates)rewritten programs. We do not go into details, but the idea is as follows. We keep trak of Æpoldi relationsthat are non-empty, and use these to index rules that an be used to make derivations using these relations.There are only a onstant number of Type 0 rules, and we do not need to index them. For Type 1 and Type 6rules, we an use any indexing tehnique that Prolog uses to �nd rules that unify with a subgoal. For Type 2rules that use an answer literal, we an use the goal-identi�er �eld to diretly index supplementary or answerfats, and use only rules for whih mathing supplementary and answer fats are available. Other Type 2rules have only one derived relation | the supplementary relation. We use the non-empty Æ supplementaryrelations to index suh rules. Semi-naive rewritten Type 3, Type 4 and Type 5 rules always sueed in makingan inferene if there is a fat for the Æ relation in their body; indexing suh rules using the non-empty Æ76



relations is straightforward.Using this rule indexing tehnique for MGU MTTR and MGU Magi Templates programs, along withthe optimizations desribed in Setion 4.2.2, we an (a) extend Theorem 4.3.1 to remove the assumption thatthe size of the program is a onstant, (b) extend the model of Semi-Naive evaluation to show that the ost ofevaluation an be ompletely mapped to the ost of attempted derivations, even without the assumption ofonstant program size, and () extend Theorem 5.7.1 to remove the assumption that the size of the programis a onstant.5.9.1 More Example ProgramsWe present a brief analysis of the bene�ts of our optimization tehniques on some example programs. Wehave implemented our optimization tehniques on the CORAL dedutive database system [RSS92b℄, and wepresent some preliminary performane �gures.Example 5.9.1 Consider the well-known program to append lists (Example 3.4.1), with a query involvingnon-ground lists.The following table presents performane numbers on lists of the spei�ed lengths. The number of distintvariables in the list is shown in parentheses. The olumn \Unoptimized" refers to evaluation without theApply Rule optimizations we desribed in this hapter. The olumn \Optimized" refers to evaluation usingthe optimizations desribed in this hapter but with MGU Magi rewriting. The olumn \Tail-Re" refersto evaluation using MGU MTTR rewriting and the optimizations desribed in this hapter.Dataset Unoptimized Optimized Tail-ReLength 25 (3 vars) .31 .19 .08Length 50 (3 vars) 0.98 .35 .15Length 100 (3 vars) 3.85 .67 .30Length 100 (25 vars) 3.87 .69 .30Length 100 (ground) .44 .55 .30The numbers show that for ground lists, optimized evaluation with MGU Magi rewriting is not muhworse than unoptimized evaluation, while optimized evaluation using MGU MTTR rewriting is faster thanboth these. For non-ground lists, the time ost of optimized evaluation grows linearly with the size of thelists, while for unoptimized evaluation, the ost grows approximately quadratially. 2Example 5.9.2 This program illustrates the use of di�erene lists in a program that is best evaluatedbottom-up. We assume that the query is ?path(1; X;C; P ) (the single soure shortest path problem).path(X;Y;C; dlist([Y jD℄; D)) : � edge(X;Y;C):path(X;Y;C1 + C2; P ) : � path(X;Z;C1; P1); edge(Z; Y; C2); dappend(P1; dlist([Y jD℄; D); P ):�aggregate seletion groupby(path(X;Y;C; P )[X;Y ℄;min(C)):dappend(dlist(X;Y ); dlist(Y; V ); dlist(X;V )):This program keeps trak of the verties in paths that it omputes, and stores the list as a di�erene list77



to allow eÆient onatenation of edges to the list. Prolog is not suitable for evaluation of this program (orother path programs) sine it an get into in�nite loops with yli data.The use of the aggregate seletion annotation and its eÆient implementation is disussed in Chapter 6.We disuss this example ahead of that hapter in order to illustrate the use of non-ground data-struturesin a program that is best evaluated bottom-up. The annotation�aggregate seletion groupby(path(X;Y;C; P )[X;Y ℄;min(C))in the program spei�es that for answer fats for the prediate path, for eah value for X and Y , only fatswith minimum value for C should be retained.For the sake of brevity, we omit the rewritten version of the program, but assume that the aggregateseletion on path is also used for answer fats for path (i.e., fats of the form answer(id; path(: : :))). Weuse MGU Magi Templates with adornments; tail-reursion optimization is not useful for this program sinefor the rules de�ning path, the last literal is not reursive to path.Due to the use of adornments, query fats for path are ground, and store only bindings for the �rstargument of path. We use subsumption-heking for suh fats. Further, supplementary fats generatedfrom these query fats are ground, and as a result, we do not need to rename path fats when applyingrules in the rewritten program.11 The aggregate seletion is used to prune answer fats for path; no othersubsumption-heking is done for answer fats. Subsumption-heking is not done for dappend fats either.Without the use of di�erene-lists, we ould either generate the paths in reverse order using list ons,whih is unappealing, or we ould use append instead of dappend; whih would ost O(V ) time per append.Let the evaluation time of a version of this program using ordinary lists, and ons instead of append beO(f(E; V )).12 Then the evaluation time of the program using append would be O(V � f(E; V )), whih isonsiderably slower if V is large.If we used a naive version of rule appliation, the ost of reating new lists by dappending two di�erenelists will take time linear in the size of the lists, whih an be O(V ). This would lead to a time omplexityof O(V � f(E; V )).Using our optimizations, eah query generated for dappend is solved using the rule for dappend in timeO(V), and Return Unify sueeds for the answer-return uni�ation, when answers to queries on dappend aregenerated, and takes time O(V). This leads to an overall time omplexity of O(V � f(E; V )).The number of versions of bindenvs that are reated is O(f(E; V )), and the number of path fats that areomputed is O(f(E; V )). Hene, if we use Dietz's versioning sheme, V is O(log log f(E; V )). Eah bindenvhas O(V ) variables sine the maximum path length is O(V ). Hene, if we use Warren's versioning sheme(as we do in our implementation) V is O(log V ). In either ase, the time omplexity is not muh worse thanthe time omplexity of evaluation using ground lists with ons, and has the bene�t of generating path listsin the orret order.We ran two variations of this program on the CORAL system. Both variations used the query ?path(X;Y ). The �rst used a di�erene list representation, and the seond used an ordinary list representation, but11Our implementation detets whih fats are ground and tries to avoid renaming non-ground fats. Hene this optimizationis inorporated automatially.12The time omplexity depends on the number of distint shortest paths between pairs of nodes. If we store only one shortestpath between eah pair of nodes, f(E; V ) = E � V , as we show in Example 6.6.2. This an be improved to E � log V by usingother optimizations, as we show in Example 6.6.3. 78



used ons rather than append. The seond variation generated only ground fats, but generated path lists inreverse order. The ground program ran in 0:6 seonds on a sample dataset, while the non-ground programran in 0:8 seonds. Thus the loss of speed due to the non-ground data-struture is reasonably small (33%),while providing the bene�t of printing out paths in the orret order. 25.10 Bottom-Up vs. Prolog� for a Restrited Class of ProgramsIn this setion we present a summary of results from Sudarshan and Ramakrishnan [SR92b℄ that omparebottom-up evaluation using MTTR rewriting with Prolog� evaluation for a sublass of range-restritedprograms. All fats generated by a range restrited program are ground. However, MTTR rewriting (asalso MGU MTTR rewriting) of a range-restrited program results in a program that is not range-restrited(even if the adornment step of [BR87b℄ is performed). The omparison is presented in two parts | the �rstin terms of number of derivations, and the seond in terms of time omplexity for programs that generateonly a restrited kind of non-ground fats.In Setion 3.1 we showed that Magi rewriting ould perform some unneessary inferenes if non-groundfats are generated. However, if only ground fats are generated, an equivalent of Theorem 4.3.1 holds forthe ase of MTTR rewriting, provided subsumption heking is used in the evaluation. This is shown by thefollowing theorem, from [SR92b℄.Theorem 5.10.1 [SR92b℄ Let P be a range-restrited program and Q a query on P . Let P T be the MTTRrewriting of P with query Q. Then there is a mapping M of derivations in the Semi-Naive evaluation ofP T to ations of the Prolog� evaluation of Q on P , suh that not more than three di�erent derivations ofbottom-up evaluation of P T are mapped to the same ation of Prolog� evaluation. 2Theorem 4.3.1 showed that even if subsumption-heking is not performed, Semi-Naive evaluation of anMGU MTTR rewritten program performs no more than a onstant fator worse than Prolog� in terms ofnumber of ations. However, Semi-Naive evaluation without subsumption heking of an MTTR rewrittenprogram ould loop when Prolog terminates, as the following program (adapted from [NR91℄) illustrates.Example 5.10.1 Consider the following program.q() : � p(a); p(a); r(a):p(a):r(a):Query: ?-q():The MTTR rewritten form of the above program has (among other rules) the following rules.R1 : query(q(); q()):R2 : query(p(a); p(a)) : � query(q(); A):R3 : A : � query(p(a); A):R4 : query(p(a); p(a)) : � query(q(); A); p(a):A query fat query(p(a); p(a)) is generated using rules R1 and R2. If subsumption-heking is not performed,rules R3 and R4 enter into an in�nite loop. Rule R3 uses the newly generated fat query(p(a); p(a)) and79



generates fat p(a). Rule R4 uses the newly derived fat p(a)13 (whih is not eliminated sine subsumptionheking is performed), and generates a fat query(p(a); p(a)). This fat is not eliminated either, and theyle repeats. 2We now de�ne a lass of fats that we all NGSF fats, and de�ne a lass of programs that we allNGSF programs, that generate only NGSF fats. Later in the setion we summarize details of an evaluationtehnique for NGSF programs.De�nition 5.10.1 (NGSF Fats and Programs) [SR92b℄ Let p be a prediate in program P . A fatp(t) is said to be non-ground struture free (NGSF) i� eah argument of the fat is either a ground term ora variable. The de�nition is easily extended to tuples t.We extend this de�nition to allow limited forms of struture introdued by MTTR rewriting (similar ex-tensions an be used with MGU MTTR rewriting). A fat of the form query(p(t); q(s)) (resp. supi;j(u; q(s)))is said to be NGSF i� p(t) and q(s) (resp. u and q(s)) are NGSF.We say that a program is non-ground struture free (NGSF) i� every fat derived in an NSN evaluation14of the program is non-ground struture free. 2For example, p(f(a; g(b)); X), query(p(X;Y ); q(X;Y )), supi;j(f(a); p(f(a); X)), and p(X; g(; g(; g()));X) are non-ground struture free, but the fats p(f(X)) and query(p(f(X)); q(X)) are not.For the lass of NGSF programs, one an perform eah of the basi operations in bottom-up evaluation(uni�ation, indexing and subsumption-heking) at unit ost, as desribed in Sudarshan and Ramakrishnan[SR92b℄. Sine variables are present only at the outermost level of fats, renaming of variables an be donewith unit time ost. Uni�ation is then done at unit ost by using hash-onsing [Got74, SG76℄. A shemefor indexing based on \pattern-forms" that enode the patterns of variables in eah fat is presented in[SR92b℄, and it is shown that indexing of relations an be done at unit ost per retrieved fat for NGSFprograms. The same basi pattern-form sheme is used for subsumption-heking, and it is shown that forNGSF fats, subsumption-heking an be done at an amortized ost of O(1) per fat. Finally, these resultsare put together, and the model of semi-naive evaluation presented in Setion 4.2 is used to show that theost of evaluation is O(1) per fat derived.We now de�ne a lass of programs form whih the MTTR rewriting is NGSF.Condition Strongly NGSF Evaluable: We say that a program P with query Q is strongly NGSFevaluable if P satis�es the following ondition:1. P is range restrited2. For every rule in P , for every literal p(t) in the body of the rule, any variable that appears with anenlosing funtion symbol in p(t) also appears in a literal to the left of p(t) in the rule.3. Those variables in the head of the rule that appear only in the last literal in the body of the rule donot appear with enlosing funtion symbols in the head of the rule.4. The query on the program does not have any variables that are enlosed in funtion symbols. 213Reall that if a rule R has a derived literal in its body, in Semi-Naive evaluation eah derivation that uses R must use anewly generated fat for one of the derived literals in the body.14The order in whih derivations are made in a bottom-up evaluation is not deterministi. This leads to a non-determinismin the set of fats omputed, if subsumption-heking is used. To avoid this problem, we use NSN evaluation in this de�nition.80



The intuition behind this ondition an be understood as follows: First, all fats produed by the programare ground. Seond, evaluation of the query on the program will not reate any subgoal ontaining non-ground strutures. Third, when tail reursion optimization is used on these programs, strutures in answersto subgoals on tail-reursive prediates will not be used to \build" larger strutures in the head of the rule.Without the restrition provided by the Part 3 of Condition Strongly NGSF Evaluable, P T may omputefats with large non-ground strutures that are hard to handle in bottom-up evaluation.If P with query Q is Strongly NGSF Evaluable, then P T (the MTTR rewritten version of the program)is non-ground struture free. (The de�nition of strongly NGSF evaluable is overly strit, sine it does notmake use of bindings provided by queries, and an be weakened.) We then have the following theorem.Theorem 5.10.2 [SR92b℄ Suppose we are given a program P that is Strongly NGSF Evaluable. Let tP bethe running time of a Prolog� evaluation of P , and let tB be the running time of Semi-Naive evaluation ofP T (the MTTR rewritten version of the program). Then there is some onstant , that is independent of tPand tB (but may be dependent on the arity of prediates in P , and the textual size of P ) suh that tB � �tP .2 The above result also holds using MGU MTTR rewriting, although only the ase of MTTR rewriting isonsidered in [SR92b℄.Contrast the above theorem with Theorem 5.7.1. The above theorem shows that for a sublass of range-restrited programs (that properly ontains range-restrited Datalog), bottom-up evaluation with subsump-tion heking, in the worst ase, an be only a onstant fator slower than Prolog�. Theorem 5.7.1 providesa weaker bound, but applies to all de�nite lause programs. It is easy to �nd examples (in the sublass) forwhih the behavior of Prolog� is muh worse than that of bottom-up evaluation (for some programs Prolog�does not terminate, although bottom-up evaluation does).5.11 Related WorkWe are not aware of any work related to optimizing semi-naive evaluation for the ase when non-groundfats are generated. However, there has been some related work in the area of top-down evaluation withmemoization, and in the linguistis ommunity.D. S. Warren [War89℄ desribes the XWAM, an implementation of memoization for Prolog. The XWAMuses a depth-�rst searh, oupled with memoization of subgoals and answers to avoid repeated omputation.The tehniques desribed there are for the ase of ground Datalog programs. There is a brief mention ofpossible extensions to the sheme to programs that generate variables, by using bindarrays. However, nodetails are provided.Pereira [Per85℄ desribes an implementation of parsers for uni�ation based grammer formalisms. In theseparsers, omplex phrase types are built by inremental re�nement of phrase types. A naive implementationopies phrase types; by using \virtual opy memory" (i.e., versioned memory), Pereira shows how to reduethe ost of opying the phrase types. There is a problem in this ontext that orresponds to the renamingproblem; for speial ases of grammers, \renaming" an be avoided, but in general it must be performed.Thus there is no equivalent in this ontext to the return uni�ation optimizations that we present.81



The ontext identi�ers we use are quite di�erent in funtion from the lont, and lid identi�ers used inQSQR evaluation [Vie86, Vie88℄. The lont and lid identi�ers orrespond to the goal identi�ers that weuse. If a goal is generated more than one, it is given the same goal-id. The goal-id of the supplementaryfat (ontext) is that of the goal that is generated from it, and the goal-id of an answer is the goal-id of thegoal that generated it. In ontrast, eah supplementary fat has a di�erent ont id. The par id of a query isinherited from a supplementary fat that generated it. But sine a query may be generated independentlyfrom several di�erent supplementary fats, only one of the opies of the query (with its assoiated par idvalue) is retained, if subsumption-heking is used. The same is true of par id values for answer fats.5.11.1 Memoization for Other Evaluation ShemesThe optimizations desribed in this hapter work at the level of rule appliation, and are essentially indepen-dent of the ontrol strategy used during evaluation. They an be applied to other memoing evaluation shemessuh as QSQR [Vie86, Vie88℄ and Alexander [RLK86, Sek89℄. They an also be used in onjuntion with teh-niques that order the inferenes made in a bottom-up evaluation (e.g., [RSS90, RSS92a, GGZ91, SR91℄).15It is also possible to use the idea of persistent versioning to implement memoization of goals and answersin Extension Tables [Die87℄.16 However, sine Extension Tables uses the basi tuple-at-a-time depth-�rstmehanism of Prolog, the onnetion between goals and answers is impliitly maintained and \return uni-�ations" are not expliitly performed. (A negative onsequene is that the method is not omplete eventhough it does memoing.) Sine variables in the run-time stak and the heap may have to be versioned, itappears that fairly large portions of memory have to be versioned. In Opt-NGBU evaluation, we an avoidversioning rule variables in most ases, and for programs that (with adornment) generate only ground fatsand queries, all bindenvs are empty, and have no versioning osts. While these onsiderations do not a�etthe asymptoti ost of versioning, the onstant overheads for versioning are likely to be higher for ExtensionTables.QSQR (like its extension QoSaQ) is a top-down evaluation strategy that is losely related to the bottom-up evaluation of Supplementary Magi programs. QSQR is set-oriented, and represents goals and answersexpliitly, muh like Supplementary Magi. QSQR has been implemented for Datalog, for whih versioningis not important sine large data strutures are not reated. However, there appears to be no inherentproblem in using QSQR for general logi programs. The tehniques we developed in this hapter (as well asthe orresponding analysis) an be applied with minor modi�ations to QSQR.5.12 ConlusionThe results in this hapter are signi�ant in two ways. First, they provide an eÆient memoing tehnique forprograms that generate non-ground fats. This is signi�ant sine naive tehniques for handling non-groundfats in memoing evaluations are ineÆient, and we do not know of any other optimizations that are usefulin this ontext. The ost bene�ts are illustrated by the programs that we disussed. Seond, they extend15Some of these tehniques modify Magi rewriting in minor ways. Corresponding hanges may need to be made in ouroptimization tehnique.16We disuss the ETinterp algorithm sine it has better asymptoti properties; similar remarks apply to the ET* algorithm,whih additionally repeats some omputation. 82



our understanding of the similarities between top-down and bottom-up further than previous results, whihonsidered only programs that generated only ground fats. We have shown that bottom-up evaluation isasymptotially lose to Prolog even in the worst ase (within a fator of log logm, wherem is bounded by theost of Prolog evaluation). There is muh urrent researh in the area of persistent versioning shemes. If amore eÆient versioning sheme is developed, we an redue the overheads in our sheme orrespondingly. Wehave implemented the optimization tehniques desribed in this hapter (modulo tail-reursion optimization)on the CORAL dedutive database system.
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Chapter 6Optimization of AggregationIn this hapter we develop an optimization tehnique for bottom-up evaluation, using a notion of relevaneof fats to some aggregate operations suh as min and max. Our notion of relevane (Setion 6.3) an beseen as an extension of the notion of relevane used in optimizations suh as Magi sets rewriting [BMSU86,BR87b, Ram88℄. The optimization tehnique onsists of two parts | a rewriting tehnique that \pushes"aggregate seletions into rules in the program (Setions 6.4 and 6.5), and an evaluation tehnique that makesuse of aggregate seletions when evaluating the rewritten program (Setion 6.6).The optimization tehnique is able to detet many fats as irrelevant, and avoids using them to makederivations. As an example of the power of our tehniques, we start with a naive program to �nd shortestpaths, and show how our optimization tehniques dedue the \optimality priniple" for this program. Theoptimized evaluation of this program is equivalent to Dijkstra's algorithm (Example 6.6.3).6.1 IntrodutionDatabase query languages suh as SQL provide aggregation operations that let one ompute aggregate valuesover sets of answers. The use of aggregation with reursive queries has been onsidered by several researhers(e.g., [BNR+87, MPR90℄), and has been implemented in LDL [NT89℄. Generalized forms of transitive losurewith aggregation are a restrited form of reursive queries with aggregation (and an be expressed using thenotation of LDL [NT89℄). Several researhers (e.g., [RHDM86, ADJ88, CN89, Ede90℄) have onsideredoptimizations for this speial lass of programs. The advantages of the riher language of reursive querieswith aggregation is lear, but unless e�etive optimization tehniques are developed, the performane ofspeialized systems based on supporting the limited lass of generalized transitive losure queries annot bemathed. In this hapter we onsider optimizations of reursive queries with aggregate operations.Consider the (very naive) program shown in Figure 8, for omputing the lengths of shortest paths betweennodes in the relation edge(X;Y;C), where C is the length of an edge from X to Y . It essentially enumeratesall path lengths and hooses shortest path lengths among them. The notation s p length(X;Y;min(hCi)) inthe head of rule R1 denotes that for eah value of X;Y all possible C values that are generated by the bodyof the rule are olleted in a set, and the min aggregate operation is applied on the set of values. For eahvalue of X and Y , an s p length fat is reated with the result of the min operation as the third argument.84



