
Logical and Physical Versioning in Main MemoryDatabasesRajeev Rastogi1 S. Seshadri2 Philip Bohannon1;3 Dennis Leinbaugh1Avi Silberschatz1 S. Sudarshan21Bell Laboratories, Murray Hill, NJfrastogi,bohannon,avig@bell-labs.com,dleinbaugh@lucent.com 2 Indian Institute of TechnologyMumbai, Indiafseshadri,sudarshag@cse.iitb.ernet.inAbstractWe present a design for multi-version concur-rency control and recovery in a main memorydatabase, and describe logical and physicalversioning schemes that allow read-only trans-actions to execute without obtaining data itemlocks or system latches. These schemes enablea system to guarantee that updaters will neverinterfere with read-only transactions, and thatread-only transactions will not be delayed aslong as the operating system provides themwith su�cient cycles. Our contributions in-clude several space saving techniques for themain memory implementation. We extendthe T-tree index structure (designed for main-memory databases) to support concurrent ac-cess and latch-free traversals, and demonstratethe performance bene�ts of our extensions.Some of these schemes have been implemen-ted on a widely-used software platform withinBell Labs., and the full scheme is implementedin the Dal�� storage manager.1 IntroductionWhile disk-based databases exhibit improved perform-ance if the entire database can �t in the main memorybu�er cache, a main memory database (MMDB) (e.g.Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 23rd VLDB ConferenceAthens, Greece, 1997

[SGM90, JLR+94]) improves performance further bydispensing with the bu�er manager, and tuning al-gorithms to the at storage hierarchy and the reducedcost of indirection. Also, MMDB schemes attempt tominimize space usage, of vital importance since mainmemory remains about one hundred times as expensiveas disk space.Many applications in telecommunications requirevery fast and predictable response times for trans-actions and, in particular, for read-only transactions.Since disk I/O in an MMDB is only needed for per-sistence of the log, no disk activity is required on be-half of read-only transactions. As a result, responsetimes for read-only transactions are more predictable,making MMDBs highly suitable for a large class ofreal-time applications. However, a read-only transac-tion may still have to wait on locks held by an updatetransaction, which may in turn be waiting on a di�er-ent transaction, or on disk writes to the log. Thesewaits become a serious source of unpredictability forresponse times.Multiversion concurrency control methods preventupdate transactions from conicting with read-onlytransactions by providing the latter with a consistentbut somewhat out-of-date view of the database. In or-der to provide this view, multiple versions of recentlyupdated data items are retained. Early multi-versionschemes used timestamps to serialize readers as well aswriters, but more recent multi-version locking schemes[CFL+82, BC92, MPL92] use timestamps to serializeread-only transactions with respect to updaters, allow-ing them to use old versions without locking, while re-quiring updaters to perform locking to serialize them-selves with respect to other updaters.However, none of the above techniques guaranteescomplete isolation of read-only transactions from up-date transactions in a system, since the access path3A Ph.D. candidate at Rutgers University.

to the data could be modi�ed by update transactions.Thus, read-only transactions must obtain latches (sem-aphores) to ensure that they read physically consistentdata.Requiring read-only transactions to obtain latchescould cause update transactions to interfere with theirexecution. Furthermore, in a number of environments,application code is often linked directly with databasecode, accessing the database directly through sharedmemory for speed. This introduces the possibility thata processes could fail while holding latches or locks,leading to long delays in any transaction waiting onone of these latches or locks while the death of the �rstprocess is detected and handled. By avoiding latches,read-only transactions will never encounter this delay.Finally, in a main memory database system, the use oflatches imposes a substantial overhead [GL92] and, byavoiding their use, signi�cant performance gains canbe obtained for read-only transactions.In this paper, we present schemes that eliminatethe need for both locking and latching by read-onlytransactions without sacri�cing recency, since read-only transactions see all committed updates as of theirstart-times. Locks are eliminated by versioning of dataitems (which we refer to as logical versioning). Ourimplementation is optimized for main memory, and re-duces the storage space overhead required to keep trackof versions as compared to versioning schemes for diskdatabases. Latches are eliminated by a mechanism wecall physical versioning [KL80], that is applied to theaccess paths to data items. Updates to these accesspaths are not made in place { instead, the updates aremade on a new copy of the node, called a \physical ver-sion". The new version of the node is linked into theaccess path using an atomic word-write (an operationwhich is universally supported on standard architec-tures). This enables read-only transactions to traversedata structures without acquiring latches. By freeingthem fromgetting any latches, the performance of read-only transactions is completely de-coupled from that ofupdate transactions, and becomes a simple function ofavailable CPU resources, making it relatively easy toguarantee the response times of these transactions.The remainder of the paper is organized as follows.In sections 2 and 3, we provide an overview of logicaland physical versioning, respectively. In Section 4, wedevelop concurrency control schemes for operations onT-trees. In Section 5 we compare the performance ofT-tree algorithms with and without physical version-ing. In Section 6, we discuss related work, and in Sec-tion 7, we give our conclusions and directions for futurework.We do not address recovery issues in this paper{ a comprehensive treatment of this can be found in[BLR+95].

