Materialized View Maintenance and Integrity Constraint

Checking: Trading Space for Time

Kenneth A. Ross*

Columbia University

kar@cs.columbia.edu

Abstract

We investigate the problem of incremental maintenance of
an SQL view in the face of database updates, and show
that it is possible to reduce the total time cost of view
maintenance by materializing (and maintaining) additional
views. We formulate the problem of determining the optimal
set of additional views to materialize as an optimization
problem over the space of possible view sets (which includes
the empty set). The optimization problem is harder than
query optimization since it has to deal with multiple view
sets, updates of multiple relations, and multiple ways of
maintaining each view set for each updated relation.

We develop a memoing solution for the problem; the so-
lution can be implemented using the expression DAG repre-
sentation used in rule-based optimizers such as Volcano. We
demonstrate that global optimization cannot, in general, be
achieved by locally optimizing each materialized subview,
because common subexpressions between different material-
ized subviews can allow nonoptimal local plans to be com-
bined into an optimal global plan. We identify conditions
on materialized subviews in the expression DAG when local
optimization is possible. Finally, we provide a systematic
space of heuristics that can be used to efficiently determine
a useful set of additional views to materialize.

Our results are particularly important for the efficient
checking of assertions (complex integrity constraints) in the
SQL-92 standard, since the incremental checking of such
integrity constraints is known to be essentially equivalent
to the view maintenance problem.

1 Introduction

The problem of incremental view maintenance has seen
renewed interest in the recent past (see, e.g., [3, 6, 9,

*The research of Kenneth Ross was supported by a grant
from the AT&T Foundation, by a David and Lucile Packard
Foundation Fellowship in Science and Engineering, by a Sloan
Foundation Fellowship, by NSF grants IRI-9209029, CDA-90-
24735, and by an NSF Young Investigator award.

Divesh Srivastava
AT&T Research

divesh@research.att.com

S. Sudarshan
Indian Institute of Technology

sudarsha@cse.iitb.ernet.in

10]). Given a materialized view defined using database
relations, the problem is to compute and perform the
updates to this materialized view when the underlying
database relations are updated.

In this paper we show that, given a materialized
SQL view V to be maintained, 1t 1s possible to reduce
the time cost of view maintenance by materializing
(and maintaining) edditional views. Obviously there is
also a time cost for maintaining these additional views,
but their use can often significantly reduce the cost of
computing the updates to V', thereby reducing the total
cost. This paper addresses the following question:

Given a materialized view V, what additional
views should be materialized (and maintained)
for the optimal incremental maintenance of V7

The SQL-92 standard permits the specification of
complex integrity constraints (called assertions) de-
fined using the SQL data manipulation language (see,
e.g., [13]). These integrity constraints have to be
checked on updates to the underlying database rela-
tions; hence it is very important that they be checked
efficiently. These integrity constraints can be modeled
as materialized views whose results are required to be
empty. Our results on what additional views to materi-
alize are particularly important for the efficient checking
of SQL-92 assertions.

Example 1.1 (Additional Materialized Views)
Consider a corporate database with two relations:

e Dept (DName, MName, Budget), which gives the
manager and budget for each department in the
corporation, and

e Emp (EName, DName, Salary), which gives the de-
partment and the salary of each employee in the cor-
poration.

The following materialized view ProblemDept is used to
determine those departments whose expense (i.e., the
sum of the salaries of the employees in the department)
exceeds their budget.



CREATE VIEW ProblemDept (DName) AS

SELECT Dept .DName

FROM Enmp, Dept

WHERE Dept.DName = Emp.DName
GROUPBY Dept.DName, Budget
HAVING SUM (Salary) > Budget

When the database relations Emp and Dept are updated,
view maintenance of ProblemDept, even using incre-
mental techniques (e.g., [2, 6, 10]), can be expensive.
For example, when a new employee is added to a de-
partment that is not in ProblemDept, or the salary of
an employee in such a department is raised, the sum
of the salaries of all the employees in that department
needs to be recomputed and compared with the depart-
ment’s budget; this can be expensive!

The view ProblemDept can also be used to specify
the integrity constraint “a department’s expense should
not exceed it’s budget”, by requiring that the view
ProblemDept be empty. This can be specified in SQL-92
as follows:

CREATE ASSERTION DeptConstraint CHECK
(NOT EXISTS (SELECT * FROM ProblemDept))

The efficiency of incremental view maintenance of
ProblemDept (and therefore also the efficiency of check-
ing the integrity constraint DeptConstraint) can be
considerably improved if the view Sum0fSals below, is
additionally kept materialized.

CREATE VIEW Sum0fSals (DName, SalSum) AS
SELECT DName, SUM (Salary)

FROM Emp

GROUPBY DName

When new employees are added, existing employ-
ees are removed, or salaries of existing employees are
modified, efficient incremental view maintenance of
Sum0fSals is possible by adding to or subtracting from
the previous aggregate values. View ProblemDept can
also be efficiently maintained by performing a natural
join of the changed tuples of view Sum0fSals with the
Dept relation (on DName), and checking whether the
newly computed sum of salaries exceeds the depart-
ment’s budget. Similarly, when a department’s budget
i1s modified, the changed tuple of the Dept relation can
be joined with the materialized view Sum0fSals for effi-
cient view maintenance of ProblemDept. This improved
efficiency of view maintenance of ProblemDept comes at
the expense of:

e additional space cost in representing the material-
1zed view SumOfSals, and

e additional time cost in maintaining the materialized
view SumOfSals.