R1 : s p length(X;Y;minhCi): �path(X;Y;C):R2 : path(X;Y;C1) : � path(X;Z;C); edge(Z; Y;EC); C1 = C +ECR3 : path(X;Y;C) : � edge(X;Y;C):Query: ?-s p(X;Y;C): Figure 8: Program Simple ShortCostR1 : shortest path(X;Y; P; C) : � s p length(X;Y;C); path(X;Y; P; C):R2 : s p length(X;Y;minhCi) : � path(X;Y; P; C):R3 : path(X;Y; [edge(Z; Y )jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:R4 : path(X;Y; [edge(X;Y )jnil℄; C) : � edge(X;Y;C):Query: ?-s p(X;Y; P; C): Figure 9: Program Simple ShortPathThe formulation of the program as above is desirable sine it is delarative, an be queried in manydi�erent ways and is easy to write. It is easily augmented with additional onstraints suh as \the edges allhave a given label" (for instane, ights on United Airlines alone must be onsidered), or \there must beno more than three hops on the ight". The standard bottom-up evaluation of suh a program is extremelyineÆient sine it onstruts paths of every possible length in the graph, and generates an in�nite numberof fats with yli graphs. In ontrast, the above problem an be solved in polynomial time using eitherWarshall's algorithm or Dijkstra's shortest path algorithm (see [AHU74℄). It an also be evaluated eÆientlyif it is expressed using speialized operators for transitive losure ([RHDM86, ADJ88, CN89℄).We propose an optimization tehnique for bottom-up evaluation, using a notion of relevane of fats tosome aggregate operations suh as min and max. Our notion of relevane an be seen as an extension ofthe notion of relevane used in optimizations suh as Magi sets rewriting [BMSU86, BR87b, Ram88℄. Todemonstrate the power of our tehniques, we use a more omplex version of the shortest path program, thatatually omputes paths (Figure 9), and informally present some of the basi ideas behind our optimizationtehnique, in the following example.Example 6.1.1 Consider Program Simple ShortPath (Figure 9). The prediate path(X;Y; P; C) is de�nedto ompute paths between eah pair of nodes X;Y , with P being a list of nodes on the path, and C beingthe length of the path. The prediate s p length(X;Y;C) de�ned in rule R2 �nds the length C of theshortest path from X to Y for eah pair of nodes X;Y . The use of s p length in rule R1 selets path fatsorresponding to shortest paths.Aggregate operation min has the property that non-minimal values in a set are unneessary for theaggregate operation on the set. Using this property, we an dedue that a fat path(a; b; p1; 1) is relevant tothe rule de�ning the query prediate shortest path only if there is no fat path(a; b; p2; 2) suh that 2 < 1.We use tests alled aggregate seletions to hek whether a fat is relevant; onditions suh as the above areused in the tests.The rewriting (automatially) dedues an aggregate seletion on the ourrene of the prediate pathin rule R2; only fats with minimum length values satisfy the aggregate seletion. It then \pushes" this85



aggregate seletion into rules that de�ne path, and propagates the seletions through the program.The rewriting algorithm outputs a program ontaining aggregate seletions on the prediates. For Pro-gram Simple ShortPath, the main di�erene between the rewritten program and the original program is thatevery ourrene of path in the rewritten program has an aggregate seletion that selets shortest paths. Wedisuss the rewritten program after introduing the notation used to express aggregate seletions.The evaluation phase of our tehnique makes use of the aggregate seletion on path, and deletes fatson whih the aggregate seletion test fails (namely all non-minimal paths for eah pair of nodes). We anoptimize the evaluation further by ordering the use of fats in the evaluation: we hide newly generated fats,and expose after eah iteration the path fat with minimum length among all hidden path fats.Ordering the use of fats as above, redues the time omplexity to the same as that of Dijkstra's algorithm(O(E � logV ) on a graph with E edges and V nodes), if we store only one shortest path between eah pairof nodes. We disuss details in Setion 6.6.2. The evaluation mehanism also works (with a higher timeomplexity) when edge lengths are negative, so long as there are no negative length yles. 2Reently Ganguly et al. [GGZ91℄ independently examined Datalog programs with min or max aggregateoperations. Their work addresses problems that are similar to those that we onsider, but the approahes aredi�erent and the tehniques are omplementary. We present a omparison of our tehniques with those ofGanguly et al. in Setion 6.8.1, and desribe several advantages of our approah. Knuth [Knu77℄ generalizesDijkstra's algorithm to deal with a lass of \superior ontext free grammers". Our evaluation tehniquegeneralizes Knuth's tehniques in a very natural manner, and the algorithms redue to Knuth's algorithmsin the speial ase of \superior ontext free grammers". We disuss this issue briey in Setion 6.8.1.We note that the evaluation tehniques presented in this hapter are orthogonal to the optimizationtehniques for non-ground fats that were presented in Chapter 5, although we restrit the use of non-ground terms with aggregation. We disuss this issue briey in Setion 6.8. There are programs, suh as theprogram in Example 5.9.2, where both optimizations are of use.The rest of the hapter is organized as follows. We present basi de�nitions and bakground material inSetion 6.2. Our notion of relevane is developed in Setion 6.3, where we also introdue aggregate seletionsand onstraints as a way of speifying relevane information. Tehniques for propagation of aggregateseletions and onstraints through single rules are developed in Setion 6.4. In Setion 6.5 we present analgorithm to rewrite programs by propagating aggregate seletions through the program, starting from thequery. In Setion 6.6 we show how to evaluate rewritten programs. We disuss extensions and related workin Setion 6.8.6.2 De�nitions and Bakground MaterialWe use V ars(t) to denote the set of variables that our in a term t. Similarly, V ars(t) denotes the set ofvariables that our in a tuple of terms t. Given a domain D, we use the notationM(D) to denote multisets1of elements from D.We de�ne the prediate dependene (PD) graph of a program as the digraph whose nodes are the prediatesof the program, and whose edges are de�ned as follows: There is an edge from prediate a to prediate b if1Also referred to as bags. 86



there is a rule de�ning b that uses prediate a in its body. The strongly onneted omponents (SCCs) of aprogram are the strongly onneted omponents of its prediate dependene graph. The redued PD graph ofa program is de�ned as the result of ollapsing together all nodes in the PD graph that belong to the sameSCC. The redued PD graph is ayli, and de�nes a partial ordering of the SCCs of a program. We saythat an SCC S1 is lower than SCC S2 if S1 preedes S2 in the partial ordering de�ned by the redued PDgraph.Example 6.2.1 Consider the following program.R1 : p(X) : � q(Y ); d(X;Y ):R2 : q(X) : � p(Y ); e(X;Y ):R3 : p(X) : � r(X):This program has four SCCs | one ontaining q and p, one ontaining d, one ontaining e, and oneontaining r. We use the set of prediates in an SCC to refer to the SCC. The partial ordering of the SCCsis as follows: eah of fdg, feg and frg preedes fp; qg. 2We view an aggregate funtion as any funtion agg f :M(D)! D1 for some domains D and D1. Notein partiular that D1 ould be the same as D, as is the ase for most aggregate funtions we onsider, suhas min, max, sum et. We also allow D1 to be M(D), thereby allowing aggregate funtions suh as leastk,that returns a multiset of the least k elements from a given multiset. Note that if we onsider the domain tobe 2D, i.e., sets of elements from D rather than multisets of elements from D, the aggregate funtions arestill appliable, sine 2D �M(D).The ardinality of an element in a multiset is de�ned in a straightforward manner. Multiset membershipis de�ned using ardinality:s 2 S � ardinality(s; S) 6= 0Similarly, multiset ontainment is de�ned asS1 � S2 � 8s 2 S1; ardinality(s; S1) � ardinality(s; S2)Other set operations �;�;� and = are similarly extended to multisets. Set di�erene \�" is extended tomultisets by the following de�nition:8s, if ardinality(s; S1)� ardinality(s; S2) � 0,then ardinality(s; S1� S2) = ardinality(s; S1)� ardinality(s; S2)else ardinality(s; S1� S2) = 0.We also de�ne a binary operation n as follows:8s 2 S2, ardinality(s; S1nS2) = 08s 62 S2; ardinality(s; S1nS2) = ardinality(s; S1)In this hapter we onsider de�nite lause programs extended with the aggregation operations that wedesribe later in this setion. We assume that the programs are range-restrited.2 This means that only2That is, every variable in the head of eah rule also appears in the body of the rule, and all fats are ground.87



ground terms an be generated, whih is reasonable for the most part in the ontext of aggregate funtions,sine the result of aggregate funtions (onsider, for example, min) on non-ground values is usually notwell-de�ned. Non-ground terms are useful in arguments of fats that are not aggregated upon, and inSetion 6.8 we disuss how the above restrition an be relaxed in some ases. We assume that programtransformations suh as Magi Sets have already been arried out; their use is largely orthogonal to theoptimizations desribed in this hapter.In order to de�ne the semantis of a program, we have to �rst de�ne a universe for the program. Inthis we follow [BNST91, BRSS92℄, where extended Herbrand universes are de�ned. Suh universes allowterms that are sets; the universes are easily extended to allow multisets (for instane by enoding multisetsas sets of ordered pairs helement; ardinalityi). Note that although we allow the generation of multisetsthrough aggregation, we assume that the relations in the program are sets of fats, and not multisets (i.e.,dupliate elimination is done when evaluating the program). It is not hard to relax this assumption, butthis assumption simpli�es the disussion.The syntax that we use for aggregation with set/multiset grouping is very similar to that used inLDL [NT89℄ for grouping. The syntax is as follows.p(t; agg fhY i): �q(: : :):We refer to the argument agg fhY i as the grouping argument, and Y as the grouping variable. The variablesin t are referred to as group-by variables. For simpliity in desribing our algorithms, we assume that there isat most one grouping argument in the head of a rule, and we usually show the grouping argument as the lastargument of the head of the rule. These restritions are easy to relax sine every program an be rewrittento be in the required form. For simpliity, we also assume that there is at most one literal in the body of arule that uses aggregation. This assumption an be relaxed using a straightforward rewriting.De�nition 6.2.1 We say that the fat p(a; v) follows from a rulep(t; agg fhY i): �q(: : :):and a given set of fats I if the following holds:1. Let S be the set of instantiations of the variables in the rule s.t. the instantiation of q(: : :) is in I . LetX = V ars(t), and x an instantiation of the variables in X that maps t to a.Then �Y �X=xS 6= ;, and v = agg f(�Y �X=xS), where � is a multiset projetion (i.e., it does not dodupliate elimination).2. The set of fats I ontains all true q fats, (and all other q fats are false).Given a rule R that uses aggregation, and a set of fats I , we de�ne TR(I) as the set of all fats thatfollow from R and I . 2Example 6.2.2 Suppose we have a rulep(X;Y;minhCi): �q(X;Y;C):Given that the set of all true q fats is fq(1; 2; 3); q(1; 2; 5); q(1; 3; 4)g, the fats p(1; 2; 3) and p(1; 3; 4) followusing the rule. 2 88



The semantis used in LDL di�ers from the above in that � is a set projetion operator. For aggregateoperations suh as max or min the di�erene in semantis is irrelevant. For other aggregate operations suhas sum, we an get the set projetion semantis by using agg fhsethY ii instead of agg fhY i.A program is said to be strati�ed if for every rule in the program that uses aggregation in the head, everyprediate used in the body is in a lower SCC than the SCC of the head prediate.Example 6.2.3 The following program is a minor variant of the program in Example 6.2.1. The SCCs ofthis program are the same as those of the program in Example 6.2.1.R1 : p(X) : � q(Y ); d(X;Y ):R2 : q(X) : � p(Y ); e(X;Y ):R3 : p(minhXi) : � r(X):This program is strati�ed sine in rule R3, the body prediate r is in a lower SCC than the head prediatep. If we replaed r by q, the program would not be strati�ed, sine p and q in rule R3 are in the same SCC.2 We make the following assumption:A0: All programs onsidered in this hapter are strati�ed.De�nition 6.2.1 requires that the set of all true fats for the body prediate be available before aggregationan be used. For strati�ed programs, this an be done in a fairly straightforward fashion. We desribe thesemantis of strati�ed programs informally below. See [BNST91℄ for a formal de�nition. We de�ne thesemantis SCC by SCC, proeeding in a total order onsistent with the partial ordering of the SCCs. Thesemantis for eah SCC de�nes the set of true fats for prediates in the SCC. The semantis of baseprediates is given by the set of fats in the database. Now onsider an SCC Si, and suppose we have de�nedthe semantis for all lower SCCs. De�nition 6.2.1 now de�nes TR for rules in Si that use aggregation, sinethe set of all true fats for lower SCCs is �xed by the semantis of the lower SCCs. For other rules, TR is asde�ned in Setion 2.1.3. De�neTSi(I) = [R2SiTR(I)The semantis of SCC Si is de�ned to be the least �xpoint of TSi , given the set of fats for lower SCCs.3The semantis of the program is de�ned to be the union of the semantis of eah SCC in the program.A strati�ed program an be evaluated using Semi-Naive evaluation, an SCC at a time, in a total orderof SCCs that is onsistent with the partial order of the SCCs [BNST91, BNR+87℄. We desribe this proessbriey. Assume that all SCCs that preede a given SCC Si have been evaluated. This is trivially true forSCCs that have only base prediates. We an now evaluate SCC Si using Semi-Naive evaluation as follows.For all prediates in lower SCCs, the �xpoint has been evaluated, and all suh prediates are onsideredas base prediates for the purpose of Semi-Naive evaluation. Rule appliation is generalized to handleaggregation in a straightforward fashion, sine all body prediates in a rule with aggregation are de�nedin lower SCCs, and hene are treated as base prediates. Semi-Naive rewriting and Semi-Naive evaluationare performed as usual, for the rules in SCC Si. Semi-Naive evaluation of the program terminates when allSCCs in the program have been evaluated.3We an show that TSi is monotone and ontinuous, and hene it has a least �xpoint [BNST91℄.89



Semantis an be given to programs that use non-strati�ed aggregation, and there are evaluation meh-anisms for several suh lasses of programs. We do not explore this issue here, but refer the reader to[Ros90, KS91, RS92, BRSS92, RSS92a, Van92℄ for more details.6.3 Views of Relevane In Logi ProgramsThe idea of relevane of fats to a query is used by Prolog and other top-down evaluation tehniques, as wellas by program rewriting tehniques suh as Magi [BR87b, Ram88℄. Suppose we have a ruleR : p(t): �q1(t1); q2(t2); : : : ; qn(tn):Assume for simpliity that we have a left-to-right rule evaluation (in the fashion of Prolog). Then a fatqi(ai) is relevant if there is an instantiationR0 : p(a): �q1(a1); q2(a2); : : : ; qi(ai):of (the head and �rst i body literals of) R suh that the head fat p(a) is relevant, and all instantiated fatsq1(a1); : : : ; qi�1(ai�1) have been derived. Thus, the notion of relevane is loal to a rule and to a set of fatsthat an instantiate it.In ontrast, in the shortest path problem we an deide that a partiular fat path(a; b; p1; 1) is irrelevantif a shorter path (fat) has been found. Suh information is \global", in the sense that relevane dependson fats other than those used to instantiate a rule. We develop this notion of relevane for programswith aggregate operations in the rest of this setion, in three steps. (1) If agg f is an aggregate funtionand S a multiset of values, we onsider when some values in S an be ignored without a�eting agg f(S)(Setion 6.3.1). (2) We use the ideas of step 1 to de�ne when a fat is relevant (Setion 6.3.2). (3) Weintrodue aggregate seletions and aggregate onstraints as a way of expliitly identifying irrelevant fats(Setion 6.3.3).6.3.1 Relevane and Aggregate FuntionsGiven a multiset of values and an aggregate funtion on the multiset, not all the values may be neededto ompute the result of the aggregate funtion. For instane, if the aggregate funtion is min, no valueexept the minimum value is needed. We now formalize the notion of values being unneessary for aggregatefuntions.De�nition 6.3.1 (Inremental Aggregate Seletor (InSel) Funtions) Let agg f be an aggregatefuntion agg f :M(D)! D1, for some domains D and D1. We say that agg f is an inremental aggregateseletor (InSel) funtion if there exists a funtion unneagg f :M(D)! 2D suh that1. 8S 2M(D);8S1; (Snunneagg f (S)) � S1 � S ) agg f(S1) = agg f(S)2. unneagg f is monotone. i.e., 8S1 � S2; s:t: S2 2M(D), unneagg f (S1) � unneagg f (S2)3. 8S 2M(D); unneagg f (S) = unneagg f (Snunneagg f (S))4. unneagg f does not map all elements of M(D) to ;.90



2 Given a multiset of fats S, the set of fats unneagg f (S) is \unneessary" in the following sense:Values in unneagg f (S) an be dropped from S without a�eting the result of agg f(S), due to Part 1 ofthe above ondition. Part 2 of the above ondition lets us detet unneessary values before the entire multisetof values is omputed|when we have omputed some S1 � S, any value deteted as unneessary for agg fon S1 is also guaranteed to be unneessary for agg f on S; a value that is neessary for S1 may howeverbe unneessary for S. Part 3 of this ondition ensures that if a value is deteted to be unneessary for anaggregate operation on a multiset, it will ontinue to be deteted as unneessary if we disard unneessaryvalues from the multiset4. Part 4 of the ondition ensures that the de�nition of InSel funtions is nottrivialized by the use of a trivial unneagg f funtion.Consider an InSel funtion agg f on domain M(D). There may be more than one possible funtionunneagg f as required by the de�nition of InSel funtions.De�nition 6.3.2 (unneessaryagg f ) For eah inremental aggregate seletor funtion agg f that isallowed in our programs, a funtion unneagg f (as above) is hosen, and is denoted by unneessaryagg f .The funtion neessaryagg f :M(D)! 2D is de�ned asneessaryagg f (S) = set(Snunneessaryagg f (S))2 We do not onsider how this hoie is made, but assume it is made by the designer of the system basedon the following riterion. Given two suh funtions f and g, we say f �0 g i� 8S � D; f(S) � g(S); learly>0 (the strit version of �0) is an (irreexive) partial order. Preferably, a funtion that is maximal underthe (irreexive) partial order >0 is hosen.Note that unneessaryagg f (S) ould be in�nite. We do not onstrut unneessaryagg f (S), but requirethat we an eÆiently test for the presene of a value in unneessaryagg f (S), for �nite S.Example 6.3.1 The funtion min on reals, with unneessarymin(S) = fx 2 D j x > min(S)g is an InSelfuntion. The funtion max on reals with unneessarymax symmetrially de�ned is also an InSel funtion.Other examples (with the funtions unneessaryagg f appropriately de�ned), inlude the aggregate funtionthat selets the kth largest element of a multiset for some onstant k, and the aggregate funtion that sumsup the k largest elements of a multiset. 2Assumption 6.3.1 In the rest of this hapter we assume that the optimization tehniques are applied onlyon InSel funtions. 2We also assume that a suite of InSel funtions and the orresponding funtions unneessaryagg f aregiven to us. In an atual implementation we would expet the system implementor to de�ne suh as suiteof funtions.4Part 3 of Condition InSel is used in Theorem 6.6.1 to show that inferenes are not repeated. None of the other resultsrequire aggregate funtions to satisfy this ondition. 91



6.3.2 Relevane of FatsWe now use the notion of neessity with respet to an aggregate funtion in de�ning our extended notion ofrelevane of fats. The semantis for a program de�nes a model for the program, and our notion of relevaneis de�ned with respet to this model (whih we all the intended model of the program).De�nition 6.3.3 (Relevane of Fats) Consider a program P with a query on it. A fat q(a) is relevantto the query i� one of the following is true:1. q(a) is an answer to the query, or2. q(a) ours in the body of an instantiated rule without aggregation in the head suh that every literalin the body is true in the intended model, and the head fat of the rule is relevant to the query, or3. There is a (ground) fat p(a; v) that is relevant to the query, and a rule R in the programR : p(t; agg fhY i)): �q(t1):suh that(a) Let S be the set of all possible substitutions � suh that t1[�℄ = a1, and q(t1)[�℄ is true in theintended model. Let Y [S℄ denote the multiset of values for Y generated by substitutions in S.Then v = agg f(Y [S℄)).(b) There is a � 2 S s.t. q(a) = q(t1)[�℄, where Y [�℄ 2 neessaryagg f (Y [S℄).2A fat is said to be irrelevant to the query if it is not relevant to the query. In future, we simply say relevant(resp. irrelevant) when we mean \relevant to the query" (resp. \irrelevant to the query").Example 6.3.2 Consider a program with one ruleR : p(X;minhY i): �q(X;Y ):and fats q(5; 4); q(5; 6) and q(5; 3). Let the query on the program be ?p(X;Y ). Fat p(5; 3) is generated asan answer. With X = 5, the set of fats that math the body of the rule have Y values of 3; 4 and 6, ofwhih only 3 is neessary for min. Hene q(5; 3) is relevant to the query. q(5; 3) is a base fat, and no fatsare used to derive it. Therefore there are no other relevant fats. Hene q(5; 4) and q(5; 6) are irrelevant tothe query, while q(5; 3) is relevant.Also, by the above de�nition, for the shortest path length program (Figure 8) all path fats, exept thoseorresponding to shortest paths, are irrelevant. This an be seen by working bakwards from answers tothe query. Fats for the prediate s p length are the only fats that are diretly relevant (by Part 1 of thede�nition). Of the path fats used to derive these fats, the only relevant ones are shortest paths (by Part3 of the de�nition). By examining the rules for path, we an verify that any path fat that is used to derivea shortest path, and is relevant by Part 2 of the de�nition, is itself a shortest path. 292



Our extended notion of relevane is very tight, and in general we may not be able to determine therelevane of a fat without atually omputing the intended model of the program. The tehniques wepresent will use suÆient but not neessary onditions to test for irrelevane. During the evaluation of someprograms we may generate a fat, and later disover that it is irrelevant, for instane when some other\better" fat is generated. One a fat is found to be irrelevant, by \withdrawing" the fat we may beable to determine that other fats generated using it an no longer be generated, and hene an also be\withdrawn". The ost of suh asading withdrawals ould be very high, and so we on�ne ourselves toonly disarding irrelevant fats. Although not \withdrawing" omputation ould result in some additionalirrelevant omputation, the gains in eÆieny from our optimization without \withdrawing" omputationan still be signi�ant.6.3.3 Aggregate Constraints and SeletionsWe now introdue some onepts that allow us to speify relevane information. Informally, sound aggregateseletions are used to speify tests for relevane of fats|if there is a sound aggregate seletion on a prediatein our rewritten program, and a fat for the prediate does not satisfy the seletion, the fat is irrelevant.Aggregate seletions are introdued by our rewriting algorithm and the information is used by our evaluationalgorithm. The syntax (using a variant of Starburst SQL groupby) and semantis of aggregate seletions aredesribed in the next few de�nitions.De�nition 6.3.4 (Atomi Aggregate Seletion) An atomi aggregate seletion has the following syn-tax: (u) : groupby(p(t); [X ℄; agg f(Y ))Here (u) denotes a literal or a onjuntion of literals, and X a set of variables suh that X � V ars(t). Wemust have Y 2 V ars(t), and agg f must be an InSel funtion.Consider a program P with an assoiated intended model. Given the set of fats for prediate p in theintended model of P , we have a set of instantiations of t. Sine X � V ars(t) and Y 2 V ars(t), for eahvalue d of X in the set of instantiations of t, we have a orresponding multiset of values for Y ; we denotethis multiset by Sd. We onstrut (oneptually) a relation unne agg(X;Y ) with a tuple (d; e) for eah d,and eah e 2 unneessaryagg f (Sd).Let (a) be a ground onjuntion. We say that (a) satis�es the atomi aggregate seletion si i� there existsa substitution � suh that (1) (a) = (u)[�℄, (2) � assigns ground terms to all variables in V ars(u)[X[fY g,and (3) (X;Y )[�℄ is not in unne agg 5. 2In the above de�nition, the variables in [X℄ are alled group-by variables and the variable Y is alled thegrouping variable in the atomi aggregate seletion. The variables in the set ((V ars(t)�X)�fY g) are loalto the groupby, and annot be quanti�ed or instantiated from outside the groupby.5Note that the relation unne agg ould be in�nite. To atually perform the test, we ould take an instantiation of Y , andtest if it is in unneessaryagg f (X)[�℄ without atually onstruting the whole (possibly in�nite) set unneessaryagg f (X)[�℄,or the (possibly in�nite) relation unne agg. 93