2 Logical VersioningWe refer to the (well-known) idea of maintaining mul-tiple versions for concurrency control as logical ver-sioning. In a system that supports multi-versioning,transactions are classi�ed as read-only transactions {those that only read items, and update transactions{ those that update or write some item, or simplywant access to the most current data. When an up-date transaction updates a data item, a new versionof that item is created. Update transactions follow thetwo-phase locking protocol by locking items they reador write. When an update transaction, T , commits,it is assigned a timestamp denoted by tsn(T) whichis obtained by incrementing a global logical timestampcounter. As part of commit processing, before anylocks held by the transaction are released, the trans-action stamps each version it has created with tsn(T).Thus, the versions of an item can be ordered accord-ing to their timestamps. A read-only transaction isassigned a timestamp by reading (but not increment-ing) the logical timestamp counter when it starts. Sub-sequently, for each item, the read-only transactionreads the latest version whose timestamp is less thanor equal to its timestamp.When a version of a data item is no longer needed byany (current or future) read-only transaction, it can bedeleted and the space reclaimed. This action is calledaging that version. A version can be aged safely ifno read-only transaction exists which has a timestampequal to or larger than that of the version in question,but smaller than the next newer version of the item.2.1 Assigning TimestampsTomeet our design goal of read-only transactions nevereven acquiring a latch, read-only transactions mustread the logical timestamp counter without any latch-ing. To do so consistently,1. the counter itself must �t in a word,1 ensuring thata read which does not obtain latches is atomic withrespect to the update,2. the timestamp counter must be incremented bya transaction only after the stamping process iscomplete and the transaction has committed.Updater transactions modify the logical timestampcounter during commit processing. Every such trans-action must obtain an X latch (ignored by read-onlytransactions) on the logical timestamp counter beforeaccessing it. The latch must be held until all the ver-sions have been stamped and the counter has been in-cremented.1Longer counters can be handled by indirecting through apointer and not modifying the counter in place.

Version List Entry

Timestamp

Version Pointer
Older Versions
of this Item

Newer Versions
of this Item

Other Items Changed
by this Transaction Figure 1: Structure of a Version List Entry2.2 Version List EntriesIn most disk-based schemes [BC92, MPL92], storagespace for a certain number of versions is pre-allocatedon each page for e�cient access, which could result inunder-utilization of storage space (e.g., each item on apage has a single version). In our design, on the otherhand, space for versions is dynamically allocated asthey are created. Furthermore, since a database couldconsist of millions of \cold" items that have only oneversion, and space is an important constraint in main-memory databases, our goal was to impose essentiallyzero space overhead on data items due to versioning.Our design uses an auxiliary data structure called aVersion List Entry (VLE), shown in Figure 1, to main-tain the bookkeeping information and link the versionsof an item together. A VLE contains the timestampof the transaction that created it, and a pointer to theversion itself. The VLEs of an item are linked togetheras a doubly linked list ordered by timestamp. Read-only transactions traverse the VLE chain of an item inorder to �nd the required version. Each VLE is also ona list of versions created by the same transaction whilethe transaction is active; this facilitates easy updateof timestamps of versions created by the transactionwhen it commits. Also, if a transaction aborts, theversions created by the transaction can be e�cientlydetermined and deleted.It is important that we can determine if a pointerpoints to a data item or a VLE. In our implementa-tion, data and VLE are stored on distinct segments(alternatively, distinct pages can be used) and a singlebit per segment lets us determine whether the pointeris to a data item or a VLE. An item that has onlyone version is stored as is without a VLE, resultingin no space overhead (except the per-segment bit) dueto versioning on cold items. VLEs are dynamically al-located as subsequent versions of the item are created,and for items with more than one version, a VLE existsto represent each version. A pointer to an item couldbe a direct pointer or a pointer to a VLE. The code todereference an item determines the type of the pointer,and fetches the appropriate version, if more than one

o

o

o
Versions
of an Item

ts: 100

ts:200

ts:205 a VLE

Access Paths (Indices)

Pointers to
VLE or to
an item

ItemsFigure 2: Pointers to Items and VLEs from Indexesversion exists.We do not discuss the implementation of logicalaging (which detects when a version is no longerneeded) due to lack of space | see [BLR+95] for de-tails. When a version is deleted, the correspondingVLE is also deleted. One remaining detail is to handlethe case when only one version of an item is left. In thiscase, all pointers to the VLE must be updated to pointto the data item, and then the VLE can be deleted.2.3 Interaction with IndicesWe next discuss how our logical versioning scheme foritems can be combined with indices. The index storesentries for all existing versions of an item. An indexentry for an item stores a pointer to an item, or tothe VLE of the version if more than one version of theitem exists (see Figure 2). As discussed earlier, whendereferencing an item, the pointer type is determined,and an extra level of indirection used if required. Ifmore than one of an item's versions have the same keyvalue, then the index entry points to the latest versionwith the key value. The index need not store key val-ues | the key values can be obtained from the dataitem version that is being pointed to, since in-memorypointer dereferencing is inexpensive [DKO+84].Update to an item causes a new VLE to be allocatedthat points to the newly allocated version. The newVLE is linked at the (rightmost) end of the VLE chainfor the item. For every index, for the key value in thenew version, if a pointer to a previous version of theitem with the same key value is contained in the index,then the pointer is updated to point to the new VLE;else, a new pointer to the new VLE is inserted into the

index.Read-only transactions traverse the index to obtaina pointer to an item or a VLE with the appropriate keyvalue. If the pointer is a direct pointer to an item, thenthe item pointer is returned. Else, if the pointer is toa VLE, say v1, then the VLE chain for the data itemis traversed to determine the VLE, say v2, with thelargest timestamp less than or equal to the timestampfor the transaction. If no such VLE exists or the keyvalue for v2 di�ers from the key value for v1, then inthe transaction consistent database state for the read-only transaction, the item does not have a key valueequal to that for v1. Else, the version pointer in v2 is re-turned. A small extension consisting of VLEs with nullpointers is used to handle deletes. More details aboutinteraction with indices can be found in [BLR+95].3 Physical VersioningPhysical versioning is a technique that permits read-only transactions to access data structures without get-ting any latches or locks, even while other update trans-actions are updating the data structure. Physical ver-sioning is based on atomic reads and writes of words,operations which are universally supported on currentgeneration architectures. Trees structures, in partic-ular, lend themselves to e�cient physical versioning,allowing readers to see an operation-consistent state ofthe tree without obtaining any latches. In other words,the operations are each performed atomically with re-spect to readers.We assume nodes in the tree are �xed size entitiesand for every edge out of the node, a pointer to theother node in the edge is stored within the node it-self. We de�ne a component to be any connected setof nodes of the tree. Given an update operation, thecomponent a�ected by the operation is the set of nodeschanged by the operation, plus any other nodes whichmay be necessary to connect the changed nodes. Theroot of the component is de�ned in the obvious wayas the root of the smallest subtree that contains thecomponent.Let N be the root of the component a�ected by anoperation. Then, physical versioning is performed asfollows:1. First copy the component; let N 0 be the copy ofN . The data in each node in the copy is exactlythe same as the data in the corresponding nodesin the original tree, except that pointers to nodesin the component now point to the new copies ofthe nodes.2. Perform the update on the new copy of the com-ponent. This can create new nodes, and updateor delete existing nodes in the new copy of the

component. However, no node in the original tree(including the old copy of the component) is af-fected by the update.3. Atomically update the pointer to N to point to N 0instead (if N is the root, the pointer to N is theroot pointer for the tree, otherwise it is from theparent of N).The �nal atomic update of the original pointer to Nto point to N 0 exposes the update to read-only transac-tions, and it is easy to see that read-only transactionsdo not see partial updates. The a�ected componentfor many well known operations on B-trees and T-treescan be easily de�ned. For example, the a�ected com-ponent in a B-tree split would be the path between thenode in which the insert took place and the highestnode in the tree to which the split propogated. Phys-ical versioning can also be used on hash-tables withchaining, since they can be considered as a forest oflists, and a list is a special case of a tree.We use the term physical aging to denote the processof reclaiming space occupied by older copies of datathat have been physically versioned. The old physicalversions of the data have to be preserved as long as aread-only transaction can attempt to read the data. Weassume that each operation traverses an access struc-ture afresh and pointers to nodes are not cached acrossoperations. Therefore, a piece of data that is visible toa read-only transaction during an operation cannot bephysically aged for the duration of the reading opera-tion. Contrast physical aging with logical aging, wherea version of a data item cannot be aged as long as atransaction may need to access it.We associate a physical timestamp with each read-only transaction. The physical timestamp is 1 if thetransaction is not currently performing any operation.It is set to the the value of a global physical timestampcounter before starting an operation and reset to 1afterwards.An updater, after making an update that physic-ally versions a piece of data and makes it unreachablefor future read-only transactions, increments the globalphysical timestamp counter while holding a latch. Theupdater also adds the older physical version into anphysical ager's list by appending to the list an entrycontaining a pointer to the physical version being agedand the value of physical timestamp counter when theversion was aged (that is, after the older version wasunlinked and the physical timestamp counter was in-cremented). The ager then can de-allocate the spacefor an older physical version once no transaction has aphysical timestamp smaller than the version's physicaltimestamp.