Example 6.3.3 The following is an example of an atomi aggregate seletion:path(X;Y; P; C) : groupby(path(X;Y; P1; C); [X;Y ℄;min(C))In the above atomi aggregate seletion, the group-by variables are X and Y , and the grouping variable isC. We have not spei�ed where the literal path(X;Y; P; C) ours | it ould be, for instane, a literal in arule body, or it ould be taken to refer to fats for the prediate path; we shall make the use of the literalmore preise in sueeding de�nitions.Suppose the set of fats in path ispath(a; b; [a; ; b℄; 20):path(a; b; [a; b℄; 30):path(a; ; [a; ℄; 10):path(; b; [; b℄; 10):The ground literal path(a; b; [a; b℄; 30) does not satisfy the aggregate seletion | the literal binds thegroup-by variables X;Y to a; b, and the C values for this group are 20 and 30; hene, 30 is irrelevant for themin aggregate funtion on this group. However, path(a; b; [a; ; b℄; 20) satis�es the aggregate seletion. Theground literal path(d; e; [d; e℄; 200) satis�es the seletion, sine there is no fat, in the set of fats for path,that binds the group-by arguments X;Y to d; e, and hene no value is lassi�ed as irrelevant for this group.2De�nition 6.3.5 (Aggregate Seletion) An aggregate seletion s is a onjuntion of atomi aggregateseletions, s = (s1 ^ s2 ^ : : : ^ sn). A ground onjuntion (a) satis�es an aggregate seletion s = (s1 ^ s2 ^: : : ^ sn) i� it satis�es eah of the atomi aggregate seletions si individually. 2We use the short form (u) : g1 ^ g2 to denote ((u) : g1) ^ ((u) : g2). We often say \the aggregateseletion s on the body of R" to denote the aggregate seletion (u) : s, where (u) is the body of rule R.Note that a onjuntion of aggregate seletions is also an aggregate seletion.Our approah to rewriting the program onsists of plaing aggregate seletions on literals and rule bodiesin the program in suh a fashion that if a fat/rule instantiation does not satisfy the aggregate seletion itis guaranteed to be irrelevant. Hene we de�ne the onept of sound aggregate seletions formally below.De�nition 6.3.6 (Sound Aggregate Seletion) An aggregate seletion s is a sound aggregate seletionon the body of a rule R i� only irrelevant fats are produed by instantiations of the body of R that do notsatisfy s.An aggregate seletion s is a sound aggregate seletion for a literal p(t) in the body of a rule R i� onlyirrelevant fats are produed by instantiations of R that use for literal p(t) any fat p(a) that does not satisfys. An aggregate seletion s is a sound aggregate seletion on a prediate p i� any fat p(a) is irrelevant if itdoes not satisfy s. 2Given a sound aggregate seletion on a literal/rule, we an (partially) test during an evaluation whethera fat or an instantiated rule satis�es it. The extension of eah prediate p at that point is a subset of theextension of p in the intended model of the program. Sine the aggregate funtions are inremental aggregate94



seletors, an answer of \no" at that point means that the answer would be \no" in the intended model of theprogram, and hene the fat/instantiation is irrelevant. However, an answer of \yes" is onservative, sinethe fat/instantiation may be deteted to be irrelevant if all fats in the intended model were available.Example 6.3.4 Consider an aggregate seletionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))Suppose we have two fats path(a; b; ; 2) and path(a; b; ; 3) at a point in the omputation. Then we know thatpath(a; b; ; 3) does not satisfy the seletion. Later in the omputation we may derive a fat path(a; b; ; 1).At this point we �nd that path(a; b; ; 2) also does not satisfy the seletion. 2We de�ne sound aggregate onstraints next|they di�er slightly from sound aggregate seletions, and weuse them in our rewriting algorithm to generate aggregate seletions.De�nition 6.3.7 (Sound Aggregate Constraint) An aggregate seletion s is a sound aggregate on-straint for prediate p i� every fat that an be derived for p satis�es the aggregate seletion s. 2The following are tehnial de�nitions that we use primarily to ensure that the aggregate seletions thatwe generate an be tested eÆiently. The motivation is that the fat/rule instane on whih we have anaggregate seletion must bind all the variables in the aggregate seletion.De�nition 6.3.8 (Free Variables) The free variables of an atomi aggregate seletion(u) : groupby(p(t); [X ℄; agg f(Y ))are the variables in the set (V ars(X)[fY g). The other variables in an atomi aggregate seletion are boundvariables (sine the semantis of atomi aggregate seletions quanti�es these variables within the sope ofthe atomi aggregate seletion).The free variables of aggregate seletion s = s1 ^ : : : ^ sn are those variables that are free in at least oneof the atomi seletions aggregate si. 2De�nition 6.3.9 (Restritions of Aggregate Seletions) An atomi aggregate seletion si is said tobe restrited to a given set V of variables if every free variable in si ours in V . Let s = (s1 ^ s2 ^ : : :^ sn).Then restrition(s; V ) = ^fsi j si is restrited to V g 2Example 6.3.5 Consider the following seletion:s = (u) : groupby(path(X;Y; P; C); [X;P ℄;min(C))^ groupby(path(X;Y; P; C); [X;Y ℄;min(C))The free variables of s are X;Y; P and C, andrestrition(s; fX;Y;Cg) = (u) : groupby(path(X;Y; P; C); [X;Y ℄;min(C)) 295



R1 : shortest path(X;Y; P; C) : � s p length(X;Y;C); path s1(X;Y; P; C):R2 : s p length(X;Y;minhCi)) : � path s1(X;Y; P; C):R3 : path s1(X;Y; [edge(Z; Y )jP ℄; C1) : � path s1(X;Z; P; C); edge(Z; Y;EC); C1 = C + EC:R4 : path s1(X;Y; [edge(X;Y )jnil℄; C) : � edge(X;Y;C):Seletions::s1 = path s1(X;Y; P; C) : groupby(path s1(X;Y; P; C); [X;Y ℄;min(C)):Figure 10: Program Smart6.4 Generating Aggregate Constraints and SeletionsWe present a quik overview of the next few setions of the hapter . We develop our algorithm for prop-agating relevane information in two steps. (1) In this setion we present a olletion of tehniques forgenerating sound aggregate seletions. (2) In Setion 6.5, we present our main rewriting algorithm, Algo-rithm Push Seletions, whih uses these tehniques as subroutines. In Setion 6.6, we examine an evaluationmehanism that an take advantage of sound aggregate seletions on prediates that are generated by therewriting mehanism.As a preview of what the tehniques an ahieve, onsider Program Simple ShortPath (Figure 9). Theresult of rewriting is Program Smart, shown in Figure 10. The rewritten program uses a new prediatepath s1 whih is a version of path, with the sound aggregate seletion s1 on it. The prediate path itselfis not present in the rewritten program. The other prediates have no aggregate seletions on them. Theseletion s1 tells us that path s1 fats that are not of minimum length between their endpoints are irrelevant.Deleting suh fats during the evaluation leads to onsiderable time bene�ts, and is disussed in Setion 6.6.2.In the �rst part of this setion we desribe an initial set of tehniques for generating aggregate onstraintsand seletions. The tehniques are shown below. Tehnique C1 desribes a way of deduing sound aggregateonstraints on prediates. Tehniques BS1, BS2 and BS3 desribe three ways to generate sound aggregateseletions on the bodies of rules. Tehnique LS1 desribes a simple way of deduing sound aggregate seletionson literals. In Setions 6.4.1 and 6.4.2 we present a more sophistiated analysis that helps us to derivefurther sound aggregate seletions on body literals. We note that this set of dedution rules is not omplete;in Setion 6.4.3 we show that it is undeidable in general whether a body literal satis�es a sound aggregateseletion.Tehnique C1: (Generating Aggregate Constraints)Suppose that there is only one rule de�ning p, and it is of the form:p(t; agg fhY i): �q(tb)Let X = V ars(t), and let agg f be an InSel funtion suh that8S 2M(D); agg f(S) = neessaryagg f (S)Then p(t; Y ) : groupby(q(tb); [X℄; agg f(Y )) is a sound aggregate onstraint on p.Tehnique BS1: (Generating Aggregate Seletions from Aggregate Constraints)96



Suppose we have a rule of the formhead(th): �(tb); p(t)and suppose there is an aggregate onstraint on p of the form: p(t1) : s where all free variables in s areinluded in V ars(t1). Suppose there exists a renaming � of variables in t1 suh that p(t) = p(t1)[�℄. Thens[�℄ is a sound aggregate seletion on the body of the rule.Tehnique BS2: (Generating Aggregate Seletions from Aggregate Operations)Suppose we have a rule of the formp(t; agg fhY i): �q(tb)where agg f is an InSel funtion. Let X = V ars(t). Thengroupby(q(tb); [X ℄; agg f(Y ))is a sound aggregate seletion on the body of rule R.Tehnique BS3: (Generating Aggregate Seletions from Other Aggregate Seletions)Consider a rule of the formp(th): �body(tb).Suppose the head prediate p has a sound aggregate seletion p(t) : s on it, where all free variables in s areinluded in V ars(t).Suppose there exists a renaming � of free variables in s, and a substitution � of other variables in t suhthat p(th) = p(t)[�℄[�℄. Then s[�℄ is a sound aggregate seletion on the body of the rule.Tehnique LS1: (Generating Aggregate Seletions On Literals)Let s be a sound aggregate seletion on the body of a rule R, and let p(t) be a literal in the body of R.Then p(t) : restrition(s; V ars(t))is a sound aggregate seletion on the literal p(t) in the body of R.The intuition behind Tehniques C1 and BS2 is straightforward. Tehniques BS1 and BS3 use an existingaggregate seletion/onstraint to generate a new aggregate seletion. To translate an aggregate onstraintp(t1) : s on a prediate p into an aggregate seletion on a rule that uses the prediate in the body, onean ompute an mgu � of p(t1) with a literal in whih the prediate is used. The seletion s[�℄ is a soundaggregate seletion on the body of the rule, sine every fat that is used for the literal must unify with theliteral, and must satisfy the aggregate onstraint (see Theorem 6.4.1 for a formal proof). In fat, TehniqueBS1 uses a renaming � on variables in the aggregate seletion/onstraint, rather than an arbitrary mgu �.The use of renamings is not needed for orretness, but is done in order to restrit the set of aggregateseletions that an be generated by our rewriting tehnique, thereby helping us ensure that our rewritingalgorithm terminates. 97



Given an aggregate seletion p(t1) : s on a prediate p, we an ompute an mgu � of p(t1) with the headof a rule that de�nes p. Any fat generated by the rule must unify with the head, and if it does not satisfythe aggregate seletion, it is irrelevant. Hene s[�℄ is a sound aggregate seletion on the body of the rule (seeTheorem 6.4.1 for a formal proof). Tehnique BS3 generates aggregate seletions as above, but restrits themgu to be a renaming, for the same reasons as those desribed for Tehnique BS1.We have the following theorem showing soundness of the above dedution tehniques. A formal proof ofthe theorem may be found in Appendix D.Theorem 6.4.1 The aggregate seletions generated by Tehniques C1, BS1, BS2, BS3, and LS1 are soundaggregate seletions. 2Example 6.4.1 Consider Program Simple ShortPath (Figure 9). Using Tehnique C1 and rule R2 we getthe aggregate onstraints p length(X;Y;C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the prediate s p length. Using this aggregate onstraint with rule R1, Tehnique BS1 dedues thefollowing sound aggregate seletion on the body of rule R1:groupby(path(X;Y; P; C); [X;Y ℄;min(C))Using Tehnique BS2 we get the following sound aggregate seletion on the body of rule R2:groupby(path(X;Y; P; C); [X;Y ℄;min(C))If we had a sound aggregate seletionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the head prediate of rule R3, Tehnique BS3 would derive the following sound aggregate seletion onthe body of rule R3:groupby(path(X;Y; P; C1); [X;Y ℄;min(C1))From these sound aggregate seletions on the bodies of R1 and R2, using LS1, we dedue the soundaggregate seletionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the literal path(X;Y; P; C) in the body of the rule R1, and the sound aggregate seletionpath(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C))on the literal path(X;Y; P; C) in the body of the rule R2. 2
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6.4.1 Pushing Aggregate SeletionsWe now look at another way of generating aggregate seletions on rule body literals. But �rst we presentsome de�nitions. Aggregate funtions suh as min and funtions as + or � interat in a partiular fashion,and we use this interation to generate sound aggregate seletions on literals in the bodies of rules.De�nition 6.4.1 (Distribute Over) Let fn be a total funtion fn : D �D � : : : �D ! D that mapsn-tuples of values from D to a value in D. De�ne s fn(U) = Sffn(t) j t 2 Ug. Let agg f be an aggregatefuntion agg f :M(D)! D1. Let S1; S2; : : : Sn be elements of M(D), and let S = S1 � S2 � : : :� Sn.unneessaryagg f is said to distribute over fn i� for every (w1; w2; : : : ; wn) 2 S, and for every i, 1 � i �n, wi 2 unneessaryagg f (Si)) fn(w1; w2; : : : ; wn) 2 unneessaryagg f (s fn(S))2Example 6.4.2 For example unneessarymin distributes over \+" for reals and integers, and over � forpositive reals and positive integers, but does not distribute over � for arbitrary reals.unneessarymin also distributes over the funtion min(a1; a2; : : : ; an), and further, surprisingly, alsoover max(a1; a2; : : : ; an). In fat, min distributes over any funtion that is monotone non-dereasing on itsarguments. unneessarymax behaves exatly like min on the above funtions. Let sum highest k denotethe aggregate funtion that sums the highest k values (for some �xed k). Then unneessarysum highest kdistributes over \+" on reals. 2We assume that the system implementor provides a set of pairs (agg f; fn) for ommon aggregate fun-tions agg f and arithmeti funtions fn suh that unneessaryagg f distributes over fn. We disuss brieyin Setion 6.8 how to extend the idea of distributes over to allow di�erent aggregate funtions for eah Si inthe above de�nition.Tehnique PS1 shows a way of deriving aggregate seletions on literals in rule bodies by making use ofdistribution of aggregate funtions over ordinary funtions.Tehnique PS1: (Generating Aggregate Seletions on Literals)Let R be a rule of the formR : ph(th): � : : : ; pi(ti;W i); : : : ; Y = fn(W1; : : : ;Wn)suh that there is no aggregate operation in the head of R. Suppose1. There is a sound atomi aggregate seletion on the head of R, of the formgroupby(ph(th); [X℄; agg f(Y ))2. unneessaryagg f distributes over fn,3. Eah of W1; : : : ;Wn; Y are distint variables,4. Eah Wi appears exatly one in the literal pi(ti;W i), and appears in no literal other than Y =fn(W1; : : : ;Wn).5. Y does not appear in any other literal in the body of the rule, and does not appear in X.99



Then for eah literal pi(ti;W i) in the body of the rule, the following is a sound atomi aggregate seletionon the literal:pi(Z;Wi) : groupby(pi(Z;Wi); [Z℄; agg f(Wi))where Z is a tuple of distint variables of the same arity as ti.Theorem 6.4.2 Tehnique PS1 is sound. 2The proof of this theorem may be found in Appendix D.Example 6.4.3 Suppose we have a sound atomi aggregate seletiongroupby(path(X;Y;C); [X;Y ℄;min(C))on the head of the following rule:path(X;Y;C): �path(X;Z;C1); edge(Z; Y; C2); C = C1 + C2:Tehnique PS1 derives a sound aggregate seletion of the formgroupby(path(X;Z;C1); [X;Z℄;min(C1))on the body literal path.Now suppose we have a sound atomi aggregate seletiongroupby(path(X;Y; P; C); [X;Y ℄;min(C))on the head of rule R3 of Program Simple ShortPath. Tehnique PS1 derives a sound aggregate seletionof the form groupby(path(X;Z; P; C); [X;Z; P ℄;min(C)) on the body literal path(X;Z; P; C) in rule R3.However, this literal has a \stronger" sound aggregate seletion groupby(path(X;Z; P; C); [X;Z℄;min(C)).In Setion 6.4.2 we see how the stronger seletion an be derived. 26.4.2 Extended Tehniques for Pushing SeletionsThe seletions generated by Tehnique PS1 are too weak in the following sense. Often there are argumentsof literals that need not be introdued in the group-by variables of the aggregate seletion generated, asis illustrated in Example 6.4.3. The dedution tehnique an be extended using the following idea. Inthe proof of Tehnique PS1, we partitioned the multiset SY based on the values of variables other thanfW1; : : : ;Wn; Y g, and we showed that within eah partition we have a ross produt of the SWi values.This ross produt is important for distributing agg f over fn. We an make the partitions of oarsergranularity by not inluding some variables in the partition, and yet have a ross produt as above. We anthen generate stronger sound aggregate seletions on body literals. We �rst present some de�nitions thathelp in the generalization. 100



De�nition 6.4.2 (Cross-Partitioning Variables) Consider a ruleR : ph(th): � : : : ; pi(ti;W i); : : : ; Y = fn(W1; : : : ;Wn):with an aggregate seletiongroupby(ph(th); [X ℄; agg f(Y ))that satisfy the onditions of PS1. A set of variables V is said to be ross-partitioning if1. fY;W1;W2; : : : ;Wng \ V = ;.2. Given any instantiation of the variables in V [X:(a) Let S denote the set of instantiations of (W1;W2; : : : ;Wn) generated by suessful instantiationsof the rule with the given binding for V [X.(b) Let SWi denote the set of instantiations of Wi generated by suessful instantiations of pi(ti;W i)with the given binding for V [X.Then either S is empty, or S = SW1 � SW2 � : : :� SWn.2 The set of all variables in the rule other than fY;W1;W2; : : : ;Wng is a ross-partitioning set, as isshown by the proof of soundness of Tehnique PS1. However, there may be smaller sets of ross-partitioningvariables.Example 6.4.4 We ontinue with Example 6.4.1. Suppose we have a sound atomi aggregate seletiongroupby(path(X;Y; P; C1); [X;Y ℄;min(C1)) on the head of rule R3:R3 : path(X;Y; [edge(Z; Y )jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:Then the set of variables fX;Y; Zg forms a ross-partitioning set. The reason is that with a given valuefor X;Y; Z, whatever values one �nds for C using path an be used with whatever values that one gets forEC using edge. The value of P does not a�et the ross-produt. 2We disuss the issue of automatially determining sets of variables that are ross-partitioning, in Se-tion 6.4.2.Tehnique PS2: (Extended Tehnique For Generating Aggregate Seletions on Literals)Consider a rule R that with an aggregate seletion satis�es the onditions of Tehnique PS1. Supposesome set V of variables is a ross-partitioning set. De�ne an argument of pi(ti;W i) to be a partitioningargument if1. it is not a variable, or2. it is a variable that appears elsewhere in the same literal, or3. it is a variable that is in X [ V . 101



Let Z be a tuple of distint variables of the same arity as ti. Let Z 0 be the set of variables in Z thatorrespond to partitioning arguments. Then the following is a sound atomi aggregate seletion on literalpi(ti;W i):pi(Z;Wi) : groupby(pi(Z;Wi); [Z 0℄; agg f(Wi))
Theorem 6.4.3 Tehnique PS2 is sound. 2The proof of this theorem is presented in Appendix D.Example 6.4.5 We ontinue with Example 6.4.4. Using Tehnique PS2, we dedue the following soundaggregate seletion on the literal path:path(X;Y; P; C) : groupby(path(X;Z; P; C); [X;Z℄;min(C))This seletion is \stronger" than the seletion generated by Tehnique PS1, sine it selets the minimumost for eah X;Z pair, rather than for eah X;Z; P triple. 2Deteting Sets of Cross-Partitioning VariablesWe now see how to determine a set of ross-partitioning variables for a rule. We �rst present some de�nitions.The idea behind the following de�nitions is that if a variable in a literal does not appear elsewhere in therule or in the aggregate seletion, we get a ross-produt of SWi sets as in De�nition 6.4.2, even if we do notinlude the variable in the ross-partitioning set.De�nition 6.4.3 (Strongly Non-Constrained Arguments) Suppose we are given a rule and an ag-gregate seletion on the rule. Consider any literal in the rule. The strongly non-onstrained arguments ofthe literal as those arguments that are distint variables that (1) our nowhere else in the body of the rule,and (2) do not appear as a free variable in the aggregate seletion. 2De�nition 6.4.4 (Strongly Non-Constrained Variables) Consider a rule R and an aggregate seletions as in Tehnique PS1. A variable in R is strongly non-onstrained if it ours in a non-onstrained argumentof some literal pi(ti;W i). 2Proposition 6.4.4 Consider a rule R and an aggregate seletion s as in Tehnique PS1. Let V denotethe set of all variables in the rule. Let N denote the set of non-onstrained variables in the rule. ThenC = V �N � fW1;W2; : : : ;Wn; Y g is a ross-partitioning set for rule R. 2The proof of this proposition may be found in Appendix D.Example 6.4.6 We revisit Example 6.4.4. Suppose we have a sound atomi aggregate seletiongroupby(path(X;Y; P; C1); [X;Y ℄;min(C1)) 102



on the head of rule R3:R3 : path(X;Y; [edge(Z; Y )jP ℄; C1) : � path(X;Z; P; C); edge(Z; Y;EC); C1 = C +EC:Then the third argument of path(X;Z; P; C) is a non-onstrained argument sine it is a variable thatdoes not appear elsewhere in the rule body. Hene P is a non-onstrained variable. The set of variablesfX;Y; Zg forms a ross-partitioning set, as required by Proposition 6.4.4. 26.4.3 An Undeidability ResultWe note that the set of dedution rules we presented for sound aggregate seletions is not omplete. De-pending on the atual fats for a prediate, it is possible that a literal has a sound aggregate seletion onit, but the sound aggregate seletion annot be dedued syntatially. The following theorem shows that noset of dedution rules an be omplete.Theorem 6.4.5 It is undeidable whether an aggregate seletion is sound.Proof: Consider a rulep(X;C): �q(X;C); test(C):and suppose we have a sound aggregate seletionp(X;C) : groupby(p(X;C); [X ℄;min(C))Then q(X;C) : groupby(q(X;C); [X ℄;min(C))is a sound aggregate seletion on the literal q i� for every X , the minimum value of C in q(X;C) satis�estest(C). However, with arbitrary logi programs, satis�ability is undeidable [SS82℄, and hene it is undeid-able if the aggregate seletion on the literal is sound. The theorem an be extended to aggregate seletionson prediates, by letting the given rule be the only one that uses of q. 2It is oneivable that we an derive a set of rules that are omplete for the lass of dedutions that useonly (loal) syntati riteria. However, suh a set of rules would be too weak in pratise, as is illustratedby the program in Example 6.4.3. Here, distribution of min over + depends ritially on the semantis for+. Hene no dedution rule that used purely syntati riteria would dedue the required seletion.6.4.4 Strength of Aggregate SeletionsAn aggregate seletion s is stronger than an aggregate seletion t (denoted as s � t), if whenever t lassi�esan instantiation as irrelevant, then so does s. Seletions s and t are equivalent (in symbols, s � t) if s � tand s � t. Note that the ordering > (i.e., the strit version of �) is an irreexive partial ordering. It is nota total ordering sine aggregate seletions may be inomparable.The following are suÆient onditions for an aggregate seletion s to be stronger than t.Compare Aggregate Seletions(s; t): 103