4 T-treesIn this section, we describe the algorithms for perform-ing lookups, inserts and deletes from a T-tree indexwith logical and physical versioning. The salient fea-tures of our concurrency control scheme for T-treesare:� Read-only transactions do not obtain any latchesor locks.� The tree traversals of update transactions do notobtain latches while locating the node to be up-dated and obtain latches only when actually per-forming the update. Thereby, the number oflatches acquired by tree updates can be reduced, auseful property in a main memory database wherelatche acquisition may be relatively expensive.� Update operations that result in modi�cations toa single T-tree node can execute concurrently.� Rotations due to inserts can take place concur-rently.4.1 Overview of T-treesIn [LC86], the authors proposed T-trees as a storagee�cient data structure for main memory databases. T-trees are based on AVL trees proposed in [AHU74]. Inthis subsection, we provide an overview of T-trees. Fora detailed description, the reader is referred to [LC86].Like AVL trees, the height of each node's subtrees maydi�er by at most one. A T-tree di�ers from an AVLtree in that each node, instead of storing a single keyvalue, stores multiple key values in a sorted order. Theleftmost and the rightmost key value in a node de�nethe range of key values contained in the node. Thus,the left subtree of a node contains only key values lessthan the leftmost key value, while the right subtree con-tains key values greater than the rightmost key valuein the node. A node with both a left and a right childis referred to as an internal node, a node with onlyone child is referred to as a semi-leaf, and a node withno children is referred to as a leaf. In order to keepoccupancy high, every internal node has a minimumnumber of key values that it must contain (typicallyk � 2, if k is the maximum number of keys that canbe stored in a node). However, there is no occupancycondition on the leaves or semi-leaves.Searching for a key value in a T-tree is relativelystraightforward. For every node, a check is made tosee if the key value is bounded by the leftmost andthe rightmost key value in the node; if this is the case,then the key value is returned if it is contained in thenode (else, the key value is not contained in the tree).Otherwise, if the key value is less than the leftmost

key value, then the left child node is searched; else theright child node is searched. The process is repeateduntil either the key is found or the node to be searchedis null.Insertions and deletions into the T-tree are a bitmore complicated. For insertions, �rst a variant of thesearch described above is used to �nd the node thatbounds the key value to be inserted. If such a nodeexists, then if there is room in the node, the key value isinserted into the node. If there is no room in the node,then the key value is inserted into the node and theleftmost key value in the node is inserted into the leftsubtree of the node (if the left subtree is empty, thena new node is allocated and the leftmost key value isinserted into it). If no bounding node is found then letN be the last node encountered by the failed search.If N has room, the key value is inserted into N ; else,it is inserted into a new node that is either the rightor left child of N depending on the key value and theleftmost and rightmost key values in N .Deletion of a key value begins by determining thenode containing the key value, and the key value isdeleted from the node. If deleting the key value res-ults in an empty leaf node, then the node is deleted.If deleting the key value results in an empty semi-leafnode, then the node is merged with its child. If the de-letion results in an internal node containing fewer thanthe minimum number of key values, then the de�cit ismade up by moving the largest key in the left subtreeinto the node, or by merging the node with its rightchild.In both insert and delete, allocation/de-allocationof a node may cause the tree to become unbalancedand rotations (RR, RL, LL, LR) may need to be per-formed in a manner similar to rotations in AVL trees.Balancing starts from the newly allocated node (or theparent of the deleted node) proceeds upwards towardsthe root, and stops on reaching a node that is balanced,or a node where the heights di�er by one, and can bemade equal by rotation. Rotations occur at the inter-mediate nodes. Details may be found in [LC86].4.2 Latches and VersioningEach node in the tree has a latch associated with itwhich is obtained in exclusive mode to prevent con-current updates to the node. Due to physical version-ing, the latch on a node is never obtained in sharedmode. The tree itself has a tree latch, which is ob-tained (instead of node latches) in exclusive mode bycertain operations. All update operations acquire thetree latch in shared mode.Each node contains a version bit that indicates if thenode is versioned (physical versioning). This bit is 1 ifa newer copy of this node has been linked into the tree

in its place. Only updaters read and write the versionbit. The act of marking a node as versioned consistsof setting its versioned bit to 1 and adding the nodeto the physical ager's list. The node is then said to beversioned.A new version of a node is created only when a keyvalue is inserted or deleted from the node, or the nodeis involved in a rotation. Updates to balance informa-tion and child pointers in a node are performed directlyon the node, and no new version is created since read-only transactions never look at the balance informationand the child pointers are changed atomically.4.3 FindFind is the algorithm for traversing the tree to �ndthe smallest key greater than or equal to a search key(see Figure 3). (Other search modes (e.g., >;=) canbe supported via straightforward extensions.) Findtakes the following arguments: stack, which containsthe nodes on the path from the root to the current nodeof Find (Find starts tree traversal from the top node ofthe stack; if the stack is empty, the root of the treeis assumed); search key, the key value being sought;lock mode, a ag which indicates whether an exclusivelock, shared lock, or neither should be obtained on thekey returned by Find; and latch mode, a ag which ifTrue indicates that the node at which Find terminatesshould be latched exclusively.When Find is called on behalf of a read-only trans-action lock mode is None (indicating no lock), andlatch mode is false. In this case, no latches or locks areobtained, and no checks are made to determine if nodesare versioned. The reason for this is that a read-onlytransaction only needs to see the e�ects of updates thatcompleted before it began. Update transactions, on theother hand, look up a key value in the index by invok-ing Find with lock mode set to shared and latch modeset to False. In procedure Find, right ancestor(stack)is the topmost node in stack whose left child is also instack.Whether called on behalf of updaters or readers,the Find procedure performs a \fuzzy" traversal ofthe tree. By fuzzy, we mean that the Find algorithmdoes not obtain latches on its way down and doesnot check whether a node has been versioned until itreaches the node containing the satisfying key (sat key)or a leaf or a semi-leaf node that should contain thesearch key (recall that all searches are greater thanor equal to). After obtaining appropriate locks andlatches based on input parameters (note that the lock isobtained before the latch is obtained to prevent dead-locks involving latches and locks), validation is per-formed to determine if the satisfying key value is indeedthe key value to be returned. The reason to perform