1. Suppose s and t are atomi aggregate seletions of the following form:s = 1(: : :) : groupby(p(t); [X1℄; agg f(Y ))t = 2(: : :) : groupby(p(t); [X2℄; agg f(Y ))(a) If 1(: : :) = 2(: : :), and V ars(X1) � V ars(X2) then s � t.(Note that the �rst and third arguments of the above groupby's must be the same.)(b) If there is some substitution � on the variables of 1(: : :) suh that 1(: : :)[�℄ = 2(: : :), and s[�℄ isstronger than t, then s is stronger than t.2. Suppose s = 1(: : :) : as1 ^ as2 ^ : : : ^ asm and t = 2(: : :) : at1 ^ at2 ^ : : : ^ atn where eah asi and atjis atomi. Then s � t if for eah atj there exists an asi suh that 1(: : :) : asi � 2(: : :) : atj .Proposition 6.4.6 The onditions in Compare Aggregate Seletions(s; t) are suÆient onditions for s tobe stronger than t. 2The formal proof of the above proposition may be found in Appendix D.6.5 The Aggregate Rewriting AlgorithmIn this setion we present a rewriting of the program based on the propagation of sound aggregate seletions.The rewriting algorithm is somewhat similar to the adornment algorithm used in Magi sets rewriting (see[Ull89b℄). When it detets that an ourrene of a prediate p in the body of a partiular rule has a soundaggregate seletion s on it, it reates a new labeled version p s of p and notes that prediate p s has aggregateseletion s on it. That ourrene of prediate p is replaed by p s, and by using aggregate seletion s, (opiesof) rules de�ning p are speialized to de�ne p s.The rewriting algorithm is shown below. In Step 7 of the algorithm, s is a sound aggregate seletionon the head of R0, and this, along with any aggregate onstraints on body prediates, may be used withtehniques from Setion 6.4 to generate new aggregate seletions.Algorithm Push Seletions(P; P as )Input: Program P , and query prediate query pred.Output: Rewritten program P as.1) Derive sound aggregate onstraints on the prediates of the programusing the dedution rules.2) Push query pred nil onto stak.3) While stak not empty do4) Pop p s from the stak and mark p s as seen.5) For eah rule R de�ning p do6) Set R0 = a opy of R with head prediate replaed by p s.104



7) Derive sound aggregate seletions for eah body literal pi of R0using the dedution rules.8) For eah pi in the body of R0 do9) Let si denote the onjuntion of sound aggregate seletionsderived for pi; drop from si any atomi aggregate seletionsthat are weaker than other atomi aggregate seletions in si.10) If a version pi t of pi suh that t � si has been seen,11) Then hoose one suh, and set si = t ;12) Else push pi si onto stak, and output seletion si on pi si.13) Output a opy of R0, with eah pi replaed by pi si.End while.End Algorithm.Postproessing 1: For eah prediate p, for eah version p s of p, hoose the weakest version p t of p inthe rewritten program suh that s � t. Replae all ourrenes of p s in bodies of rules in the rewrittenprogram by p t. Finally, remove all rules that are not reahable from the query.Postproessing 2: Suppose we have a prediate q in the rewritten program, with an atomi aggregateseletion s = groupby(p(t); [X℄; agg f(Y )) on it. If q is a version of p with aggregate seletion s on it, renamep in the above seletion to q. Otherwise, if p is absent from the rewritten program rename p in the seletionwith a prediate hosen as below: if a version p s of p with aggregate seletion s, exists, hoose it. If not,selet a version6 p s1 of p if any suh version exists. If no p s1 was found, p is not onneted to the queryprediate|drop the seletion s from prediate q.If in the rewritten program there are two versions of p, p s and p t suh that s > t, there is no point inusing the stronger version p s | all the fats omputed for p s will be omputed for p t. Postproessing 1desribes how to replae the stronger version of p by the weaker version.As a result of the renaming of prediates followed by reahability analysis in Postproessing 1, prediatesused in aggregate seletions may not be present in the rewritten program. Postproessing 2 desribes howto �x this problem.Example 6.5.1 Applying this algorithm to Program Simple ShortPath, we get the optimized program,Program Smart shown in Figure 10. The algorithm starts with the query prediate shortest path. Creationof aggregate onstraints, and pushing them into rules is done as disussed in earlier examples, and theoperation of Algorithm Push Seletions is fairly straightforward. As a result of the rewriting we get the rulesof Program Smart, but with path s1 having the following sound aggregate seletion on it:path s1(X;Y; P; C) : groupby(path(X;Y; P; C); [X;Y ℄;min(C)):On postproessing, we rename prediate path in the above seletion to path s1, to get Program Smart. To6We omit details on how to make this hoie. 105



get the bene�ts of the rewriting, the evaluation must make use of the aggregate seletions present in ProgramSmart. We desribe how to do this in the next setion. 2Theorem 6.5.1 (Corretness of Rewriting) Let P be any program, and P as the aggregate rewrittenversion of the program.1. P as and P are equivalent in the set of answers they generate for the query prediate.2. The aggregate seletion on eah prediate in P as is a sound aggregate seletion on the prediate.2 The proof of this theorem is presented in Appendix D The basi idea is that the dedution rules generatesound aggregate seletions on body literals. The rewriting tehnique reates opies of the prediates ofthe body literals, suh that all uses of the prediate have the aggregate seletion on them, and hene theaggregate seletion on the literal beomes an aggregate seletion on new prediate.Theorem 6.5.2 (Termination) Algorithm Push Seletions terminates on all �nite input programs, pro-duing a �nite rewritten program. 2The above theorem shows that the generated program is �nite. This is assured essentially beause ourdedution tehniques bound the number of di�erent aggregate seletions that an be generated. The formalproof is presented in Appendix D.The rewritten program ould potentially be large, but, as is the ase with the adornment algorithmfor Magi sets rewriting, this is very unlikely to happen in pratie|the rewritten program is likely to benot muh larger than the original program. To ensure that the rewritten program is small we ould adoptheuristis suh as bounding the number of atomi aggregate seletions in an aggregate seletion to some �xedsmall value, or bounding the number of di�erent aggregate seletions on eah prediate. We omit detailshere; these restritions may inrease the number of fats omputed, but will not a�et orretness.Proposition 6.5.3 (Strati�ation) If the initial program is strati�ed w.r.t. aggregation, then the ag-gregate rewritten program is also strati�ed w.r.t. aggregation. 2Proof: We simply assign eah prediate p s to the same stratum as p. It an then be seen that everyaggregation operation in the rewritten program respets this strati�ation. 26.6 Aggregate Retaining EvaluationIn this setion we see how to evaluate a rewritten program making use of aggregate seletions on prediates.Essentially, one we know that a fat does not satisfy a sound aggregate seletion on it we know that thefat is irrelevant, and any use if the fat will only generate irrelevant fats.We de�ne Aggregate Retaining Evaluation (Agg-retaining Evaluation) as a modi�ation to Semi-Naiveevaluation (Setion 2.2.3) : At the end of eah iteration of Semi-Naive evaluation, (in Step 2.2 of AlgorithmSN Evaluate) the following extra ations are performed:106



1. Any fat that does not satisfy an aggregate seletion is marked as deleted. Any fat marked deleted isnot used in further derivations.2. For eah fat marked deleted, if(a) there is an aggregate seletion with a groupby that uses the prediate of the fat, and(b) the fat a�ets the unneessary set for the groupby,then the fat is retained for use in that groupby. Otherwise, the fat is disarded.Part 2 of the above may seem hard to test. In fat, it is not ritial that it be tested. Retaining a deletedfat that satis�es Part 2 of the ondition above does not a�et the derivations made later on. Moreover,there are straightforward suÆient onditions for it, suh as the following.If a fat for a prediate p fails a sound atomi aggregate seletionp(t) : groupby(p(: : :); [: : :℄; : : :)(i.e., the groupby uses the same prediate p) disarding the fat will not a�et the unneessary set for thisgroupby. This is beause Part 3 of ondition InSel ensures that if a value in a set is unneessary for a set,disarding it will not a�et the unneessary value for the set. If all uses of p in atomi aggregate seletionsare of the above form, and a fat for p fails all the atomi aggregate seletions, then disarding the fat willnot a�et the unneessary set for the groupby's in any seletion.Example 6.6.1 Prediate path s1 in Program Smart has a sound aggregate seletionpath s1(X;Y; P; C) : groupby(path s1(X;Y; P; C); [X;Y ℄;min(C)):If a fat is generated with any value for X and Y and another fat with the same value for X and Y alreadyexists, we know that the one with the greater C value does not satisfy the aggregate seletion. Agg-retainingevaluation of Program Smart disards fats with higher ost. If there is more than one stored fat withthe same value for X;Y;C, the fats an di�er only in their P value. If a fat fails the aggregate seletion,it annot a�et the set of fats that are found irrelevant by the aggregate seletion, and the fat an bedisarded. 2The soundness and partial ompleteness of Agg-retaining evaluation are fairly straightforward to show.The main onern is termination. One might worry that Agg-retaining evaluation ould disard a fat, thenreompute it, and reuse it to make derivations sine it does not reognize that it was used earlier. In theworst ase, an in�nite loop ould result if this happens. The following theorem shows that this annothappen. The essential idea is to show that one a fat is found irrelevant, it ontinues to be found irrelevantlater in the omputation. The proof of the theorem is presented in Appendix D.Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation ofP as gives the same set of answers for query pred as Semi-Naive evaluation of P , and does not repeatany inferenes. Further, the Aggregate Retaining evaluation of P as terminates whenever the Semi-Naiveevaluation of P terminates. 2 107



R1 : s p length(X;Y;minhCi)) : � path s1(X;Y;C):R2 : path s1(X;Y;C1) : � path s1(X;Z;C); edge(Z; Y;EC); C1 = C +EC:R3 : path s1(X;Y;C) : � edge(X;Y;C):Seletions::s1 = path s1(X;Y;C) : groupby(path s1(X;Y;C); [X;Y ℄;min(C)):Figure 11: Program Smart ShortCost6.6.1 Pragmati Issues Of Testing Aggregate SeletionsFor onreteness, we let the set of aggregate funtions that we onsider in this setion be the following: min,max, and for small integers k (up to some arbitrary number) the funtions least k, highest k, sum of least kand sum of highest k.Our seletion propagating tehniques ensure that all free variables in a groupby of an atomi aggregateseletion also appear in the orresponding literal on whih the seletion is applied. When testing an atomiaggregate seletion on a fat f , we have a unique ground instantiation of the group-by and grouping variablesof the seletion; the test of the aggregate seletion an be performed eÆiently for all the aggregate funtionsthat we onsider in this setion.If the test determines that fat f is irrelevant, f is disarded, else it is retained | for the aggregatefuntions we onsider, disarding f does not a�et the set of values that are lassi�ed as irrelevant. As theomputation proeeds, the set of unneessary values for the \group" to whih f belongs (i.e., the set of fatswith the same values in the grouped arguments) ould grow larger, and this might enable us to determinethat f is irrelevant, although this ould not be deteted earlier. By sorting the set of fats on the groupedarguments, this \re-testing" an be done eÆiently. The ost of sorting is small for the aggregate operationswe onsider in this setion; in the ase of max or min aggregate operations there is at most one value storedfor eah group (however, there an be more than one fat with the same value).Proposition 6.6.2 (Bounds on Performane) Given a program that uses only the aggregate operationsonsidered in this setion, and a database, let the time for Agg-retaining Evaluation of the program on thedatabase be tR, and let tO be the time taken to evaluate the original program on the database. There is aonstant k (independent of the database) suh that tR � k � tO. 2This means that Agg-retaining evaluation of the rewritten program an do at most a onstant fator worsethan Semi-Naive evaluation of the original program | the onverse is not true.Example 6.6.2 Given a graph with n nodes, the number of shortest paths between eah pair of points maybe exponential in n. Hene we annot get a worst ase time bound better than exponential in n for theshortest-path problem if we maintain all shortest paths as in Program Smart (Example 6.5.1). We insteadonsider two variants of this program below.Consider Program Simple ShortCost, from Setion 6.1. This program does not maintain path information.The rewriting for this program is similar to the rewriting for Program Simple ShortPath (Figure 9), and therewritten program, Program Smart ShortCost, is shown in Figure 11.108



R1 : s p length(s; Y;minhCi)) : � path s1(s; Y; C):R2 : path s1(s; Y; C1) : � path s1(s; Z; C); edge(Z; Y;EC); C1 = C +EC:R3 : path s1(s; Y; C) : � edge(s; Y; C):Seletions::s1 = path s1(X;Y;C) : groupby(path s1(X;Y;C); [X;Y ℄;min(C)):Figure 12: Program Smart SingleSoureCostDue to the aggregate seletion, there an be at most O(V 2) path s1 fats at any point in the evaluation.These fats an be used with the E edge fats. Rule R2 an be thought of as extending eah edge bakward,and eah edge an be extended bak to at most V nodes. Rule R1 an generate at most E path fats. Thisshows that E � V inferenes are made per iteration, and hene there are at most E � V path fats used ineah iteration. Eah iteration then takes time E �V , assuming that hash-based indies are used for path andedge fats. There are at most V iterations, sine iteration i omputes all shortest paths of length i. Thus,Agg-retaining evaluation of Program Smart ShortCost takes time O(E � V 2).To ompute shortest paths from a single soure, we an use a version of Simple ShortCost where the vari-able in the �rst argument of eah path literal in the program is bound to the soure node s.7 We do not showthis program, but instead diretly show its aggregate rewritten version, Program Smart SingleSoureCost,in Figure 12. An analysis similar to that for Program Smart ShortCost shows that Program Smart Single-SoureCost runs in time O(E � V ).Note that the above bounds hold even if there are negative length edges, so long as there are no negativeyles in the edge graph.In Sudarshan and Ramakrishnan [SR92a℄, we disuss extensions to aggregate funtions to allow theprogram to speify that only one shortest path (hosen arbitrarily) is required. The rewriting algorithms arealso extended to handle these extensions to aggregate funtions. It is easy to modify Program Smart to geta program that omputes shortest paths from a given soure node. We an use these extensions to reate aversion of this program that selets a single shortest path. The extended Aggregate rewriting of this programgenerates a rewritten program that maintains at most one shortest path between the soure node and eahother node. We show in [SR92a℄ that preisely the same time bounds as for Program Smart SingleSoureCostare appliable to the Agg-retaining evaluation of the rewritten program. 26.6.2 Ordered Aggregate Retaining EvaluationConsider the shortest path problem with a given starting point. Dijkstra's algorithm takes O(E � log(V ))time if we use a heap data struture to �nd the minimum ost path at eah stage. However, Agg-retainingevaluation of Program Smart SingleSoureCost (Example 6.6.2) takes O(E � V ) time. We an get the e�etof Dijkstra's algorithm by extending at eah stage only the shortest path that hasn't been extended yet. Inother words, we use only the path fats that are of minimal ost among those that haven't yet been used.This important observation is made in [GGZ91℄ and is used in their evaluation algorithm (see Setion 6.8.17The Fatoring transformation [NRSU89℄ and the Magi Sets rewriting on Program Simple ShortCost, with a query havingthe �rst argument bound results is a similar program being generated. Aggregate Rewriting optimizes the resultant programsuessfully. 109



for a brief desription). Their evaluation tehnique works for the lass of \monotoni min programs" | see[GGZ91℄ for a preise de�nition. The basi idea behind their tehnique an be applied to a lass of programsthat we all ost-inationary programs. These are de�ned below.A ost domain is a domain with a partial ordering on it. A ost prediate is one with a distinguishedargument alled the ost argument, that takes values from the ost domain.De�nition 6.6.1 (Cost-Inationary Programs) A strongly onneted omponent (SCC) of a programis said to be ost-inationary-min if either it has no aggregate seletions, or all the following onditions hold:1. All aggregate seletions on prediates in the SCC use only the min aggregate operation.2. Every prediate in the SCC has a ost argument.3. For eah prediate de�ned in the SCC, the min operation in eah aggregate seletion (if any) on it ison the ost argument of the prediate.4. Every rule in the SCC is inationary on the ost argument, i.e., for every suessfully instantiated rule,the values in ost arguments of body prediates are less than the value in the ost argument of thehead of the instantiated rule.An SCC is said to be ost-inationary-max if the onditions above hold, with min replaed with max,and less replaed with greater.A program is said to be ost-inationary if eah of its SCCs is either ost-inationary-min or ost-inationary-max. 2We make use of an idea in [GGZ91℄ to derive an improved evaluation tehnique, Ordered AggregateRetaining Evaluation (Ordered-Agg Evaluation) , for SCCs that have aggregate seletions, and are ost-inationary-min. The basi idea is to use lower ost fats before higher ost fats are used. We make use ofa mehanism alled sloppy-delta iteration for adapting Semi-Naive evaluation for fat orderings, desribedin [SKGB87℄. All derived relations are split into a visible part and a hidden part ontaining fats that arenot used to make derivations until they are moved into the visible part.Ordered Aggregate Retaining Evaluation:To evaluate ost-inationary-min SCCs, we adapt Semi-Naive evaluation as follows.1. Newly derived fats are put into the hidden parts of the respetive relations. The fats in the hidden partsof relations are ordered based on the ost argument of the fat.2. Whenever a �xpoint is reahed with the visible parts of relations, we �nd the fat with the least ost fromamong all the fats in the hidden parts of relations and move it into the visible part.3. Fats from the hidden as well as the visible relations are marked deleted (and possibly disarded) when anaggregate seletion �nds them to be irrelevant, as is done in Agg-retaining evaluation.The tehnique for ost-inationary-max SCCs is very similar to the above, with the ordering of elementsreversed; we omit details. A ost-inationary program is evaluated by using the appropriate version of110



Ordered-Agg evaluation tehnique for eah SCC, and evaluating the SCCs in a total order onsistent withthe partial ordering of the SCCs.The e�et of the above evaluation is exatly the same as if Ganguly et al.'s evaluation tehnique wereused, for the ase of ost-inationary programs. The following example illustrates its bene�ts.Example 6.6.3 The Aggregate rewritten single soure shortest path ost program, Program Smart Single-SoureCost, is shown in Figure 12.All path fats generated by Program Smart SingleSoureCost have the soure node s as the �rst argument.Ordered-Agg evaluation of Program Smart SingleSoureCost works as follows. First, all edges from s areused, and path fats reated using rule R3. These path fats are hidden, and a loal �xpoint is reahed.Now a shortest path among the hidden path fats is seleted and used. This generates new path fats, andall these are hidden. A loal �xpoint is reahed, and a shortest path among the hidden path fats is seletedagain. If there are two path fats to the same node, if one of them is of higher ost than the other, theaggregate seletion using min deletes the fat of higher ost.We assume that the edge weights are non-negative. The evaluation explores paths in order of inreasingost sine edge weights are non-negative | any path fat generated must be of equal or higher ost thanthe path fat used to generate it. Thus when a hidden path fat is exposed, it is guaranteed to be a shortestpath from s. Evaluation thus mimis Dijkstra's algorithm. The time omplexity analysis is essentially thesame as that used for Dijkstra's shortest path algorithm | the analysis is as below.Suppose we use a heap data struture. The min aggregate seletion ensures that for eah node, only theminimum ost path from the soure is retained. Thus only O(V ) path fats are present at any time.Finding the overall shortest path at eah step therefore takes O(log(V )) time, assuming a balaned heapis used. At eah iteration a \minimal" node is hosen and the path to it is expanded. Thus some new fatsare omputed and added to the heap.For the node that is hosen to be expanded in the next iteration, there an be no shorter path from thesoure, sine every path that is omputed hene will be longer (due to the assumption that edge weights arenon-negative). Thus that node will never be hosen again to be expanded. Thus in V steps the algorithmterminates. At eah step the edges from a node are examined, and the path to the node is expanded alongeah edge from the node. This an take a total of at most O(E) time over all steps sine eah node isexpanded exatly one, and at most O(E) fats are added to the heap. Thus the heap operations takeO(E � log(V )) time. Thus the total time taken by Ordered-Agg evaluation of this program is O(E � log(V )).Note that even if edge weights are negative, the algorithm works orretly, and terminates provided thereare no negative weight yles. However, the time taken by the program may be exponential in the worstase.Using the extensions desribed in Sudarshan and Ramakrishnan [SR92a℄, we an reate a variant ofProgram Smart that omputes only paths from a single soure node, and maintains only one shortest pathbetween eah pair of nodes, and we an use the extended aggregate rewriting on this program. We show in[SR92a℄ that preisely the same time bounds as for Ordered-Agg evaluation of Program Smart SingleSoure-Cost are appliable to the Ordered-Agg evaluation of the rewritten program. 2Theorem 6.6.3 Consider the Ordered Aggregate Retaining Evaluation of a ost-inationary-min SCC. The111



evaluation is sound, and every fat that is used in the evaluation satis�es all aggregate seletions on it. Fur-ther, the evaluation does not repeat derivations, and is omplete and terminates if Agg-retaining evaluationterminates on the SCC.Proof: Soundness follows diretly from the soundness of the aggregate seletions.At an intermediate �xpoint in an Agg-retaining evaluation, onsider the fat with the least ost thathas not been used yet, and satis�es any aggregate seletions on it. Sine the rules in the SCC are ost-inationary-min, no fat with lesser ost an be derived hene. Therefore this fat de�nitely satis�es anymin aggregate seletion on the prediate (with respet to the omplete set of fats).Consider now an SCC for whih Agg-retaining evaluation terminates. Sine Agg-retaining evaluationterminates, there are only a �nite number of fats that satisfy all aggregate seletions present. At eahintermediate �xpoint, a new suh fat is hosen. Hene there are only a �nite number of �xpoints. Nowwithin an intermediate �xpoint, only derivations that use the seleted fat an be made. Sine this is a subsetof the fats derived in Agg-retaining evaluation, eah intermediate �xpoint terminates. Hene Ordered-Aggevaluation terminates on the SCC. Any deleted fats fails an aggregate seletion and hene is irrelevant.Completeness then follows from the ompleteness of sloppy-delta iteration [SKGB87℄.As in Agg-retaining evaluation, one a fat is found to fail an aggregate seletion, it will ontinue to failthe aggregate seletion. The non-repetition property follows from the non-repetition property of sloppy-deltaiteration. 2The above theorem also shows that Ordered-Agg evaluation never makes more derivations than Agg-retaining evaluation for ost-inationary programs. In turn, Agg-retaining evaluation makes no more infer-enes than Semi-Naive evaluation.Ordered-Agg evaluation also works on programs that are not ost-inationary. For instane, the shortestpath program is not inationary if there are negative ost edges. But even in this ase, Ordered-Aggevaluation of Program Smart funtions orretly, and terminates if there are no negative ost yles, althoughit may not be very eÆient if negative edges are present.6.7 ExamplesWe now see some more examples of programs to whih our tehniques are appliable.Example 6.7.1 The following program de�nes the earliest �nish time of a task, given the �nish times ofpreeding tasks.R1 : e fin(X;maxhT i) : � fin(X;T ):R2 : fin(X;T ) : � preedes(X;Y ); fin(Y; T1); delay(X;D); T = T1+D:R3 : fin(X;T ) : � first(X); delay(X;T ):This program an be optimized using our tehniques, and in the resultant program fin is replaed by fin s,where s is the aggregate seletionfin s(X;T ) : groupby(fin s(X;T ); [X ℄;max(T ))112



The rules and other prediates are the same, but finish fats that don't have maximal times are dedued tobe irrelevant. We an extend this program to ompute the ritial path, and still apply our optimizations.The aggregate rewritten program an be evaluated using Agg-retaining evaluation. We annot useOrdered-Agg evaluation sine the program is not ost-inationary | it uses max, but the ost value ofthe head of a rule is greater than that of the body, whereas it should be less for ost-inationary-max SCCs.Note that the evaluation of the program would take time O(E � V ). If we ordered the use of fats suh thata vertex is expanded only after all its predeessors have been expanded, we an do better. This an in fatbe ahieved by using the Ordered Searh evaluation feature [RSS92a℄ provided in the CORAL dedutivedatabase system [RSS92b℄. The time omplexity of evaluation is then O(E). 2Example 6.7.2 Consider the following program. Prediate path2(X;Y;H;C) denotes a path where X andY are soure and destination, H denotes hops, and C denotes ost.R1 : p best(X;Y;H;C) : � p few(X;Y;H); p short(X;Y;H;C):R2 : p few(X;Y;minhHi) : � p short(X;Y;H;C):R3 : p short(X;Y;H;minhCi) : � path2(X;Y;H;C):/* ... Rules for path2 ... */Query: ?-p best(X;Y;H;C):The program �nds ights with the minimum number of hops, and within suh ights, �nds those withminimum ost. Our tehnique generates the sound aggregate seletion on path2:path2(X;Y;H;C) : groupby(path2(X;Y;H;C); [X;Y;H ℄;min(C))^ groupby(path2(X;Y;H;C); [X;Y ℄;min(H))The rewritten program is the same as the original program (modulo renaming of prediates other thanp best), exept for having the above sound aggregate seletion on path2, as well as aggregate seletionson p few and p best. In the evaluation of the rewritten program all paths that have more hops than theminimum for a given start and end point, as well as all paths that are not of minimum ost for a given startand end points and a given number of hops are disarded. 2Example 6.7.3 The following program an be used to �nd the ost of the heapest three paths, andillustrates the ability of our tehniques to handle aggregate operations other than min and max. We usethe aggregate operation least3 that given a multiset, returns a multiset ontaining the three least values inthe given multiset.8R1 : shortest3(X;Y; least3hCi) : � path(X;Y;C):/* ... Rules for path as in Figure 8 ... */Query: ?-shortest3(X;Y;C):Aggregate operation least3 is an InSel funtion, with unneessaryleast3(S) de�ned as all values greaterthan the third lowest value in multiset S. Also, the funtion unneessaryleast3 distributes over \+". Heneour rewriting tehnique proeeds on the rules for path in this program in a manner very similar to the shortest8Sine the Herbrand universe does not inlude multisets, we need to use an extended Herbrand universe when assigning asemantis to this program [BNR+87℄. 113



R1 nearest sgbff (X;Y;minhDi) : �query(nearest sgbff (X)); sgbff (X;Y;D):R2 : sgbff (X;Y;D) : � query(sgbff (X)); up(X;Z1); sgbff (Z1; Z2; D1);down(Z2; Y ); D = D1 + 1:R3 : sgbff (X;Y; 1) : � query(sgbff (X)); f lat(X;Y ):R4 : query(sgbff (X)) : � query(nearest sgbff (X)):R5 : query(sgbff (Z1)) : � query(sgbff (X)); up(X;Z1):R6 : query(nearest sgbff (s)):Figure 13: Program Nearest Same Generationost program, and the rewritten rules are similar to the rules of Program Smart ShortCost (Figure 11). exeptthat min is replaed by least3. In the evaluation of the rewritten program, only the heapest three pathsbetween pairs of points are retained. 2Our optimization tehniques are orthogonal to Magi rewriting [BR87b, BNR+87℄ and are appliable toprograms that annot be expressed using transitive losure, as the next example shows.Example 6.7.4 Consider Program Nearest Same Generation (from [GGZ91℄) in Figure 13, that omputesthe \nearest" among all nodes in the \same generation" as a node s. Our tehniques an be applied tooptimize this program. This program has been rewritten using the Magi Templates transformation, withadornment [BR87b℄.9The rewriting produes essentially the same program exept that there is an aggregate seletion s =sgbff (X;Y;D) : groupby(sgbff (X;Y;D); [X;Y ℄;min(D)) on prediate sgbff . In the evaluation of the rewrit-ten program, for eah X;Y pair only the fat sgbff (X;Y;D) suh that D is minimum is retained. 26.8 DisussionWe note that the evaluation tehniques developed in this hapter are orthogonal to the optimization teh-niques developed in Chapter 5, but there are some restritions on the use of non-ground fats with aggre-gation. We require that for all prediates, any arguments that are aggregated upon or used as a group-byargument of an aggregate operation or an aggregate seletion must be ground. Other arguments an benon-ground | this does not a�et our evaluation tehnique, although it an a�et our rewriting tehnique.The optimization tehniques developed here ontrol the use of fats, and use tests for irrelevane. The op-timization tehniques developed in Chapter 5 work at the level of fat representation, and rule appliation.Example 5.9.2 illustrates a program for whih both optimization tehniques are useful.Our rewriting tehniques an be implemented using suÆient onditions for various tests as we mentionedin the ourse of the paper. In addition to this, our rewriting tehniques provide a basis for human analysisof a program, with the subsequent introdution of aggregate seletions by a human rather than a rewritingsystem. This is useful in ases where the required onditions are met, but the suÆient onditions are notpowerful enough, or in systems where the rewriting algorithm has not been implemented. We then have asound basis for the introdution of aggregate seletions, rather than an ad ho approah.9The notation di�ers somewhat from that of Beeri and Ramakrishnan [BR87b℄. Literals of the form magi p(: : :) in therewriting of [BR87b℄ are written as query(p(: : :)) in our notation.114



Although, for simpliity, we only onsidered programs without negation, our results an be extended todeal with programs that use strati�ed negation. The Magi rewriting of a program with strati�ed negation oraggregation may not be strati�ed [BNR+87℄. Evaluation tehniques have been developed for non-strati�edprograms generated by Magi rewriting of strati�ed programs, as well as for more general lasses of non-strati�ed programs (see, e.g., [Ros90, KS91, RSS92a℄). We believe our rewriting tehniques an be generalizedto handle some of these lasses of programs, and the evaluation tehniques used for these lasses of programsan be generalized to use aggregate seletions, just as we generalized Semi-Naive evaluation to use aggregateseletions.Van Gelder [Van92℄ onsiders programs with unstrati�ed aggregation whose meaning is easier to under-stand if aggregation is pulled out of reursion. Our evaluation tehniques an be viewed as omplementingVan Gelder's ideas, by letting the user speify a strati�ed program, and automatially transforming it intoone where aggregation has been pushed into reursion (through the use of aggregate seletion).In Setion 6.4.1 we examined the ase of unneessaryagg f distributing over a funtion. The de�nitionof distributes over (De�nition 6.4.1) an be extended in a straightforward manner by allowing a di�erentfuntion unneessaryagg f i for eah argument of the funtion. This would let us distribute unneessaryminthrough to the �rst argument of \�", and get an unneessarymax funtion on the seond argument of \�".Tehnique PS1 generalizes in a straightforward manner.We an extend De�nition 6.4.3 by allowing the strongly non-onstrained arguments to have variablesthat our as arguments of \non-onstraining funtion" literals | funtions that are total on the type of thevariable, and whose results is `assigned' to a variable that does not appear in the rule body or in the groupbyvariables of the aggregate seletion. This an be further generalized to allow for funtion omposition in therule body, where the result of a funtion is used as an argument of another non-onstraining funtion, Thede�nition of non-onstrained variables an then be orrespondingly generalized by also de�ning all variablesthat appear only in non-onstraining literals to be non-onstrained variables. Proposition 6.4.4 generalizesorrespondingly, and the basi idea in the proof remains unhanged.Suh an extension would be useful if, for instane, in Example 6.4.6, we had a literalappend(P; [edge(X;Y )℄; P1)in the body, and P1 is used only in the head of the rule. append is a total funtion on the type list; thisinformation ould let us dedue that P is a non-onstrained variable. Similarly, if we had extra argumentsfor path, for instane one that maintains the number of nodes in the path, we may be able to dedue thatthe argument is non-onstrained. Suh dedutions are useful in generating stronger aggregate seletions asin Example 6.4.5.6.8.1 Related WorkSeveral papers in the past [RHDM86, ADJ88℄ addressed optimizations of generalized forms of transitive lo-sure that allowed aggregate operations. Cruz and Norvell [CN89℄ examine the same problem in a generalizedalgebrai framework. On the other hand, we deal with a language that an express more general reursivequeries with aggregation, and do not make use of any speial syntax.Knuth [Knu77℄ onsiders a lass of problems that an be viewed in the framework of \superior ontext115



free grammers". Superior ontext free grammers an be viewed as ost-inationary-min programs with onereursive binary prediate (all it g). A superior funtion is one whose value is greater than the values ofeah of its arguments. The ost argument of the head of eah rule in the program is omputed as a superiormonotone non-dereasing funtion of the ost arguments of the body literals. The non-ost argument of pholds the name of the non-terminal in the superior ontext-free grammer. The problem is to solve the queryquery(X;minhCi): �g(X;C):Our rewriting tehniques apply to this program, sine min distributes over any monotone non-dereasingfuntion, and we an use Ordered-Agg evaluation on it sine the funtion is superior. The e�et is exatlythe same as using Knuth's algorithm. Knuth notes several appliations of suh grammers, suh as �ndingthe length of the shortest path, �nding the expeted number of omparisons in an optimum binary searhtree (given probabilities of aess of keys and gaps between keys), and optimum ode-generation algorithmsfor ompilers. Our evaluation tehnique generalizes this lass, sine we do not require the funtions to besuperior (although Ordered-Agg evaluation may not be appliable). Further, we allow arbitrary programs,whih generalize the lass of superior ontext-free grammers. For instane, sine we allow the use of funtionsymbols, we an �nd the optimum binary searh tree (mentioned above), rather than just �nd the expetednumber of omparisons in the tree.Reently Ganguly et al. [GGZ91℄ presented optimization tehniques for monotone inreasing (resp. de-reasing) logi programs with min (resp. max) aggregate operations. Informally, there must be a single ostargument for eah prediate in the program and the program must be monotone on this argument. Theytransform suh a program into a (possibly unstrati�ed) program with negation whose stable model yieldsthe answers to the original program, but does not ontain any irrelevant fats. They also present an eÆientevaluation mehanism for omputing the stable model for the transformed program, whih is essentiallyequivalent to Dijkstra's algorithm for the ase of shortest-path.Our results were obtained independently of Ganguly et al. [GGZ91℄. The results of Ganguly et al.omplement this work in two important ways. Their idea of ordering of fats in the omputation (whih wehave adapted and extended in Setion 6.6.2) o�ers signi�ant improvements in time omplexity, and unlikeour tehnique, theirs an handle monotoni min programs even if the use of min is unstrati�ed.Our tehniques improve on those of Ganguly et al. in several ways. First, our tehniques handle programswith multiple aggregate operations inluding min and max, least k, et. Thus we an handle a programthat maintains path information. Seond, our tehniques are appliable to strati�ed programs that arenot monotoni. This means that we an handle problems suh as the ritial path problem. However,our tehniques are not appliable to non-strati�ed programs. Third, we allow prediates with multipleost arguments and allow multiple atomi aggregate seletions on the same prediate. The use of thesegeneralizations is illustrated in Examples 6.7.2 and 6.7.3, whih annot be handled by Ganguly et al.We note that the rewriting tehniques of Ganguly et al. only work eÆiently with a version of the programthat does not maintain atual paths. There are other ommon examples of programs that an bene�t fromour optimizations, although they annot be handled by [GGZ91℄ sine they are not ost inationary. Theseinlude the shortest path problem with edges of negative weight, and the earliest �nish time problem shownin Example 6.7.1. 1010This program uses max and is monotonially inreasing, whereas Ganguly et al. require it to be monotonially dereasing.116



6.9 ConlusionsWe believe that evaluation with Aggregate Optimization will o�er onsiderable time bene�ts for a signi�antlass of strati�ed programs that use aggregate operations similar to min and max. We believe that given atehnique suh as that of Ganguly et al. [GGZ91℄, or of Beeri et al. [BRSS89℄ for evaluating speial lassesof unstrati�ed programs, our optimization tehniques an be adapted for suh lasses of programs, and andetet irrelevant fats using aggregate seletions. Our optimization tehniques may be useful for optimizingnon-reursive queries, suh as SQL queries, that use aggregate operations.
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Chapter 7ConlusionIn the �rst part of this thesis, we identi�ed some problems with bottom-up evaluation of programs thatgenerate non-ground terms. We presented a ombination of an improved rewriting tehnique and an improvedevaluation tehnique to address these problems. Our optimization tehniques provide two bene�ts.First, we were able to show that memoization an be done at a relatively low ost in terms of time omplex-ity (a ost of a log log fator with respet to Prolog evaluation) if we do not perform subsumption-heking.Whether or not to do subsumption-heking then beomes a matter of whether the ost of subsumption-heking is paid o� by savings in terms of reomputation and improved termination properties. Unlike withthe naive approah, no signi�ant extra prie (in the sense of time omplexity) is paid either for storing fats,or for implementing a fair searh strategy (breadth-�rst searh instead of the depth-�rst searh implementedby Prolog).Seond, the optimization tehniques permit eÆient bottom-up evaluation of programs that generatenon-ground fats. We presented examples of programs that are best evaluated bottom-up, and use non-ground data-strutures. This result is important sine non-ground data-strutures have been shown to bevery useful in the ontext of Prolog evaluation, and we expet them to be of importane in the ontext ofdatabases as well.The optimization tehniques1 have been implemented on the CORAL dedutive database system. Theextra ost added by the optimization tehniques seems to be reasonably small for programs that generateonly ground fats.There have been some extensions to bottom-up evaluation that ontrol the order of searh (Ramakrishnan,Srivastava and Sudarshan [RSS92a℄). However, it is still an open problem whether Prolog's depth-�rst ontrolstrategy an be simulated bottom-up (or by memoing top-down tehniques), without a loss of eÆieny forthe ase where all answers are required. A related issue is that of intelligent baktraking (see, e.g., [CD85℄),whih allows termination of omputation for a subgoal before all answers to the subgoal have been generated.A restrited form of intelligent baktraking an be inorporated within the evaluation of a rule in bottom-upevaluation. The hoie annotation [NT89, GPSZ91℄ as well as the any aggregate seletion [SR92a℄ providesome of the bene�ts of intelligent baktraking aross rules, in the ontext of bottom-up evaluation. How toprovide the full bene�ts of intelligent baktraking is an open problem, and is related to the searh strategy1Modulo tail-reursion optimization 118



used. Another area of future work is eÆient bottom-up evaluation of programs with negation in rule bodies(see, e.g. [Ros90, KSS91, RSS92a℄).In the seond part of this thesis we developed optimization tehniques that are useful for programs thatuse aggregate operations along with grouping operations. We developed a notion of relevane that extendsthe notion used by Magi rewriting, and presented an evaluation tehnique, based on aggregate seletions,that makes use of this extended notion of relevane. We presented a rewriting tehnique that an dedueaggregate seletions; it is powerful enough to dedue the \optimality priniple" for the shortest path program.The examples we presented illustrate the importane of ontrol of dedution. We also identi�ed a lass ofprograms for whih there is an eÆient ontrol strategy based on ordering the use of fats. The shortest pathprogram falls into this lass, as does the larger lass of superior ontext free grammars, and the evaluationtehnique generalizes Dijkstra's shortest path algorithm.Future work in this area inludes studying the e�et of ontrol on evaluation. Extending the set of rulesfor deduing aggregate seletions is also of importane. Another area of interest is to develop tehniques to\push" aggregate operations suh as sum and ount into rules, even though they do not provide aggregateseletions. This ould redue the ost of evaluation onsiderably in many ases.
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Appendix AProofs From Chapter 3
A.1 Proofs From Setion 3.3Lemma 3.3.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequene forPMGUQ suh that the evaluation prior to that step has property MGU-Prop.Suppose a supplementary fat supj;i(id; vi; idi+1) is derived at this step. Let supj;i be a supplementaryprediate generated from a rule Rj of P ,Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):suh that the body of Rj is non-empty.Then there are fats answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fat query(p(s); id), suhthat1. Eah idm; 1 � m � i, is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spei�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)Proof: We prove this by indution on i (where the supplementary prediate is supj;i).The base ase has i = 0. For this ase, any sup1j;0 fat must be generated using a rulesup1j;0(ID; V ; p1(t1)): �query(p(t); ID):Sine bottom-up evaluation uses mgus, in any fat reated thus p1(t1) is an mgu-subgoal generated fromthe subgoal with id ID, and the bindings of variables in V satis�es Part 2 of this lemma. The rule de�ningsupj;0 merely replaes the goal with its id. Hene the laim holds for the basis ase.Now suppose it holds for all values up to some k� 1, and onsider k. Suppose a fat sup1j;k(id; vk; pk+1(bk+1)) is generated. It must be generated from a rule of the form:sup1j;k(I; V ; pk+1(tk+1)): �supj;k�1(I; V ; I1); answer(I1; pk(tk)):120



using some fat supj;k�1(id; vk�1; idk) and some fat answer(idk ; pk(ak)). Hene, by indutive assumption,there is a fat query(p(s); id), and there are fatsanswer(id1; p1(a1)); : : : ; answer(idk�2; pk�2(ak�2)that satisfy the neessary onditions, and id1; : : :, idk�1 are ids of mgu-subgoals generated from the subgoalwith id i.Further, the bindings of variables in vk�1 orrespond to an mgu for the rule pre�x, by Part 2 of thelemma and indution hypothesis. By the statement of the lemma, pk(ak)) is an mgu-answer to the subgoalwith id idk. When making a derivation mgus are used. From this and the struture of supplementary rulesit follows that the the substitution for variables of Rj spei�ed by vk, is inMGU(hq(t); p1(t1); : : : ; pk(tk)ihq(t); p1(a1); : : : ; pk(ak)i)Hene the variable bindings reated satisfy Part 2 of the lemma.Using arguments exatly the same as in the base ase, the last argument of the generated sup1j;k fat isan mgu-subgoal, generated from id. And as before, the rule de�ning supj;k replaes the subgoal by its id.Hene Part 1 of the lemma follows.This onludes the indution step and the proof of this lemma. 2Lemma A.1.1 Let P be any program, and Q a query on P . Consider a step in a derivation sequenefor program PMGUQ suh that the evaluation prior to that step has property MGU-Prop. Suppose a fatanswer(id; p(a)) is derived at this step.Then p(a) is an mgu-answer to the subgoal with identi�er id.Proof: Suh a fat an be generated using a rule of one of three forms. The �rst ase is of rules of the form:answer(I; h(t)): �supj;0(I; V ; ):The proof is straightforward for suh rules, sine the supj;0 fat used in the body is generated by a mostgeneral uni�ation of the subgoal with identi�er id with the head of a rule with an empty body from P , andthe supj;0 fat stores the variable bindings in V . These variable bindings are used to reate the head fatfor the same rule from program P .The seond ase is of rules of the form:answer(I; h(t)): �supj;n�1(I; V ; I1); answer(I1; pn(tn)):The supplementary fat used in the body of the rule R must satisfy Lemma 3.3.1. The proof of this asethen diretly parallels the arguments in the indution step of the proof of Lemma 3.3.1.1 We omit details,for brevity.The third ase is of Type 6 rules, whih are of the form:answer(I; h(t)): �query(bi(Xi); ID; answer(I; h(t)); bi(Xi):1Note that this proof does not used indution | it merely uses the arguments from the indution step of the proof ofLemma 3.3.1. 121



Let the query fat used be query(bi(ai); id; answer(id1; h(s)) and bi(bi). By indution hypothesis, ?bi(ai) isan mgu-query on bi, and the rule appliation omputes an mgu of ai and (a variant of) bi. The result of theuni�ation is then an mgu-answer, and by Part 2 of MGU-Prop, the result follows. 2Theorem 3.3.2 Given any program P and query Q, the bottom-up evaluation of PMGUQ has propertyMGU-Prop.Proof: The proof is by indution on derivation sequenes for PMGU . The theorem holds trivially for theempty derivation sequene. Now suppose it holds prior to step m in a derivation sequene. By indutiveassumption all subgoals generated earlier are mgu-subgoals, and all answers generated earlier are mgu-answers.Consider �rst the ase that a fat of the form query(pi(ti); id) is derived at step m. If the fat is generatedfrom an initial query fat, it is an mgu-subgoal by de�nition. Otherwise the fat must be generated usingof a rulequery(pi(ti); ID): �supj;i�1(HId; V ; ID):with some fat supj;i�1(hid; v; id). By Part 2 of Lemma 3.3.1, v ontains bindings generated from an mguas required by the de�nition of mgu-subgoals. Hene ?pi(ti) is an mgu-subgoal. Now id is the identi�er ofthe subgoal got by applying to pi(ti) the substitution that is stored in v (using the rule de�ning sup1j;i�1).Hene ?pi(ti) is an mgu-subgoal, with identi�er id.Now onsider the ase that a fat of the form answer(id; p(a)) is derived in step m. It follows fromLemma A.1.1 and the indution hypothesis that p(a) is an mgu-answer to a subgoal with identi�er id.This ompletes the indution step and the proof of this theorem. 2Theorem 3.3.3 Given any program P and query Q, the bottom-up evaluation of PMGUQ is omplete withrespet to Q, i.e., if a fat p that is an answer to Q is present in the least model of P , then p is subsumedby a fat omputed in the bottom-up evaluation of PMGUQ .Proof: We prove the following result: (p stands for any prediate, in the following) if a fat query(p(b); id)is available to the evaluation of PMGUQ , then for every fat p(a) that uni�es with p(b), and is generatedby a bottom-up evaluation of program P (the original program), evaluation of PMGUQ generates a fatanswer(id; p()) suh that p() subsumes p(a)[mgu(a; b)℄. Given this fat, an answer p() will be generatedby rule QR3. The theorem then follows from the ompleteness of bottom-up evaluation of P .Assume that this result is not true, and onsider the shortest derivation sequene of P suh that a fatp(a0) produed in the derivation sequene ontradits this property. If p is a base prediate, a Type 6 rulewould generate the required answers using the base fats.We now onsider the ase that p is a derived prediate. Let p(a) = p(b)[mgu(a0; b)℄. Now, onsider therule Rj (in P ) whose instane R00j is used to derive p(a0). Let Rj and R0j = R00j [mgu(a0; b)℄ be as follows:Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):R0j : p(a): �p1(a1); p2(a2); : : : ; pn(an):Let � be suh that R0j = Rj [�℄.Claim: If a fat query(p(b); id) is made available, suh that b subsumes a, then for eah 0 � i � n� 1 theevaluation of PMGUQ generates 122