Find(stack, search key, lock mode, latch mode) fProceed down the tree, beginning with the topmostnode in stack, pushing nodes onto stack until a nodebounding search key is found, or until the next nodeto be visited is null;node = top of stack; /* at end of the above traversal */If search key <= max key(node) Thensat key = smallest key in node >= search key;Else sat key = smallest key in right ancestor(stack);If lock mode == None and latch mode == False Thenreturn (sat key, ptr in index entry for sat key);If lock mode not equal to None Thenobtain appropriate lock on sat key;If latch mode == True Thenobtain S latch on tree;obtain X latch on node;/* Validate node before returning */If (node is versioned)or (search key < min key(node) andleft child not equal to null)or (search key > max key(node) and(right child not equal to null orright ancestor(stack) is versioned)) ThenRelease lock and latches just obtained;Return Find(LSA(stack), search key, lock mode,latch mode);Else return (sat key, ptr in index entry for sat key);g Figure 3: The basic �nd algorithmvalidation is that concurrent updaters may have in-serted/deleted index entries while Find was obtaininglocks/latches. Since every updater creates a new ver-sion of a node when inserting/deleting an index entryinto/from the node, Find �rst checks to see if nodehas been versioned. Even if node were not versioned,if search key < min key(node), then a non-null leftchild of node could contain a newly inserted key valuebetween search key and min key(node), and this (in-stead of min key(node)) would be the appropriate keyvalue to be returned by Find. Similarly, if search key> max key(node), then a right child may be added tonode or the smallest key value in right ancestor(stack)may be deleted, and thus it would no longer be theappropriate key value to return.If any of the three validation conditions do not hold,Find restarts from the Lowest Stable Ancestor (LSA)in stack. The LSA is the node farthest from the root ofthe tree (and thus the highest node in stack) that hasnot been versioned since it was visited by the �nd.LSA(stack) is obtained from stack by popping eachnode and checking it's versioned bit until an unver-sioned node is found (in case all nodes in stack areversioned, then they are all popped and the latest ver-sion of the root node is pushed onto stack). Restart-

ing from the LSA is an optimization (we could restartat any node), and the intuition for it is based on theobservation that no target key could \escape" from asubtree without modifying, and therefore versioning,the root of that subtree.Find can be further optimized by checking if node isversioned before obtaining any locks or latches { thisway, if node was versioned, the overhead of obtaininglocks and latches can be avoided, and Find can restartearlier.Index scans can be implemented by caching the keyvalue returned by the last Find call and the value ofstack at the end of the last Find operation (in an iteratorstructure), and then repeatedly invoking FindGT, avariant of Find which locates a strictly larger key, withthe cached values of stack and the key value (lock modeand latch mode are set as for the �rst Find call for read-only and update transactions).We describe the insert operation next; the deletionoperation and correctness arguments for all the opera-tions can be found in [BLR+95].4.4 InsertWe next describe the insert procedure along with con-currency control and details of physical versioning.The concurrency control scheme described provides ahigh degree of concurrency; however, there are sim-pli�cations that provide lower concurrency but havelower latching overheads. A performance comparisonof these alternatives is described in Section 5.Insert �rst invokes Find with the key value to beinserted key val, and input parameters lock mode setto exclusive and latch mode set to True (stack is set tothe root of the tree). This ensures that an X lock onthe next key value is obtained and a latch on the nodeinvolved in the insert is also held. Note that an X lockon key val is already held when the insert call is made.Let N be the node on which Find obtains an X latch.We consider the following three cases:1. N bounds key val and has room:A copy of N , say N 0, is created and key val is insertedinto it. A latch on N 's parent is then obtained.Note that N 's parent can be determined from stack.In order to ensure that updates are reected in themost current version of the tree, it is important thatN 's parent must not be an old version. Thus, after thelatch on N 's parent is obtained, it is checked to see ifit has been versioned. If this is the case, then (afterreleasing the latch), the tree is retraversed from theroot to N to determine N 's most current parent, anda latch on N 's most current parent is obtained. Thisprocess is repeated until N 's parent is found to be notversioned.