(1) a fat supj;i(id; vi; idi+1) suh that the variable bindings in vi subsume the bindings of variables in �,and(2) a fat answer(idi+1; pi+1(i+1)) suh that i+1 subsumes ai+1.Proof of Claim: We prove this laim by indution on i. The laim is trivial in ase the body of Rj isempty, and we assume that this is not the ase.We onsider the basis ase �rst. The subgoal ?p(b) must unify with p(t) sine a is an instane of t aswell as an instane of b. Hene the body of the rule de�ning sup1j;0 uni�es with query(p(b); id), and a fatsup1j;0(id; v0; p1(d1)) is generated suh that the bindings in v0 subsume the bindings of variables in �. Fromthis fat, a fat supj;0(id; v0; id1) is generated, and this fat too satis�es part 1 of the laim.A fat query(p1(d1); id1) then gets generated from supj;0(id; v0; id1), suh that p1(d1) is the result ofapplying the substitution in v0 to p1(t1). Hene p1(d1) subsumes p1(a1).By the outer assumption, an mgu-answer answer(id1; p1(1)) suh that p1(1) is at least as general asp1(a1) must be generated by the evaluation of PMGUQ . This �nishes the proof of the basis ase.Now we look at the indutive step for this laim. Suppose that for values 0 : : : i this laim holds. Wethen have fats supj;i(id; vi; idi+1) and answer(idi+1; pi+1(i+1)) that satisfy the laim. These are then usedto get an instantiated supplementary rule of the following form:sup1j;i+1(id; vi+1; idi+2): �supj;i(id; vi; idi+1); answer(idi+1; pi+1(i+1)):This instantiated rule then generates the fat sup1j;i+1(id; vi+1; idi+2). Now, pi+1(i+1) subsumes pi+1(ai+1),and the bindings in vi subsume the bindings in �. Hene the uni�er for the supplementary rule subsumes �,and these bindings are stored in vi+1. This in turn leads to the generation of a fat supj;i+1(id; vi+1; idi+2)that satis�es Part (1) of the laim.Arguments similar to those in the base ase show that this leads to the generation of a fat query(pi+2(bi+2); idi+2) suh that pi+2(bi+2) subsumes pi+2(ai+2). As before, by the outer indution hypothesis,an mgu-answer answer(idi+2; pi+2(i+2)) suh that pi+2(i+2) is at least as general as pi+2(ai+2) must begenerated by the evaluation of PMGUQ .This ompletes the indution step and the proof of the laim.End Proof of Claim.If the body of Rj is empty, the body of the rule de�ning supj;0 uni�es with query(p(b); id), and a fatsupj;0(id; v0) with variable bindings being an mgu of p(b) with p(t) is generated. This mgu is used to generatea head fat answer(id; p()). Hene p() subsumes p(a), and both parts of the laim are satis�ed.If the body of Rj is not empty, the laim above shows that there are fats supj;n�1(id; vn�1; idn) andanswer(idn; pn(n)) that satisfy the onditions of the laim. There must be a rule de�ning answer(ID; p(t))using supj;n�1 and answers for pn. Arguments similar to those in the indution step show that this rule thenderives derives a fat answer(id; p()) suh that p() subsumes p(a).This leads to a ontradition with the assumption, and ompletes the proof of this theorem. 2A.2 Proofs From Setion 3.4Proposition A.2.1 Let P be any program, and Q a query on P . In any evaluation of PMGU T , for anyfat of the form query(p; id0; a) or of the form supi;j(id0; v; id1; a) that is derived, argument a must be of123



the form answer(id; q(: : :)) for some prediate q. 2Proof: (Sketh) This result follows the struture of rules in PMGU T through a simple indution on deriva-tions. 2The following lemma provides some intuition behind the variable bindings stored in the supplementaryfats.Lemma A.2.2 Let P be any program, and Q a query on P . Consider a step in a derivation sequene forPMGU T suh that the evaluation prior to that step satis�es property MGU T-Prop.Suppose a supplementary fat supj;i(id; vi; idi; a) is derived at this step. LetRj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):be the rule of the original program P from whih supj;i was generated.Then there are fats answer(id1; p1(a1)); : : :, answer(idi�1; pi�1(ai�1)), and a fat query(p(s); id; A),suh that1. Eah idm; 1 � m � i is the id of an mgu-subgoal generated from ?p(s), and2. The substitution for variables of Rj spei�ed by vi, is inMGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s); p1(a1); : : : ; pi�1(ai�1)i)Proof: The struture of the supplementary rules in PMGU TQ is exatly the same as the struture of thesupplementary rules in PMGUQ , exept that they arry an additional variable A. In the bodies of the supple-mentary rules, A is used only in the supplementary literals. Thus A does not a�et any of the arguments inthe proof of Lemma 3.3.1, and the proof holds unhanged. For brevity, we do not repeat the proof here. 2Lemma A.2.3 Let P be any program and Q a query on P . Consider a step in a derivation sequene forPMGU T suh that the evaluation prior to that step satis�es property MGU T-Prop.Then the fat generated in this step also satisfy the onditions of MGU T-Prop.Proof: Consider �rst Part 1 of MGU T-Prop. Any fat answer(id; p(a)) must be generated using either aType 3 rule or a Type 6 rule. Consider �rst a Type 3 ruleA: �supj;0(I; V ; ; A):using some fat supj;0(hid; v; ; answer(id; p(a))),By Lemma A.2.2 there must be a fat query(q(s); id0; answer(id; p(a0))) suh that v is an mgu of q(s)with the head of a rule with empty body. Thus applying the substitution spei�ed by v to the subgoal ?q(s),we get an mgu-answer for ?q(s). Hene by Part 2 of MGU T-Prop, the result of applying the substitutionspei�ed by v to p(a0) is an mgu-answer to id. From the rule de�ning supj;0 it is easy to see that p(a) is theresultant answer.Next onsider a Type 6 ruleA: �query(bi(Xi); ID;A); bi(Xi): 124



Given a fat query(bi(ai); id; answer(id1; q(a))) and a fat for bi, the mgu � of the rule with the (renamed)fats results in bi(Xi) being instantiated to an mgu-answer of bi(ai). By Part 2 of MGU T-Prop, theinstantiated q(a) is an mgu-answer to the query with identi�er id1. This ompletes the proof of this part ofthe lemma.Now onsider Part 2 of MGU T-Prop. Any query fat must be derived either using a Type 4 rule of theform: query(pi(ti); ID1; answer(ID1; pi(ti))): �supi�1(ID; V ; ID1):or a Type 5 rule of the form:query(pn(tn); ID1; A): �supn�1(ID; V ; ID1; A):In the ase of Type 4 rules, the result follows trivially.Consider now a fat query(pn(s); id0; answer(id; q(a))) generated using a Type 5 rule. Suppose this wasgenerated using a fat supn�1(id0; v; id1; answer(id; q(a))). By Lemma A.2.2, there must be some fats:answer(id1; p1(a1)); : : :,answer(idi�1; pi�1(ai�1),and a fat query(p(s0); id0; answer(id; q(a0))) suh that ?pn(s) is a mgu-subgoal generated from subgoal?p(s0). Also, it is then easy to see that with� 2MGU(hp(t); p1(t1); : : : ; pi�1(ti�1)i; hp(s0); p1(a1); : : : ; pi�1(ai�1)i)answer(id; q(a)) = answer(id; q(a0))[�℄.Now if pn(s)[℄ is an mgu-answer to ?pn(s) (where  is a substitution on the variables in pn(s)), then wewould have p(s0)[�℄[℄ to be an mgu-answer to the subgoal ?p(s0). Then by Part 2 of Property MGU T-Prop,and the fat query(p(s0); id0; answer(id; q(a0))), answer(id; q(a0))[�℄[℄ is an mgu-answer to the subgoal withidenti�er id. But this implies that answer(id; q(a))[℄ is an mgu-answer to the subgoal with identi�er id.This then ompletes the proof of this part of the lemma. 2Theorem 3.4.1 Consider any program P with query Q. Then a bottom-up evaluation of PMGU T hasproperty MGU T-Prop.Proof: We prove this by indution on derivation sequenes for PMGU T . Eah step in the derivation usingrules other than QR2 and QR3 derive fats of the form supi;j , query(: : :), or answer(: : :).For the basis ase, the �rst fat in the derivation sequene must be generated from rule QR1, andthis satis�es property MGU T-Prop. Now assume that the evaluation up to some step a in the derivationsequene satis�es this property. By Lemmas A.2.2 and A.2.3, the fat derived in step a also satis�es propertyMGU T-Prop. This ompletes the indution. 2Lemma A.2.4 Let P be any program, and Q a query on P . Consider any fat p(a) generated by a bottom-upevaluation of program P . Suppose a fatquery(p(b); id0; answer(id; q(t)))is available to the evaluation of PMGU TQ , suh that p(a) uni�es with p(b). Let � 2 MGU(p(b); p(a)) (wlogwe assume that b and t share no variables with a). Then bottom-up evaluation of PMGU TQ generates a fatanswer(id; q(t))[℄ suh that  subsumes �. 125



Proof: The proof is by indution on derivation sequenes in P . Consider a derivation sequene, and a steps in the sequene suh that the lemma holds for every fat derived prior to s in the sequene. Let p(a) bethe fat derived in step s of the sequene.If p(a) does not unify with p(b), the lemma holds for this step in a trivial fashion. Hene we onsider thease where they do unify.If p is a base prediate, the lemma follows in a straightforward manner, sine p(a) would be used in aType 6 rule with the query fat.We now onsider the ase that p is a derived prediate. Let p(a0) = p(b)[�℄. Now, onsider the rule Rj(in P ) whose instane R00j is used to derive p(a). Let Rj and R0j = R00j [�℄ be as follows:Rj : p(t): �p1(t1); p2(t2); : : : ; pn(tn):R0j : p(a0): �p1(a1); p2(a2); : : : ; pn(an):Let � be suh that R00j = Rj [�℄, so that R0j = Rj [�℄[�℄.Claim: If the fat query(p(b); id0; answer(id; q(s))) is made available, then1. for eah 0 � i � n� 1 the evaluation of PMGUQ generates a fatsupj;i(id; V ; idi+1; answer(id; q(s)))[�i℄suh that �i subsumes [�℄[�℄, and2. for eah 0 � i � n� 2 the evaluation of PMGUQ generates a fatanswer(idi+1; pi+1(i+1))suh that i+1 subsumes ai+1.3. the evaluation of PMGUQ generates a fatquery(pn(tn); idn; answer(id; q(t)))[�n�1℄where �n�1 subsumes [�℄[�℄.Proof of Claim: The laim in trivial in ase the body of Rj is empty; the rest of this proof assumes thatthe body of Rj is non-empty. We prove Parts 1 and 2 of the laim by indution on i.We �rst onsider the basis ase. The subgoal ?p(b) must unify with p(t) sine a0 is an instane of t as wellas an instane of b. Hene the body of the rule de�ning sup1j;0 uni�es with query(p(b); id0; answer(id; q(s)))and a fat sup1j;0(id; V ; p1(t1); answer(id1; q(s))[�0℄ is generated, suh that �0 subsumes [�℄[�℄. It is easyto show that a fat for supj;0 that satis�es part 1 of the laim will then be generated in the bottom-upevaluation.If p1(t1) is not the last literal in the body of the rule, it is easy to show that a fat of the formquery(p1(t1); id1; answer(id1; p1(t1)))[�0℄, where t1[�0℄ subsumes p1(a1), is generated from this supplemen-tary fat. By the outer indution hypothesis, an mgu-answer answer(id1; p1(1)) suh that p1(1) is at leastas general as p1(a1) must be generated by the evaluation of PMGUQ . This �nishes the proof of the basis ase.126



For the indution step, assume that parts (1) and (2) of the laim hold for 0 � i � k < n � 1. We anthen show that Part 1 of the laim holds for i = k + 1, and if k < n� 2, we an show that Part 2 holds fori = k + 1. The proof parallels that used in Theorem 3.3.3, sine the struture of the rules is similar exeptfor the rule for the last literal. We omit the details.This ompletes the proof of (1) and (2). A fat of the form query(pn(tn); idn; answer(id; q(s)))[�n�1℄must be produed by a Type 5 rule. Part 3 of the laim then follows from Part 1 of the laim and from thestruture of Type 5 rules.End proof of laimIf the body of the rule is empty, it is easy to show (in a manner similar to the base ase of the abovelaim) that a fat is produed for supj;0, and a Type 3 rule then generates a fat answer(id; q(t))[℄ thatsatis�es the properties required by this theorem.If the body of the rule is not empty, the laim above shows that a fat query(pn(tn); idn; answer(id;q(s)))[�n�1℄ is generated. We know that some fat pn(n) that subsumes pn(an) is generated in the derivationsequene, before step s (wlog assume it does not share variables with other fats/rules). Hene by theindution hypothesis, a fat answer(id; q(s))[�n�1℄[Æ℄ suh that Æ subsumes mgu(pn(n); pn(tn[�n�1℄)) isgenerated. But �n�1 subsumes [�℄[�℄ and n subsumes an, and hene [�n�1℄[Æ℄ subsumes [�℄[�℄. Let  be theprojetion of [�n�1℄[Æ℄ on the variables in s. Hene answer(id; q(s))[℄ = answer(id; q(s))[�n�1℄[Æ℄, and thisfat is generated by bottom-up evaluation. Sine � does not a�et the variables in s,  subsumes �.This ompletes the indution step, and the proof of the theorem. 2Theorem 3.4.2 Given any program P and query Q, the bottom-up evaluation of PMGU TQ is omplete withrespet to Q, i.e., if the bottom-up evaluation of P generates a fat p that is an answer to Q, then p issubsumed by a fat omputed in the bottom-up evaluation of PMGU TQ .Proof: Let Q =?q(t), and let its identi�er be id. Then rules QR1 and QR2 generate a fat query(q(t); id; ans-wer(id; q(t))). From Lemma A.2.4, the orresponding answer fats will be generated by the evaluation ofPMGU TQ . The required answers to the query will then be generated by rule QR3 using these fats. 2
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Appendix BProofs From Chapter 4We start by desribing some assumptions we make and some notation that we use. We assume that eahderivation step has a unique identi�er, and we label fats derived by SN evaluation with the identi�er of thederivation step that generated the fat. We use the notation p() : k to denote a derivation of fat p() withlabel k. (This label is ignored for the purpose of subsumption-heking; if subsumption-heking is used anda fat is generated twie (with di�erent labels) only one opy of the fat with one label is stored and usedin derivations.) In a similar fashion, we label ations (suh as generation of a query or answer) performedby Prolog� in order to distinguish between multiple ourrenes of the ation.We use the onept of labeled derivation steps and labeled attempted derivation steps (Setion 4.2). Inthe rest of this setion, we onsistently use the term derivations (resp. attempted derivations) to refer tolabeled derivation steps (resp. labeled attempted derivation steps).The evaluation of a program rewritten using MGU MTTR rewriting generates goal-identi�ers, givengoals. We denote by goal id�1 : goal-identi�ers ! goals as the inverse funtion of goal id. That is, givena goal-identi�er generated in an evaluation, it returns the original goal. Reall that in ase subsumption-heking is not performed, the goal id meta-prediate is de�ned to return a di�erent identi�er on eah all,but goal id�1 is well-de�ned.We note that the mapping we speify is modulo renaming. For example, when we say that M maps aderivation f1 = query(p(t); : : :) : k1 to the generation of a subgoal ?p(t) : k by Prolog�, we mean that thereis a renaming of f1 suh that its �rst argument is equal to the Prolog� subgoal ?p(t) : k. (Note that if werename the Prolog� subgoal instead, we would have to perform a \global" renaming rather than just thegiven subgoal. Hene we rename the fats derived in bottom-up evaluation.) We assume that the rules inthe original program are numbered R1; R2; : : :. Reall that a prediate of the form supj;i is derived from ruleRj .We assume in the following lemma that the basi version of MGU MTTR rewriting is used, without anyof the optimizations desribed in Setion 3.4.1. For simpliity, the lemma assumes that the program uses nobase prediate, and hene there are no Type 6 rules. After proving the lemma, we show how the proof anbe extended to allow base prediates, and to inorporate some optimizations of MGU MTTR rewriting.Lemma B.0.5 Let P be any (positive) logi program, and Q a query on P . Assume that P uses no base128



prediates. Let PMGU T be the MGU-MTTR rewriting of P with query Q. Then there is a mapping Mof labeled attempted derivation steps in the Semi-Naive evaluation of P T (with or without subsumption-heking) to ations of the Prolog� evaluation of Q on P , with the following properties.1. Goal identi�ers:M maps eah goal identi�er id to the Prolog� ation ?goal id�1(id) : k1 (this ation is the generationof a subgoal).2. Type 0 rules - QR2, Type 4 and Type 5 rules:Consider an attempted derivation using a Type 4 or Type 5 rule, or a Type 0 rule QR2. Suh attemptedderivations always sueed, and generate a fatf1 = query(p(t); hid; answer(id; q(s))) : kThen M maps the derivation f1 to a Prolog� ation ?p(t) : k1. Further,(a) the return point of ?p(t) : k1 is a query that is equivalent to M(id), and,(b) q(s) is the instantiated return-point query, at the point that Prolog� generated the subgoal ?p(t) :k1.No two distint labeled derivations of this type are mapped to the same Prolog� ation.3. Type 3 rules:Consider an attempted derivation using a Type 3 rule. Suh a derivation always sueeds.M maps eah derivation answer(id; p(a)) : k to the generation of an answer p(a) to a Prolog� querythat is equivalent to M(id).No two distint labeled derivations of this type are mapped to the same Prolog� ation.4. Type 0 rules - QR1:Suh a rule makes a derivationf1 = initial query(q(t); hid; answer(id; q(t))) : kM maps f1 to the Prolog� ation ?q(t) : k1.There is only one suh labeled attempted derivation, and it always sueeds.5. Type 0 rules - QR3:Consider an attempted derivation using rule QR3. If the derivation sueeds, it derivesf1 = q(a) : kusing a labeled fat f2 = answer(id; q(a)) : k1. M maps f1 to M(f2).No two distint labeled derivations of this type are mapped to the same Prolog� ation.If the derivation fails, it must have used a labeled fat f1 for initial query. M maps the unsuessfulderivation to M(f1). There is at most one suh unsuessful labeled derivation.129



6. Type 1 rules - 1:Consider an attempted derivation using a Type 1 rule that has a prediate query(: : :) in the body.Let the fat used in the body bequery(p(b); hid; answer(id; q(s))) : k1The derivation possibly derives a fat of one of the following forms:supj;0(hid; v; 0; answer(id; q(a))) : ksupj;0(hid; v; p(t); answer(id; q(a))) : kNow for the query fat, due to indution hypothesis, it must be the ase thatM(query(p(b); hid) : k1) =?p(b) : k2M maps the labeled attempted derivation to the Prolog� ation of unifying ?p(b) : k2 with the head ofRj .No two distint labeled (suessful/unsuessful) attempted derivations of this type are mapped to thesame Prolog� ation.Further(a) the return point of ?p(b) : k2 is equivalent to M(id), and,(b) q(a) is the instantiated return-point query, just after Prolog� arries out the above uni�ation.() the bindings stored in v are the bindings of the rule variables of Rj just after Prolog� arries outthe above uni�ation.7. Type 2 rules - 1:Consider an attempted derivation using a Type 2 rule, where the body of the rule uses a fat supj;i.A head fat of the following form may be derived:sup1j;i(hid; v; pi+1(s); answer(id; q(a))) : kIf the derivation sueeds, M maps the labeled derivation to the Prolog� ation of returning an answerto ?pi(s) : k1, where(a) the query ?pi(s) is generated from the ith literal of rule Rj , and the literal is not the last in therule.(b) the bindings stored in v are the bindings of the rule variables of Rj at the point when the answerto ?pi(s) : k1 was returned.() q(a) is the instantiated version, at the point that the answer to the query is returned, of thereturn-point query of the all to Rj . 130



No two distint labeled derivations of this type are mapped to the same Prolog� ation.If the derivation fails, there are two ases. If the derivation fails beause there are no mathing answerfats for a labeled supplementary fat s : k3, M maps the unsuessful derivation to M(s : k3). Ifthe derivation fails beause there are no mathing fats for a labeled answer fat a : k4, M maps theunsuessful derivation to M(a : k4).At most a onstant number of failed labeled derivations of the above form are mapped to the sameProlog� ation.8. Type 1 rules - 2 and Type 2 rules - 2:Consider an attempted labeled derivation using a Type 1 or Type 2 rule where the body of the rulehas a literal sup1j;i. Suh a derivation always sueeds, and derives a fat of the form:f = supj;i(hid; v; nid; answer(id; q(a))) : kusing a body fat of the formf1 = sup1j;i(hid; v; pi+1(s); answer(id; q(a))) : k1Then M(f) is de�ned to be M(f1), whih is the return of an answer to a query ?pi(s) : k1. Further,(a) the query ?pi(s) is generated from the ith literal of rule Rj , and the literal is not the last in therule.(b) the bindings stored in v are the bindings of the rule variables of Rj at the point when the answerto ?pi(s) : k1 was returned.() q(a) is the instantiated version, at the point that the answer to the query is returned, of thereturn-point query of the all to Rj .(d) nid is the identi�er of a subgoal ?pi(s).No two distint labeled derivations of this type are mapped to the same Prolog� ation.Proof: The labeled derivations in the evaluation of P T are totally ordered, suh that eah derivation usesonly fats omputed in earlier derivations. We use an indution on this sequene to prove the lemma. Notethat at many points we say that a partiular ation will be performed by Prolog� evaluation. Suh laimsdepend on the assumption that Prolog� evaluation terminates. In ase Prolog� evaluation does not terminate,bottom-up evaluation an be no worse.The base ase is for an empty derivation sequene, and the indution hypothesis holds trivially. Nowassume that there is a mapping M for labeled derivations up to step n, that satis�es the onditions of thelemma. We extend the mapping to step n+1. We split the derivation in step n+1 into several ases basedon the type of the rule used.For eah rule type, we prove the orresponding laims. Goal-identi�ers are generated only by the Type0 rule QR1, Type 1 rules subase 2 and Type 2 rules subase 2. We prove the laims about goal-identi�ersin the respetive ases below. 131