Finally the pointer to N is updated to point to N 0.Node N is then marked as versioned and all latches arereleased.2. N does not bound key val:In this case the node is a leaf or a semi-leaf. If thereis room in N , then key val is inserted as described inCase 1. Else, a new node containing key val is alloc-ated, a latch on the node is obtained and the left/rightchild of N (as appropriate) is set to point to the newlyallocated node.3. N bounds key val and does not have room:If the left child of N is null, then two nodes N1 and N2are allocated: N1 is a copy of N containing key val butnot containing the leftmost key in N and the left childof N1 is set to N2. N2 simply contains the leftmost keyin N . Latches are obtained on both N1 and N2. Afterobtaining a latch on N 's parent, the pointer to N isupdated to point to N1 and N is marked as versioned.If the left child of N is not null, then after releasingthe latch on N , the tree latch is obtained in exclusivemode. Now if N has been versioned or its left child hasbecome null in between releasing the latch on N andobtaining the tree latch, the tree latch is released andinsert restarts again by invoking Find from the LSAwith latch mode equal to True and lock mode equal toNone (a lock on the next key value is already held).Otherwise (i.e., N has not been versioned and its leftchild remains non-null) the following actions are taken.Let N1 be the node that contains the largest keyvalue in the left subtree of N . If N1 has room, thena copy of N1 is made, the leftmost key value in N isinserted into the copy, the pointer in N1's parent isupdated to point to the new version, and N1 is markedas versioned (we do not need a node latch here since wealready hold the tree latch.) If N1 has no room, thena new node containing only the leftmost key value inN is allocated and N1's right child is set to point tothe newly allocated node. After this is completed, acopy of N is made from which the leftmost key valueis deleted, key val is inserted and N 's parent's pointerto N is updated to point to the new copy, followingwhich N is marked as versioned.The lock on the next key value is released at the endof the insert procedure once the key has been inserted,as in [Moh90].Note in Step 3 above that, by inserting the leftmostkey value in N into N 's left subtree before deleting itfrom N , we ensure that any Find traversing the treewill see the key. A Find or an index scan may howeversee the key twice. For Find, this is not a problem sincethe traversal would have followed the same path irre-spective of whether it encountered N or its new copy.For an index scan, this case can be handled by ignoringkey values that are less than or equal to the previous

key value returned.4.4.1 BalancingIn case a new node that is not a version of an existingnode is allocated, the T-tree may need to be balanced.Balancing is done by traversing the tree upwards fromthe lowest unbalanced node, and performing rotationsas appropriate.The insert procedure described above ensures thatevery time a new node is allocated, latches are ob-tained and held on both the newly allocated node andthe parent, or a tree latch is held. In case a tree latchis held, the traversal upwards toward the root is simplyperformed as described earlier in Section 4.1 (the onlydi�erence is that every time a parent node is accessed,a check is made to see if it is versioned, and if it is,then the tree is retraversed in order to determine theparent). In the case that the tree latch is not held,then before a parent node is examined to determine ifit can be rotated, a latch is obtained on it (retravers-ing may be required if, after obtaining the latch, it isdetermined that the parent has been versioned).Note that latches on tree nodes are obtained in abottom-up fashion. Furthermore, no node latches areheld when an attempt is made to acquire the tree latch.Thus, a deadlock involving only latches is not possible.(Locks are not acquired while holding a latch, so latch-lock deadlocks are not possible either.)While traversing the tree upwards toward the root,balances on the appropriate nodes on the path are ad-justed to account for the newly allocated node. Notethat balance information can be updated in place, sincereaders never examine balance information. While per-forming a rotation, physical versioning only requiresthat the three nodes involved in the rotation are copied.5 Performance ResultsIn order to determine the e�ects of physical version-ing and latching overheads on performance, we imple-mented four variations of the T-Tree operations �nd,insert, and the rotation operations needed for rebalan-cing. (In each case, insert invokes �nd to determinethe target node.) The four variations corresponded towhether physical versioning was used or not and thegranularity at which latches were obtained (node levelas is common in disk based systems or tree level assuggested by [LC86]) and are described below:1. Tree latch with no versioning: A single latchat the granularity of the tree itself is obtained in Xmode by inserts and S mode by �nds. No physicalversions of nodes are created by inserts.2. Node latch with no versioning: In additionto the tree latch, a latch per node is maintained.