Type 0 Rules - QR1 and QR3 : Consider a rule QR1. Suh a rule generates a fatinitial query(q(t); id; answer(id; q(t))) : kfrom the initial query. Let M map this derivation to the Prolog� ation ?q(t) : k0 orresponding tothe generation of the initial query. Further, we let M map id to the same Prolog� subgoal generationation.Next, onsider QR3, and suppose that the answer fat used in the body is answer(id; q(a)) : k. Thederivation is mapped to M(answer(id; q(a)) : k). Eah fat answer(id; q(a)) : k is used in at most onesuh derivation. By indution hypothesis, no other derivation of any fat q(b) is mapped to this ation.Type 1 Rules - 1 :This ase overs labeled attempted derivations using Type 1 rules with a query literal in the body.The attempted derivation must have used a rule of one of the forms below:RQ : sup1j;0(: : :): �query(q(s); ID;A):RQ : supj;0(: : :): �query(q(s); ID;A):and a fat f1 = query(q(a); id1; answer(id2; r(b))) : k1.By indution hypothesis, f1 is mapped to a subgoal ?q(a) : k3. Now Prolog� evaluation will attemptto unify the subgoal ?q(a) : k3 with the head of rule Rj ,1 whih is q(s). We label this uni�ation ationas k4, and the attempted derivation is mapped to this uni�ation ation.No other attempted derivation of this kind is mapped to this uni�ation, sine this is the only use off1 with this rule, and no other derivation of a query fat is mapped to ?q(a) : k3.If the uni�ation is suessful, a fat is reated in bottom-up evaluation, and Prolog� evaluation eitherreturns an answer (if the rule is empty) or sets up a subgoal on the �rst body literal. The fat reatedby derivation in the two ases are respetively:supj;0(hid; v0; 0; answer(id2; r(b0))) : kand sup1j;0(hid; v0; p1(s); answer(id2; r(b0))) : kThe indution hypothesis shows that the return point of ?q(a) : k3 is equivalent to M(id2). Byindution hypothesis, r(b) is the instantiated return-point subgoal when the subgoal ?q(a) : k3 is setup. The Prolog� uni�ation of the query with the rule head q(s) produes the same bindings for a andb as the uni�ation of f1 with the body literal of RQ. Hene r(b0) is equivalent to the instantiatedreturn-point query after the uni�ation of ?q(a) : k3 with the head of Rj . It is easy to show fromthe struture of RQ that the bindings stored in v0 are the bindings of the rule variables after Prolog�arries out the uni�ation.1Rule Rj is the rule in the original program from whih RQ is derived.132



Type 2 Rules - 1 :Consider an attempted derivation using a Type 2 rule, where the body of the rule uses the prediatesupj;i�1.First onsider the ase that the derivation sueeds. It must have used labeled fats of the followingform: f1 = supj;i�1(hid; v0; nid; answer(id; q(s))) : k1f2 = answer(nid; pi(a)) : k2and a rule:RQ : sup1j;i(HId; Vi; pi+1(ti+1); A) : � supj;i�1(HId; Vi�1; ID1; A);answer(ID1; pi(ti)):to derive a fatf = sup1j;i(hid; ai; pi+1(si+1); answer(id; q(s))) : k0Sine this rule de�nes a sup1j;i prediate, the original rule say Rj from whih the sup1j;i prediatewas derived must have as ith body literal pi(ti). Also we an show that supplementary fat f1 musthave derived a query fatf3 = query(pi(si); nid; answer(nid; pi(si))) : k3where the goal-id of ?pi(si) is nid. (If there is more than one derivation of this fat, all but one ofthem are eliminated by subsumption-heking.)Now, by indution hypothesis, f1 is mapped to the either the suessful uni�ation of a query withthe head of rule Rj , or to the return of an answer to pi�1(ti�1), whih is the i � 1th literal in ruleRj . It is easy to show (from the indution hypothesis laim about variable bindings) that at this pointin the evaluation, Prolog� would have generated a query ?pi(si) : k4 from this literal. The query isnot tail-reursive, and hene the return point of the query is the same as the point where the query isgenerated. Note that the goal-id of ?pi(si) : k4 is nid, but M(nid) may not be ?pi(si) : k4, (althoughit is equivalent), if subsumption-heking is used.By indution hypothesis on f2, the generation of answer f2 is mapped to the generation of an answerpi(a) : k6 to a query f3 that is equivalent M(nid). But sine the queries M(nid) and ?pi(si) : k4are equivalent, so are f3 and ?pi(si) : k4. Sine f3 and ?pi(si) : k4 are equivalent and both are nottail-reursive, eah answer pi(a) : k6 generated for f3 an be mapped one-to-one to the generation ofan answer pi(a) : k7 to ?pi(si) : k4. Hene let this mapping map M(f2) to the generation of an answerpi(a) : k8 for the query ?pi(si) : k4.We then de�ne M(f) to be the return of answer pi(a) : k8 to the query ?pi(si) : k4.133



No two suh distint derivations are mapped to the same Prolog� ation sine by indution hypothesis,(1) only f1 is mapped to the point in Prolog� evaluation just before the generation of ?pi(si) : k4,and (2) no two derivations of answer(nid; pi(a)) are mapped to the same return of answer pi(a) to?pi(si) : k4 by Prolog� evaluation.We show that the required bindings are stored in the generated answer fat as follows. By indutionhypothesis, the bindings in f1 are the same as the rule bindings in Prolog� evaluation before ?pi(si) : k4is generated. Sine the same answers are used in both ases, with the same literals, it is straightforwardto show that the generated bindings are the same in f as when answer pi(a) : k8 is returned in Prolog�evaluation. Similar arguments also show that answer(id; q(s)) is the instantiated return-point queryat the point when the answer is returned.This ompletes the ase where the attempted derivation is suessful. If the derivation fails, themapping de�ned is straightforward. Sine eah fat is used in at most one unsuessful derivationwith eah rule, it follows that at most a onstant number of failed derivations are mapped to the sameProlog� ation.Type 1 and Type 2 Rules - 2 :The derivation must have used a ruleRQ : supj;i(: : :): �sup1j;i(: : :); goal id(: : :):with a fatf1 = sup1j;i(hid; v0; p(s); answer(: : :)) : k0to derive a fat f = supj;i(hid; v0; nid; answer(: : :)) : k5.We let M map f to M(f1). This is the only use of sup1j;0(v0; : : :) : k0. Along with the indutionhypothesis, this shows that no two distint derivations of this kind are mapped to the same Prolog�ation.RQ passes all arguments of f1 unhanged to f exept that it replaes p(s) by its goal-identi�er nid.The other laims about the return point query and the query ?pi(s) are shown diretly by applyingthe indution hypothesis to f1, sine these arguments are the same in f as in f1.By indution hypothesis, f1 is mapped to a point in Prolog� evaluation where either a subgoal hasbeen uni�ed with a rule, or an answer has been returned to a literal in the rule. In either ase, p(s) isthe instantiated literal that is next in the rule, and a subgoal ?p(s) : k3 will be generated. We de�neM(nid) to be ?p(s) : k3.Type 3 Rules: A Type 3 rule is of the formA: �supj;0(HId; V ; ; A):Suppose a fat f = answer(id; q(b)) : k0 is derived using suh a rule along with a fatf1 = supj;0(HId; a; 0; answer(id; q(s)) : k1134



Now supj;0(a; answer(id; p(s))) : k1 is mapped to a Prolog� ation that uni�es a goal ?p(t) : k2 withthe head of rule Rj . Let this ation be labeled k2. This uni�ation ation must sueed, sine the fatsupj;0(a; answer(id; q(s)) was derived. Further, the body of the original rule must be empty (Type 3rules are generated only from suh rules). Hene Prolog� evaluation generates an answer at this stage.By indution hypothesis on the supj;0 fat, (1) the return point of the query ?p(t) : k2 is equivalent toM(id), and (2) q(b) is the instantiated return-point query after the uni�ation of ?p(t) : k2 with thehead of rule Rj is performed. Hene Prolog� evaluation generates an answer q(b) : k4 for a return-pointquery that is equivalent to M(id).This is the only answer generated from f1, and by indution hypothesis, no two distint labeled supj;0fats are mapped to the same uni�ation ation. Hene no two distint derivations of this kind aremapped to the same Prolog� ation.Type 0 Rules - QR2, Type 4 and Type 5 Rules :We split this into three sub-ases, based on the rule type. We �rst onsider the Type 0 rule QR2. Thisgenerates a query fatquery(p(t); id; answer(id; p(t))) : kfrom the initial query. We let M map the derivation to the generation of the initial query ?p(t) : k0by Prolog� evaluation.The return point of this query is ?p(t) : k0, and this is equivalent toM(id), sine id is the goal-identi�erfor p(t). This is the only derivation of this type that is mapped to this ation of Prolog� evaluation.The remaining part of the laim for this ase follows trivially sine ?p(t) : k0 is the return-point query.Next we onsider Type 4 rules. These orrespond to non-tail-reursive literals. Suh a rule is of onform query(pi(ti); ID; answer(ID; pi(ti))): �supj;i�1(HId; V ; ID;A):Let the generated fat bef = query(pi(si); nid; answer(nid; pi(si))) : kand let the fat used in the rule body bef1 = supj;i�1(hid; v; nid; answer(id; q(s))) : k1Now, by indution hypothesis, M(f1) is mapped to a step where a query has been uni�ed with a rule,or an answer has been returned for a literal, and the next literal in the rule is pi(ti). The indutionhypothesis also tells us that the variable bindings stored in v above are the same as the rule variablebindings. Hene Prolog� evaluation generates a query ?pi(si) : k3. We let M map f to ?pi(si) : k3.Eah supplementary fat is used in exatly one rule of this kind, and by indution hypothesis, no othersupplementary fat is mapped to the same Prolog� ation. Hene no other derivation of this type is135



mapped to the same ation as Prolog� evaluation. The return point of this query is the query itself,sine the literal is not tail-reursive, and the indution hypothesis on f1 shows that nid is the goal-idof ?pi(si). Hene the laims about the return point and the instantiated return-point query follow ina straightforward manner.Finally we onsider Type 5 rules. Suh a rule is of the formquery(pi(ti); ID;A): �supi�1(HId; V ; ID;A):Let the derived fat bef = query(pi(si); nid; answer(id; q(s))) : kand let the fat used in the body bef1 = supj;i�1(hid; v; nid; answer(id; q(s))) : k1The same arguments as for Type 4 rules show that there is a query ?pi(si) : k3 generated by Prolog�,and we let M map f to ?pi(si) : k3. The same argument as for Type 4 rules shows that no otherderivation of this type is mapped to the same ation of Prolog� evaluation. To show the laims aboutthe return point we note the following. The literal for whih the query is generated by a Type 5 ruleis tail-reursive. Hene its return point is the same as that of the head of the rule. By indutionhypothesis, this is equivalent to M(id). Again, the indution hypothesis on f1 tells us that q(s) is theinstantiated return-point query at the point when Prolog� generates the subgoal ?pi(si) : k3.This ompletes the indution step, and the proof of the lemma. 2The above lemma was for the ase that the program uses no base prediates. We an extend the lemmafor the ase of base prediates as follows. We use the optimizations desribed in Setion 3.4.1 to treat all baseliterals as non-tail-reursive, and to not generate query or answer fats for these prediates. In partiular,we an ensure that base literals that our as the last literal in a rule are treated as non-tail-reursive byadding an extra true() literal at the end of the rule body in the original program. Suh a transformationdoes not a�et number of ations performed by Prolog� evaluation signi�antly, and does not a�et the timeomplexity of Prolog� evaluation.As a result of the optimization, query rules and answer generation rules for base prediates are deleted.These deletions do not a�et the mapping we desribed above. The only other hange is that some Type 2rules are simpli�ed, and are now of one of the the following forms:sup1j;i(HId; V ; pi+1(ti+1); A) : � supj;i�1(HId; V ; ID1; A); pi(ti):supj;i(HId; V ; 0; A) : � supj;i�1(HId; V ; ID1; A); pi(ti):supj;i(HId; V ; 0; A) : � supj;i�1(HId; V ; ID1; A);answer(ID1; pi(ti))We lassify all suh rules under the ase \Type 2 rules - 1". All the laims made for suessful derivationsin this ase still hold, and the proof for this ase works with minor modi�ations. We note that any fatsthat are used for the literal pi(ti) in the above rules during bottom-up evaluation are also used in the136



orresponding stage in Prolog� evaluation. We now onsider the ase of failed derivations. Sine Semi-Naiveevaluation is used, and pi is base or evaluable, any attempted derivation using suh a rule uses a fat forsupj;i�1, and sets up a query on pi(ti). Prolog� evaluation would set up the same query. The derivation failsif there is no fat for pi that uni�es with the query. But in this ase, Prolog� evaluation also fails on thesame query. Hene the attempted derivation is mapped to the failed query attempt by Prolog� evaluation.The above optimization and the extension of the mapping desribed above is important, in partiular,when we onsider the ost of evaluation in Chapter 5 | we introdue equality literals into rule bodies, andtreat them as base prediates.Thus we have the following theorem.Theorem 4.3.1 Let P be a de�nite lause program, and Q be a query on the program. There are onstants1 and 2 (that may depend on the size of P ) suh that the following is satis�ed.Let PMGU T be the MGU MTTR rewriting of hP;Qi. Given any database, let the number of labeledattempted derivation steps performed by a Semi-Naive evaluation (with or without subsumption heking)of PMGU T be n, and let the number of ations performed by Prolog� evaluation of query Q with the samedatabase be m. Then n < 1 �m+ 2.Proof: Lemma B.0.5 showed us that no two distint labeled derivation steps using any rule type are mappedto the same ation of Prolog� evaluation. Sine there are only a �nite number of rule types, at most a onstantnumber of suessful derivation steps are mapped to the same ation of Prolog� evaluation. Lemma B.0.5also showed that at most a onstant number of unsuessful labeled attempted derivation steps are mappedto any ation of Prolog� evaluation.To omplete the proof of the theorem, we use the non-repetition property of Semi-Naive evaluation with-out subsumption-heking: no labeled derivation step is repeated in the evaluation (Theorem 4.2.1). (Semi-naive evaluation with subsumption-heking has a stronger non-repetition property, namely, no derivationstep is repeated in the evaluation.) 2
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Appendix CProofs From Chapter 5
C.1 Proofs from Setion 5.5Lemma C.1.1 Suppose that a MGU MTTR rewritten program is evaluated using Apply Rule. Then1. Given a supplementary/initial query fat s and a query fat q, if s:ont id = q:par id, then q:bindenvis a version desendant of s:bindenv.2. Given a supplementary fat s and an answer fat a, if s:ont id = a:par id, then a:bindenv is a versiondesendant of s:bindenv.3. Given supplementary fats s1 and s2, if s1:ont id = s2:par id, then s2:bindenv is a version desendantof s1:bindenv.Proof: The proof is by indution on the length of sequenes of derivations used to derive a fat. The basisase is the derivation sequene of length 0, i.e. base fats, for whih the lemma is satis�ed trivially.We make some observations before onsidering the indution ase. For rules with one base/derived bodyliteral (Types 1,3,4,5), it is easy to show that the bindenv of the head fat is a version hild of the bindenvof the derived fat used in the body. For rules with two base/derived body literals (Types 4 and 6), whereReturn Unify fails, we an see from proedures Rename and Unify that the bindenv of the head fat is ahild of the bindenv of the supplementary/query fat used in the rule body. If Return Unify is alled andsueeds, the bindenv of the head fat is a version hild of the bindenv of the answer fat..For the indution step, onsider a derivation sequene of length n+1, and assume that the laims are truefor all fats with derivation sequenes of length n or less. Consider the last step in the derivation sequene.If the head fat derived is a supplementary fat or an initial query fat, it is given a new ont id, thatis not present in other existing fat. Thus, parts 1 and 2 of the lemma are trivially satis�ed. For part 3,the par id of the derived supplementary fat s3 is set to the par id of the query/supplementary fat s2 thatderived it. If Return Unify does not sueed, s3:bindenv is a version hild of s2:bindenv (as observed earlier).Part 3 then follows from Part 3 of the indution hypothesis. If Return Unify does sueed, s3:bindenv is aversion hild of the bindenv of the answer fat. Further, the par id of the answer fat is the same as theont id of the supplementary fat. Part 3 then follows from Part 1 of the indution hypothesis.138



If the head fat derived is a query fat, the rule body has only one derived literal (whih is a supplementaryor initial query literal). The rule must be a Type 1, Type 4 or a Type 5 rule. Parts 2 and 3 are triviallysatis�ed in all the above ases. We onsider Part 1 of the lemma. In the ase of Type 1 and Type 4 rules,the par id of the query fat is set to the ont id of the supplementary / initial query fat. Sine the fatused in the derivation is the only supplementary / initial query fat with this ont id, Part 1 of the lemmais satis�ed. In the ase of Type 5 rules, the par id of the query fat is set to the par id of the supplementaryfat. The bindenv of the query fat is a hild version of the bindenv of the supplementary fat. Part 1 thenfollows from Part 3 of the indution hypothesis.If the head fat derived is an answer fat, Parts 1 and 3 follow trivially. For Part 2, the answer fat isgenerated from a supplementary fat using a Type 3 rule, or from a query fat using a Type 6 rule. Thepar id of the answer fat is then set to the par id of the query/supplementary fat, and the bindenv of theanswer fat is a version hild of that of the query/supplementary fat. Part 2 of the indution hypothesisthen follows.This overs all the ases, and ompletes the proof. 2Lemma C.1.2 Let s and a be supplementary and answer fats suh that s:ont id = a:par id. Then thereis a query fat q generated by a Type 4 rule (i.e. the query is on a non-tail-reursive literal) using s, suhthat:1. a:bindenv is a version desendant of q:bindenv, and2. for all variables in q:bindenv other than those aessible from q, the bindings in a:bindenv are the sameas the bindings in s:bindenv.Proof: From Lemma C.1.1, a:bindenv is a version desendant of s:bindenv. Eah supplementary fatgenerates a query fat or an answer fat. In the ase of Type 3 and Type 5 rules, the par id of the generatedfat is di�erent from the ont id of the supplementary fat. No two supplementary/initial query fats havethe same ont id. Also, the ont id of the supplementary fat is not passed on to any other fat but thissole query fat. If we assume that no query fat q is generated from s using a Type 4 rule, it is easy to showthat a:par id annot be the same as s:ont id. Hene there is suh a query fat q generated.Next we now show that for any fat f and any q as above, suh that f:par id = s:ont id,1. f:bindenv is a version desendant of q:bindenv, and2. Any variable in q:bindenv that is not aessible in q has the same bindings in f:bindenv as in q:bindenv,and is not aessible in hf:struture; f:bindenvi.We �rst note the following. Suppose we unify fats f1 = hs1; env1i and f2 = hs2; env1i. Then the onlyvariables that are modi�ed by the uni�ation are those that are aessible from either s1 or s2.The proof is by indution on lengths of derivation sequenes used to derive f . We note again that no twosupplementary/initial query fats have the same ont id. For the basis ase, a fat with derivation sequeneof length 1 that has the same par id value s q must be derived using q. In all ases of rules that use q, thebindenv of the head fat is a version desendant of the bindenv of the body fat. Further, any variable thatis not aessible from q:struture is also not aessible from f:struture, and is not modi�ed by uni�ationduring the derivation. 139



For the indution step, we note that in all ases exept for Type 2 rules, the bindenv of the head fatis a version desendant of the bindenv of the sole derived body fat. If the par id of the generated fatis q:par id, then the par id of the derived body fat must also be q:par id. Part (1) then follows fromindution hypothesis. Also, the sole derived body fat is not renamed, and any new variables that arereated by renaming other fats do not onit with variables in q:bindenv. Hene Part (2) follows.For Type 2 rules, if the par id of the generated fat is q:par id, then the par id of the supplementaryfat in the body must also be q:par id. If Return Unify fails, the bindenv of the head fat is a version hildof the bindenv of the supplementary fat in the body, and Part (1) follows. That Part (2) follows an beshown by arguments similar to those used in the earlier ase.If Return Unify sueeds, f:bindenv is a version hild of a1:bindenv where a1 is the answer fat used inthe rule body. But sine Return Unify sueeds, a1:par id = s1:ont id, where s1 is the supplementary fatused in the rule body. But by indution hypothesis, a1:bindenv is a desendant of s1:bindenv. It follows byindution hypothesis that f:bindenv is a version desendant of q:bindenv; this establishes Part (1).We now onsider Part (2). By indution hypothesis, s1 generates a query fat q1 using a Type 4 rule,and for any variable in q1:bindenv that is not aessible from q1 the bindings in q1:bindenv and a1:bindenvare the same; also any suh variable is not aessible from a1. But it is easy to show that any variable ins1:bindenv that is not aessible from s1 is also not aessible from q1. Hene for any variable in s1:bindenvthat is not aessible from s1, the bindings are the same in a1:bindenv as in s1:bindenv; also, any suhvariable is not aessible from a1. But s1:par id = q:par id. Hene, by indution hypothesis, any variablein q:bindenv is not aessible from s1:bindenv. Hene the bindings for any suh variables are the same inf1:bindenv as in q:bindenv, and further any suh variables are not aessible from f1:struture.This ompletes the indution step and the proof of this part of the lemma. This also onludes the proofof this lemma. 2Lemma 5.5.1 Suppose that there is a query fatq = query(pi(ai); id1; answer(id1; pi(ai)))generated by a Type 4 rule (i.e., from a non-tail-reursive literal), and an answer fat a = answer(id1; pi(bi)).Suppose also that q:par id = a:par id. Let q str2 denote the last argument of q:struture. Thenhq str2; a:bindenvi � ha:struture; a:bindenviProof: Sine a Type 4 rule is used to derive q, q must have been generated from a supplementary fat s qsuh that q:par id = s q:ont id.We show that any query fat q1 s.t. q1:par id = q:par id has q str2 as the last argument of its struture,and any supplementary s1 suh that s1:par id = q1:par id has q str2 as its last argument of its struture.The proof is by indution on lengths of derivation sequenes.We note that no two supplementary fats or initial query fats have the same value for ont id, sine anew identi�er is generated for eah suh fat.For the basis ase, any fat generated by a derivation sequene of length 1 and that has the same par id�eld is a fat s for some prediate sup1j;0 (generated using a Type 1 rule). The query fat is not renamed,and variables in the rule head are dereferened, hene the last argument of s:struture is q str2.140