Find obtains the tree latch in shared mode andperforms latch crabbing when traversing the tree(obtaining each node latch in shared mode). Forsimple inserts that require no structure modi�ca-tion, a shared latch is obtained on the tree andexclusive latches are obtained on the nodes beingmodi�ed. If a structure modi�cation such as a ro-tation is required, an exclusive latch on the treeis obtained instead of node latches. No physicalversions of nodes are created.3. Tree latch with physical versioning: Physicalversions of nodes are created { as a result, �ndsdo not obtain any latches. Inserts, however, doobtain an exclusive latch on the tree before per-forming any updates.4. Node latch with physical versioning: Phys-ical versions of nodes are created and �nds do notobtain any latches. Inserts obtain an exclusivelatch on the tree if structure modi�cations takeplace; else, they simply obtain a shared latch onthe tree and an exclusive latch on the updatednode(s).In each case, the T-Tree was con�gured to have 10keys in each node. The keys for insert and �nd were in-tegers uniformly chosen from the range 0 to 2,000,000.The percentage of inserts was varied from 1% to 75%.For each percentage of inserts value, the running timewas 5 minutes, and the throughput measured was thesum of the total number of lookups and inserts per-formed. The experiments were performed on a SunSPARCstation 20 with 2 processors and 256 MB ofRAM.In order to estimate the overhead of obtaininglatches and performing physical versioning, we �rstconducted our experiments with a single process. Forvery low percentage of inserts (1, 2 and 4%), thephysical versioning schemes perform the best since nolatches are obtained by tree traversals. However, as thepercentage of inserts goes beyond 4%, their perform-ance falls below that of the tree latch and no version-ing scheme, due to the high cost of creating versions.The node latch with no versioning scheme performsthe worst inserts due to the high cost of latch crabbingwhen traversing the tree.With 4 processes, we are also in a position to meas-ure the e�ects of the increased concurrency that res-ults due to node level latches and physical versioning.The tree latch and physical versioning scheme outper-forms all the other schemes due to latch-free traversalsand low latching overheads for inserts. Furthermore,as long as the percentage of inserts is below 30%, thenode latch and physical versioning scheme outperforms

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Percentage of inserts

Number of processes - 1

Tree latch with no Versioning
Tree latch with physical Versioning

Node latch with no Versioning
Node latch with physical Versioning

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

Percentage of inserts

Number of processes - 4

Tree latch with no Versioning
Tree latch with physical Versioning

Node latch with no Versioning
Node latch with physical Versioning

Figure 4: Throughput v/s percentage of insertsthe tree latch and no versioning scheme due to the en-hanced concurrency and decreased latching overheads(since tree traversals do not obtain latches when phys-ical versioning is used). Beyond 30% inserts, however,due to the overhead of creating versions and addi-tional latches obtained by inserts, the performance ofthe node latch and physical versioning scheme falls be-low that of the tree latch and no versioning scheme.The node latch and no versioning scheme performs theworst due to excessive latching overheads.6 Related WorkIn this section, we discuss related work on mainmemory databases, multi-version concurrency controlschemes and concurrency control schemes for indices.A number of versioning schemes have been proposedfor disk-based databases [CFL+82, MPL92, BC92].Our logical versioning scheme is tailored for mainmemory systems since it eliminates storage space over-heads for items with a single version, and allows latch-free traversal of version control information by read-only transactions. In addition, our schemes include theinteraction between versioning and index management.Of the disk-based schemes, our logical versioningscheme is most similar to [CFL+82], in which a linkedlist of versions is maintained and aged versions arecollected from a single pool. However, versioning inthis design is at the page level, the garbage collectionis very simpli�ed for disk I/O considerations, and in-dexing problems are not considered. In [BC92], theauthors extend the scheme in [CFL+82] to record-levelversioning by allocating part of each page as a \versionarea" and clustering the versions of an item together onthe same page [BC92, MPL92]. However, the optimiza-tion of clustering versions in the same page as the stablecopy of the item is not required in a main memorydatabase since there is no extra cost to accessing a dif-ferent page and thus the schemes in [BC92, MPL92]

would be wasteful of storage space in a main memoryenvironment.Among the multi-versioning schemes proposed, only[MPL92] considers the interaction between versioningand indexing. However, the scheme in [MPL92] preal-locates space for information about a �xed number ofversions in index nodes, adding a substantial amountof space overhead even for non-versioned items.We next shift our attention to schemes for per-forming concurrent operations on B trees and binarytrees that have been proposed in the literature, such as[SG88, BS77, Moh90, ML92, KL80, ML82]. All of theschemes, excepting [KL80, ML82] and [SG88] requiretraversals to obtain latches on each node.These two schemes implement forms of physical ver-sioning. However, the index techniques of [KL80] donot address concurrency control issues needed to im-plement transaction semantics, while the treatment of[ML82] requires preordering all accesses to a tree byan entire transaction by key value.The idea of using atomic updates to avoid latcheswhile performing lookups in binary trees was origin-ally proposed in [KL80]. We extend this work to T-trees and general tree structures, address transactionlevel concurrency control issues (ignored in [KL80])and show additional advantages from using these tech-niques in a multi-version concurrency control system.Schemes similar to our physical aging scheme havebeen presented in [ML82, SG88]. Our requirement ofcompletely non-blocking readers distinguish our work.In [BLR+95] we describe techniques to interrupt longoperations (e.g., scans) to allow old physical versionsto be reclaimed earlier.The idea of using atomic actions to avoid latchingis related to the study of wait-free data structures inoperating systems, e.g. [Her89], which attempt to en-sure that some process will make progress on the datastructure, even if others are blocked. However, trans-actional semantics, which is central to our work, is not

considered.The notion of performing next key locking and val-idation after obtaining a lock was presented for B+trees in [Moh90, ML92]. However, in order to preventinsert/delete operations from taking place in a sub-tree that is involved in a structure modi�cation (e.g.,split) and at the same time, to permit traversals (thatobtain latches) to execute concurrently on the sub-tree, a tree latch is obtained in exclusive mode duringstructure modi�cations. This could hurt concurrencysince no two structure modi�cation operations can ex-ecute concurrently. In our scheme, on the other hand,many structure modi�cations (e.g., balancing duringinserts) obtain and retain only local latches on updatednodes until the structure modi�cation completes, andall could do so since our tree latch is an optimizationto reduce the number of latches, and is not otherwiseinvolved in correctness. Further, stucture modi�ca-tion does not block traversals since in our scheme, tra-versals do not obtain any latches.7 ConclusionWe have presented a design for multi-version concur-rency control and index management in a mainmemorydatabase system. We show how to support real-timeperformance for read-only transactions by freeing themfrom obtaining locks, by using logical versioning, aswell as latches, by using physical versioning.We have applied these techniques to design a con-current implementation of T-trees, an index structurefor main memory systems, and demonstrated experi-mentally the performance improvement due to physicalversioning. Some of the salient features of our designare 1) read-only transactions do not obtain latcheswhile performing lookups, 2) update transactions per-form latch-free traversals on the tree, and 3) concur-rent rotations on the tree are possible. Our perform-ance results indicate that latch-free traversals enableour scheme to outperform other schemes. Both thelogical and physical versioning schemes have been im-plemented in the Dal�� main memory storage manager.References[AHU74] A. Aho, J. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms.Addison-Wesley, 1974.[BC92] P. Bober and M. Carey. On mixing queries andtransactions via multiversion locking. In Procs. IEEEIntl. Conf. on Data Engineering, February 1992.[BLR+95] P. Bohannon, D. Leinbaugh, R. Rastogi, S. Se-shadri, A. Silberschatz, and S. Sudarshan. Logical andphysical versioning in main memory databases. Tech-nical Report 113880-951031-12, AT&T Bell Laborat-ories, Murray Hill, 1995.

[BS77] R. Bayer and M. Schkolnick. Concurrency of oper-ations on B-trees. Acta Informatica, 9(1):1{21, 1977.[CFL+82] A. Chan, S. Fox, W-T.K. Lin, A. Nori, and D.R.Ries. The implementation of an integrated concurrencycontrol and recovery scheme. In Procs. of the ACMSIGMOD Conf. on Management of Data, pages 184{191, June 1982.[DKO+84] D. J. DeWitt, R. Katz, F. Olken, D. Shapiro,M. Stonebraker, and D. Wood. Implementation tech-niques for main memory database systems. Procs. ofthe ACM SIGMOD Conf. on Management of Data,pages 1{8, June 1984.[GL92] V. Gottemukkala and T. Lehman. Locking andlatching in a memory-resident database system. InProcs. of the International Conf. on Very Large Data-bases, pages 533{544, August 1992.[Her89] Maruice Herlihy. A methodology for implementinghighly concurrent data structures. In ACM SIGPLANSymp. on Principles and Practice of Parallel Program-ming, March 1989.[JLR+94] H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi,Avi Silberschatz, and S. Sudarshan. Dali: A high per-formance main-memory storage manager. In Procs. ofthe InternationalConf. on Very Large Databases, 1994.[KL80] H.T. Kung and P.L. Lehman. Concurrent manip-ulation of binary search trees. ACM Transactions onDatabase Systems ., 5(3):354{382, September 1980.[LC86] T.J. Lehman and M.J. Carey. A study of indexstructures for main memory database management sys-tems. In Procs. of the International Conf. on VeryLarge Databases, pages 294{303, August 1986.[ML82] U. Manber and G.D. Ladner. Concurrency controlin dynamic search structures. ACM Proc.on DatabaseSystems, Boston., pages 268{282, April 1982.[ML92] C. Mohan and F. Levine. Aries/im an e�cientand high concurrency index management method usingwrite- ahead logging. In Procs. of the ACM SIGMODConf. on Management of Data, June 1992.[Moh90] C. Mohan. Aries/kvl: A key-value locking methodfor concurrency control of multiaction transactions op-erating on btree indexes. In Procs. of the InternationalConf. on Very Large Databases, September 1990.[MPL92] C. Mohan, H. Pirahesh, and R. Lorte. E�cientand exible methods for transient versioning of recordsto avoid locking by read-only transactions. In Procs.of the ACM SIGMOD Conf. on Management of Data,June 1992.[SG88] D. Shasha and N. Goodman. Concurrent searchstructure algorithms. ACM Transactions on DatabaseSystems , no.1., 13:53{90, March 1988.[SGM90] K. Salem and H. Garcia-Molina. System M: Atransaction processing testbed for memory residentdata. IEEE Transactions on Knowledge and Data En-gineering, 2(1):161{172, March 1990.