For the indution ase, assume that the indution hypothesis is true for all derivation sequenes of lengthless than some k, and onsider the last step in a derivation sequene of length k. We have a ase analysisbased on the type of the rule.For Type 0 rules, the par id of the generated fat must be the ont id of an initial query fat, whihmust be distint from s q:ont id. For Type 1 rules, the last argument of the struture of the generatedsupplementary fat is the same as the last argument of the struture of the body fat after dereferening (aswas argued for the basis ase). The par id �elds of the head fat is the same as that of the body fat. Theresult then follows from the indution hypothesis.For Type 2 rules, we note that the last argument of the head literal appears only in the supplementaryliteral. Whether Return Unify sueeds or not, the supplementary fat is not renamed. Arguments similarto the earlier arguments then show that the last argument of the struture of the head fat is the same as thelast argument of the struture of the body supplementary fat. The par id �eld of the head fat is the sameas the par id �eld of the body supplementary fat. The result then follows from the indution hypothesis.Type 3 rules generate answer fats. Consider any answer fat a1 that is generated. The struture of Type3 rules shows us that the head fat is a dereferened version of q str2, interpreted in bindenv a:bindenv.Hene the lemma holds for the answer fat a1.Type 4 and Type 5 rules generate query fats. In the ase of Type 4 rules, the par id of the queryfat is generated from the ont id of some supplementary fat (di�erent from s q). Hene the par id of thefat annot be the same as q:par id. In the ase of Type 5 rules, the last argument is the same as the lastargument of the body supplementary fat (sine it is not renamed). The par id of the head fat is the sameas that of the body fat, and the result follows from indution hypothesis.Type 6 rules generate answers from queries on base prediates. The query fat is not renamed, and ananswer fat is generated. This ase is similar to Type 3 rules, and the lemma holds for any answer fatsgenerated.This ompletes the ase analysis and the proof of the lemma. 2Lemma 5.5.2 Suppose that Return Unify sueeds on rule R with fats s and a. Then hR0; r env0i is anmgu of R0 with (a renamed variant of)s and a.Proof: Sine Return Unify sueeds, s:ont id = a:par id. By Lemma C.1.1, the answer fat bindenvis a desendant of the supplementary fat bindenv, and hene an only be more re�ned. Thus bindenvreplaement instantiates the supplementary fat further. We unify this fat with the rule by binding somevariables to arguments of the fat (this is possible sine the supplementary literal has as arguments onlydistint variables). Let ra be the struture of the answer literal in the rule body. Let q str2 denote the lastargument of the struture of q. Then there is a query fat q generated using a Type 4 rule orresponding tothe answer literal, suh that hq str2; q:bindenvi is equivalent to hra:struture; q:bindenvi. Now, q:bindenvis an anestor of r env0. Hene hra:struture; r env0i and hq str2; r env0i are equivalent.(The above argument assumes that all variable bindings are stored in the supplementary literal. If this isnot true, we have to treat any variables that are not stored in the supplementary literal separately, and showthat the above equivalene holds for the orresponding arguments of ra after the bindings of rule variablesreated by Return Unify.)Lemma 5.5.1 shows that hq str2; r env0i and the answer fat are equivalent. Hene hra; r env0i and the141



answer fat are equivalent. Hene bindenv replaement results in a orret uni�ation.We then need only to show that the uni�er is most general. Any uni�er for the rule would make theanswer literal and the answer fat equivalent. Sine the uni�er does not instantiate the answer fat, it is asgeneral as possible for variables in the answer fat and for variables in the instantiated answer literal. Butthe variables in the instantiated answer literal are exatly the variables aessible from the query. Variablesin the supplementary fat that are not aessible from the query are left unhanged by the uni�er; hene theuni�er is as general as possible for these variables too. For variables in the rule body, any uni�er would bindthem to orresponding strutures in the supplementary and answer fat. Variables in the rule head but notin the body are left unhanged by the uni�er. Hene the uni�er is as general as possible for these variablestoo. Hene the result follows. 2C.2 Proofs from Setion 5.6Lemma 5.6.2 Suppose that an MGU MTTR rewritten program is evaluated using Opt-NG-SN evaluationwithout subsumption heking. Then every all to Return Unify sueeds.Proof: If subsumption heking is not performed, eah all to goal id returns a new value. Now, the value isstored in the ID �eld of the supplementary fat. No other supplementary fat has this value in its ID �eld.Examining proedure Update Context Ids, we see that the supplementary fat is also given a new value forits ont id �eld. For eah goal-id value g, let C(g) be the value of the ont id �eld.We laim that (1) for eah query and answer fat a, if gid is the goal-id for a, then a:par id = C(gid),and (2) for supplementary fats s, if the value stored in the HId �eld is gid, then s:par id = C(gid). Theproof is by indution on lengths of derivation sequenes. For eah type of rule we ompare the propagationof the goal-id values by the rules, and the propagation of the par id value by Update Context Ids, and �ndthat these values are propagated in the same manner. This ompletes the indution step of the proof of thelaim.An examination of Type 2 rules shows that if a supplementary fat and an answer fat unify with therule, the goal-id �eld of the answer fat and the ID �eld of the supplementary fat must be the same. Butthe above laim then shows that the par id �eld of the answer fat is equal to the ont id �eld of thesupplementary fat. Hene Return Unify always sueeds. 2C.3 Proofs from Setion 5.7Theorem 5.7.1 Let P be a program, and Q a query. Given any database, let the ost of Prolog� evaluationof Q be t units of time. Opt-NGBU evaluation without subsumption-heking evaluates the query on thegiven database in time O(t � V). (The size of the program is not taken into aount in this time omplexitymeasure.)Proof: The proof is based on the mapping of attempted derivations in bottom-up evaluation to ations ofProlog� evaluation presented in Lemma B.0.5. We show that for eah attempted derivation of ost  � V ,there is an ation of Prolog� evaluation that osts at least  Sine not more than a onstant number ofderivations are mapped to the same ation, the theorem follows. We use the following ase analysis to prove142



the theorem. The ase analysis parallels the ase analysis used in Lemma B.0.5.Type 0: Rules QR1 and QR2 make one derivation eah. Eah derivation is mapped to a Prolog ation thattakes at least unit time. It is straightforward to show that derivations using these rules take O(V)time.Rule QR3 generates answers to the query, and eah derivation using this rule is mapped to a Prolog� a-tion that generates answers to the query. Due to the optimization used in Proedure Rename and Uni-fy Fats, no renaming of fats is done for this rule. The uni�ation step is straightforward sine thearguments of the answer literal are distint free variables, and no our hek is required. Hene thisstep takes O(V) time per answer to the initial query, while the orresponding Prolog� ation takes atleast O(1) time.Type 1 Rules - 1 :These are Type 1 rules whose body uses a prediate query. Derivations using this kind of rules involvethe uni�ation of a query fat query(h(a); hid; ans) with a query literal query(h(t); HId;A). Thisderivation is mapped to the uni�ation of ?h(a) with h(t) by Prolog�.Sine A and HId appear nowhere else, they an be uni�ed with the orresponding arguments in O(V)time. Due to our assumption that the time taken for uni�ation is independent of the exat struture ofthe terms, the uni�ation of h(t) with h(a) osts the same, ignoring versioning osts, as the uni�ationdone by Prolog�. Fatoring in the versioning overheads, we get an overhead of a fator of O(V).Type 2 Rules - 1 : These are Type 2 rules whose body uses a prediate supj;i. There are three sublassesof rules of this type.The �rst sublass is of rules that use an answer literal in the body. Lemma 5.6.2 shows that Re-turn Unify sueeds whenever it is alled for suh rules. The time taken for suessful derivationsusing suh rules is O(V). Any unsuessful derivation using suh a rule must use a supplementaryfat for whih there is no answer fat; any answer fat will have a supplementary fat with the sameidenti�er value, and the derivation would be suessful. The supplementary literal has as argumentsdistint variables, and uni�ation is straightforward. Hene the time taken for unsuessful derivationsusing suh rules is O(V).The seond sublass is of rules have an equality literal in the body. Any attempted derivation usingsuh a rule �rst uni�es a supj;i fat with the rule body (the uni�ation always sueeds), and attemptsto perform the uni�ation needed to evaluate the equality literal. This attempted derivation is mappedto an equivalent uni�ation ation by Prolog� evaluation. Whether the derivation sueeds or not, ittakes time at most O(V) times that taken by Prolog� evaluation.The third sublass is of rules that have a base literal in the body. An attempted derivation uses a fatfor supj;i, performs an indexing operation on the base literal, and derives a head fat for eah fethedbase fat. For suh rules, eah attempted derivation is mapped to an ation of Prolog� evaluation thatindexes the base relation with the same bindings. We assume the same indexing tehnique is used ineither ase. We ount the ost of fething fats, and renaming and unifying the fats with the query onthe base relation as part of the indexing ost. Bottom-up evaluation and Prolog� evaluation perform143



the same indexing operations, and hene the ost of the indexing operation is the essentially the same(modulo the O(V) fator for aessing and binding variables, and reating bindenv versions for eahfethed fat).If no fats are fethed by the indexing operation in bottom-up evaluation, the ost of rule appliation(apart from the indexing ost) is O(V), and we map this ost to the ost of the indexing operation. Sinethat ost is at least O(V), and only one attempted derivation is mapped to eah indexing operation,there is no hange in the time omplexity of the indexing operation, and we ignore the ost.If fats are suessfully fethed by the indexing operation, for eah fat fethed, a suessful derivationis made by bottom-up evaluation. The derivation is mapped to the return of an answer to the query onthe base literal by Prolog� evaluation. The ost of the derivation is O(V), sine the ost of renamingand unifying the base fat has been ounted with the ost of the indexing operation. The orrespondingProlog� ation takes at least unit time, and hene the ost of the derivation is at most O(V) times theost of the Prolog� ation.Type 1 and Type 2 Rules - 2 :Suh rules derive a fat supj;i using a fat sup1j;i, and generate goal-id values through a all to goal id.The uni�ations of the supplementary literal and supplementary fat an be done in O(V) time sinethere are no repeated variables. The evaluation of goal id takes onstant time without subsumptionheking. Overall, a suessful derivation using a rule of this type takes O(V) time. All attemptedderivations using rules of this type are suessful.Type 3, Type 4 and Type 5 Rules :Suh rules have only one body literal, whih has as arguments distint variables. Hene a suessfulderivation using a rule of this type takes time O(V). All attempted derivations using suh rules aresuessful.This ompletes the ase analysis of all the rule types. 2
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Appendix DProofs From Chapter 6Theorem 6.4.1 The aggregate seletions generated by Tehniques C1, BS1, BS2, BS3, and LS1 are soundaggregate seletions.Proof: The soundness of Tehniques C1 and BS2 is very straightforward. For Tehnique BS1 we note thefollowing. Sine p(t1) : s is a sound aggregate onstraint on p, every fat in p must satisfy the onstraint.Sine all free variables in s are present in t1, � is also a renaming of free variables in s (the bound variablesdo not matter sine they are quanti�ed within the atomi aggregate seletions in s). Sine p(t) = p(t1)[�℄,p(t) : s[�℄ is equivalent to p(t1) : s. Hene for every suessful rule instantiations, the variables must satisfythe onstraint s[�℄. It follows (trivially) that every relevant rule instantiation satis�es the seletion s[�℄.Now onsider Tehnique BS3. Every relevant fat for p satis�es p(t) : s. Unifying this with the head ofR, every relevant instantiation of R satis�es s[�℄[�℄, sine p(t)[�℄[�℄ is equivalent to p(t1). Sine � does nota�et variables in s[�℄, s[�℄ = s[�℄[�℄. Hene, every relevant instantiation of rule R satis�es the seletions[�℄.The proof of orretness of LS1 is straightforward| a restrition of a seletion is weaker than the originalseletion, and every relevant rule instantiation satis�es the restrition. Sine all free variables in the spei�edrestrition our in the literal, the restrited seletion an be tested for the literal. If a fat is found irrelevantby the seletion, learly any rule instantiation using the fat in this literal will also be irrelevant, sine itprovides the same bindings for the free variables of the seletion. 2Theorem 6.4.2 Tehnique PS1 is sound.Proof: Consider any instantiation of the variables in X. There are now several instantiations of the variablesin the rule, that satisfy the rule body, and this de�nes a multiset SY of values for Y . Now further partitionSY based on values of variables other than X [ fY;W1;W2; : : : ;Wng. Consider any partition S0Y (in otherwords, onsider the multiset of instantiations of Y , with all variables in the rule other than f Y, W1, W2,. . . , Wn g �xed). Sine agg f is an InSel funtion, for any value y, if y 2 unneessaryagg f (S0Y ) theny 2 unneessaryagg f (SY ).Now eah partition S0Y de�nes a value for the variables in ti. Consider eah literal pi(ti;W i) Given avalue for the variables in ti, the set of fats for pi de�nes a set SWi of values for Wi. Also, eah partitionde�nes a set SW of instantiations of the tuple (W1;W2; : : : ;Wn). No two Wis appear in any literal otherthan Y = fn(W1; : : : ;Wn). Given any tuple of values from SW1 � : : : � SWn, there is a value for Y suh145



Y = fn(W1; : : : ;Wn) is satis�ed.If the other literals in the rule are satis�ed, within eah partition SW is equal to the ross produt of thesets SWi. Otherwise SW is empty, and no fat is generated using this instantiation for the variables otherthan f Y, W1, W2, . . . , Wn g.S0Y is the set of Y values obtained by applying fn to the tuples in SW . Sine unneessaryagg fdistributes over fn, if a value wi 2 unneessaryagg f (SWi), any Y value derived from it must be inunneessaryagg f (S0Y ) (this is trivially true if SW is empty, sine no Y value is derived). Hene it mustalso be in unneessaryagg f (S). Sine we hose any instantiation of the variables in X, this must be truefor all instantiations of X. Hene suh a Wi value annot not generate any relevant head fat. Thereforethe aggregate seletion generated for the literal is sound. 2Theorem 6.4.3 Tehnique PS2 is sound.Proof: The proof essentially follows the proof of Theorem 6.4.2, with the set of partitioning variablesdi�erent. Suppose we are given a binding for the variables X [ V , where V is a ross-partitioning set ofvariables. With this binding, for eah literal pi(ti;W i), the set of fats for pi de�ne a set SWi of values forWi.Also, this binding de�nes a set SW of instantiations of the tuple (W1;W2; : : : ;Wn) produed by suessfulinstantiations of the rule. By the de�nition of ross-partitioning variables, either the ross produts of theSWi's is equal to SW , or SW is empty.The partitioning arguments of a literal pi(ti;W i) form a superset of the arguments that use variablesX [ V . Given a binding for X [ V , we an extend the binding to get values for all variables in partitioningarguments of pi(ti;W i). Let the multiset of instantiations of Wi de�ned by the given instantiation of thepartitioning variables be MWi. Now, MWi � SWi, sine (a) the arguments of pi(ti;W i) that have ross-partitioning variables are de�ned to be partitioning arguments, and (b) the onditions of PS2 ensure thatnon-partitioning arguments of pi(ti;W i) are distint variables and will not onstrain the set of suessfulinstantiations of pi(ti;W i).Sine agg f is an InSel funtion, unneessaryagg f is monotone, and any value found unneessary forMWi will also be unneessary for SWi, and any instantiation of (W1;W2; : : : ;Wn) using suh a value forWi will result in an unneessary value being generated for Y . Hene the aggregate seletion generated issound. 2Proposition 6.4.4 Consider a rule R and an aggregate seletion s as in Tehnique PS1. Let V denotethe set of all variables in the rule. Let N denote the set of non-onstrained variables in the rule. ThenC = V �N � fW1;W2; : : : ;Wn; Y g is a ross-partitioning set for rule R.Proof: Consider any instantiation of the variables in X [ C. For eah pi, let Ni denote the set of variablesin N that appear in pi(ti;W i). LetMi = Ni [ fWig. Let SMi (resp. SWi) denote the set of instantiationsof variables in Mi (resp. Wi) generated by literal pi(ti;W i), (with the given instantiation of X [ C). LetSM (resp. S) denote the set of instantiations of N [ fW1; : : : ;Wng (resp. fW1; : : : ;Wng) generated bysuessful instantiations of the rule (with the given instantiation of X [ C).With the given instantiation of X [ C, the body of the rule is either not satis�able (in whih ase S isempty), or the literals other than the pi(ti;W i) literals and Y = fn(W1; : : : ;Wn) are satis�ed (none of thevariables in N [ fW1;W2; : : : ;Wn; Y g appear in these literals). The ase where S is empty is trivial. Weonsider the other ase. 146



Eah element in the ross produt of the SMi's de�nes an instantiation of the rule variables. But eahsuh variable instantiation de�nes a suessful instantiation of the rule: this is beause the variables in Niappear nowhere else in the rule body, and Wi appears only in Y = fn(W1; : : : ;Wn), whih has a suessfulinstantiation for every value of W1; : : : ;Wn. Hene SM is equal to SM1 � : : :� SMn.Now, for eah value in SWi there is an element in SMi with the same value for Wi. Hene for eah valuein the ross produt of the SWis, there is an element in SM with the same values for (W1; : : : ;Wn).But S is equal to the projetion of SM on to (W1;W2; : : : ;Wn); similarly SWi is equal to the projetionof SMi on to Wi. Hene S = SW1 � SW2 � : : :� SWn. 2Proposition 6.4.6 The onditions in Compare Aggregate Seletions(s; t) are suÆient onditions for s tobe stronger than t.Proof: For ase 1a, with more variables in the seond argument of the groupby the multiset of valuesobtained for eah group is smaller, and sine unneessaryagg f is monotoni, the set of values deteted to beunneessary is smaller. Hene the set of fats deteted to be unneessary is also smaller for a weaker atomiaggregate seletion. For ase 1b, every value that uni�es with 2(: : :) also uni�es with 1(: : :), Hene anyfat that is lassi�ed as irrelevant by t, also uni�es with 1(: : :), and the multiset of values in its group in sis at least as large as the multiset for its group in t. Hene the result follows. It is easy to see that the testin ase 2 is orret. 2Theorem 6.5.1 (Corretness of Rewriting) Let P be any program, and P as the aggregate rewrittenversion of the program.1. P as and P are equivalent in the set of answers they generate for the query prediate.2. The aggregate seletion on eah prediate in P as is a sound aggregate seletion on the prediate.Proof: We �rst onsider Part 1 of this theorem. Note that rules are not modi�ed in the rewriting exept toreplae prediates by new versions of the prediate.We �rst show that the answer set of P as is overed by the answer set of P . We laim that for eahfat p s(a) derived in P as, evaluation of P generates p(a). Suppose not. Consider the shortest sequeneof derivations in P as that derives a fat for whih this is not true, and onsider the last derivation in thissequene. For eah fat pi si(a)) used in this sequene, pi(a) (the version with the suÆx si dropped) isgenerated in P . If we drop the suÆxes from the literals in the rule, we get a rule in P . Hene it follows thatthe orresponding head fat is generated in P , whih ontradits the assumption.The proof in the reverse diretion is similar. We laim that for eah fat p(a) derived in P if p is reahablefrom the query prediate, then for eah version p s of p in P as, a fat p s(a) is generated in P as. All rulesreahable from the query are proessed by the algorithm, sine the rewriting algorithm performs a DFS ofthe reahability graph for the program (i.e., the graph with prediates as nodes, and an edge from a to b if ais used to de�ne b). Hene there are rules in P as for all prediates reahable from the query prediate. Therest of the argument then parallels the argument above, and is omitted for brevity.Now onsider Part 2 of the theorem. Consider a prediate p with an aggregate seletion s on it. Theaggregate seletions dedued on the literals of rules de�ning q are sound, sine the tehniques for generatingaggregate seletions on literals are sound (Theorems 6.4.1,6.4.2, 6.4.3). Step 13 of the rewriting algorithmtakes a literal q(: : :) with an aggregate seletion s1 on it, and replaes the prediate q by q s1 with aggregate147



seletion s1 on q s1. Hene all uses of q s1 have the aggregate seletion on them. Hene s1 is a soundaggregate seletion on q s1.Preproessing 1 replaes a prediate in a literal by another with a weaker aggregate seletion. Thiswill not result in any loss of derivations sine every fat is relevant to the literal satis�es the strongeraggregate seletion, and hene the weaker aggregate seletion too. The reahability analysis and droppingof unreahable prediates does not a�et the set of answers to the query.Now onsider Postproessing 2. A version of p with an aggregate seletion on it may have a subset of thefats in p if we disard fats that fail the seletion. Due to monotoniity of the funtions unneessaryagg f ,any value that is found unneessary w.r.t. the subset would also be unneessary w.r.t. the full set. Henewhile the new seletion may not be as strong as the original one, the renaming is guaranteed to be sound. 2Theorem 6.5.2 (Termination) Algorithm Push Seletions terminates on all �nite input programs, pro-duing a �nite rewritten program.Proof: The number of non-equivalent atomi aggregate seletions that an be generated by the dedutionrules we use is �nite, for the following reason. Tehniques C1 and BS2 generate only one aggregate on-straint/seletion per rule. Tehniques PS1 and PS2 an generate only a �nite number of atomi seletionsper literal, sine they essentially hoose a subset of arguments to group by, and an argument to apply theaggregate seletion to. Tehniques BS1 generates aggregate seletions from aggregate onstraints. Sine thenumber of aggregate onstraints is �xed, it generates only a �nite number of atomi aggregate seletions.This leaves tehniques BS3 and LS1. These generate no new groupby lists, exept by renaming existinggroupby lists. They generate atomi aggregate seletions by applying these groupby lists to rule bodies andliterals. Sine the number of rule bodies and literals is �xed, these tehniques generate only a �nite numberof atomi aggregate seletions.Given a �nite number of atomi aggregate seletions, the number of non-equivalent aggregate seletions(formed by onjuntions of atomi aggregate seletions) is also �nite.Hene after some point, the dedution rules an generate no new aggregate seletion, the stak of prediateversions beomes empty, and the rewriting algorithm terminates. 2Theorem 6.6.1 (Soundness, Completeness, Non-Repetition) Aggregate Retaining evaluation of P asgives the same set of answers for query pred as Semi-Naive evaluation of P , and does not repeat any infer-enes. Further, the Aggregate Retaining evaluation of P as terminates whenever the Semi-Naive evaluationof P terminates.Proof: An aggregate seletion on a prediate an be fully tested only at the end of the evaluation (after allfats have been omputed). However the inremental nature of aggregate seletions allows us dedue thatsome fats are irrelevant even during the ourse of the omputation. If a fat for a prediate does not satisfya sound aggregate seletion on the prediate, it is guaranteed to be irrelevant to the query prediate | anyderivation that an be made using it is guaranteed to be irrelevant. Hene the answers to the query are nota�eted if the fat is not used.The only real onern is termination. Agg-retaining evaluation disards fats only when its disarding willnot a�et the unneessary set for any atomi aggregate seletion. Hene, if a fat is found to be irrelevant,it will ontinue to be found irrelevant for the rest of the evaluation. If suh a fat is generated again, it willnot be re-used. It follows from well-known soundness, ompleteness and non-repetition results on semi-naive148



evaluation (see eg. [MR89, RSS90℄), that Agg-retaining evaluation does not repeat any inferenes.Now we onsider the last part of the theorem. Agg-retaining evaluation of P as makes no more inferenesthan semi-naive evaluation of P as, and sine it does not repeat inferenes, it terminates whenever the semi-naive evaluation of P as does. But semi-naive evaluation of P as terminates whenever semi-naive evaluationof P does, and the last part of the theorem follows. 2
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