When the time cost of maintaining SumOfSals is
less than the time benefit of using Sum0fSals for
maintaining ProblemDept, the overall time cost of view
maintenance/integrity constraint checking is reduced.
We present a detailed cost model and an analysis for
this example in Section 3.6. On a sample dataset,
we shall show how a threefold decrease in (estimated)
materialization cost can be achieved by maintaining
the additional view SumOfSals. Thus maintaining a
suitable set of additional materialized views can lead
to a substantial reduction in maintenance cost. O

1.1 Contributions and Outline

The first contribution of this paper is to show that it
1s possible to reduce the cost of view maintenance of a
materialized view V' by materializing (and maintaining)
additional views.

Given a materialized view V| there are several
possible views that can be additionally materialized
and used for the incremental maintenance of V. Our
second contribution is to formulate the problem of
determining what additional views to materialize as an
optimization problem over the space of possible view
sets, and to develop an exhaustive memoing algorithm
to solve the optimization problem that works under any
“monotonic cost model”; this can be implemented using
the expression DAG representation used in rule-based
optimizers such as Volcano [5] (Section 3).

Our third contribution is to present a principle of
optimality that allows problem solutions for subviews
to be combined to determine the solution for the top-
level view. (In general, local optimization does not
ensure global optimization.) We identify conditions,
based on the expression DAG representation, when
this principle can be used to restrict the search space
explosion (Section 4).

Our fourth contribution is to present a systematic
space of heuristics that can be used to prune the
search space, and reduce optimization cost (Section 5).
We discuss possible extensions to our techniques in
Section 6.

1.2 Related Work

View maintenance (and the closely related problem of
integrity constraint checking) has been studied exten-
sively in the literature (e.g., [2, 3, 6, 9, 10, 14, 18]) for
various view definition languages, e.g., Select-Project-
Join (or SPJ) views, views with multiset semantics,
views with grouping/aggregation, and recursive views;
for various types of updates, e.g., insertions, deletions,
modifications, to the database relations; and for modifi-
cations to the view definition itself. For a recent survey
of the view maintenance literature, see [8].

However, the problem of determining in a cost-
based fashion what additional views to materialize to
reduce the cost of incremental maintenance of a given



materialized view has not been studied before. To our
knowledge, this is the first paper on the topic.

The supplementary relations used in the bottom-up
evaluation of recursive queries [1] can be viewed as ad-
ditional materialized views that are maintained (during
query evaluation) in order to efficiently maintain the
view relations defining the original query. However, sup-
plementary relations are introduced as part of a query
rewriting step and do not take cost into consideration.
They may be introduced when they are not required for
efficient view maintenance, or not be introduced even
when they are useful for efficient view maintenance.

The maintenance of a collection of simple (Select-
Project) views in a distributed system is discussed
in [16], where a very simple form of multi-query
optimization is used to screen updates that need to
be sent to remote sites.  The work is extended
in [15], which considers using the updates to one view
to maintain other views, rather than using database
relation updates; the applicability conditions presented
are however very restricted.

A related problem i1s to make use of available
materialized views in order to efficiently evaluate a given
query, and there has been considerable work in this area

(e.g., [4, 7, 11, 20]).

2 Background
2.1 Expression Trees and Expression DAGs

Our algorithms for determining what views to addition-
ally materialize (and maintain) make use of expression
trees and expression DAGs developed for performing
cost-based query optimization (although the problem of
query optimization is quite different from our problem).
We briefly describe the expression tree and expression
DAG representations here, and in Section 3 we describe
in more detail how we use the trees and the DAGs.

An expression iree for a query/view V is a binary
tree; each leaf node corresponds to a database relation
that is used to define V; each non-leaf node contains an
operator (e.g., join, grouping/aggregation), and either
one or two children; the algebraic expression computed
by the root node is equivalent to V. (While we have
called them trees here, it is possible that they could have
common subexpressions, and hence be directed acyclic
graphs.) Expression trees are used in query optimizers
to determine the cost of a particular way of evaluating
the query.

FEzpression DAGs are used by rule-based optimizers
such as Volcano [5, 12] to compactly represent the
space of equivalent expression trees as a directed acyclic
graph. An expression DAG is a bipartite directed
acyclic graph with “equivalence” nodes and “operation”
nodes. An equivalence node has edges to one or
more operation nodes. An operation node contains an
operator, either one or two children that are equivalence

Select (SumSal > Budget)

Join (DName)

/\

Aggregate (SUM Salary by DName) Dept

Emp

Select (SumSal > Budget)

Aggregate (SUM Salary by DName, Budget)

Join (DName)

/\

Emp Dept

Figure 1: Two trees for the view ProblemDept

nodes, and only one parent equivalence node. An
equivalence node is labeled by the algebraic expression
it computes; operation nodes correspond to various
expression trees that give a result that is algebraically
equivalent to the label of the parent equivalence node.
The leaves of an expression DAG are equivalence nodes
corresponding to database relations.

An important aspect of an expression DAG is its
similarity to an AND/OR tree. An equivalence node
can be “computed” by computing one of its operation
node children. An operation node can be computed only
by computing all of its equivalence node children.

Given an expression tree for the query, rule-based
query optimizers generate an expression DAG repre-
sentation of the set of equivalent expression trees and
subexpressions trees by using a set of equivalence rules,
starting from the given query expression tree. Details of
how this step is carried out may be found in [12]; the in-
tuition is as follows. The initial DAG is generated from
the query expression tree by adding an equivalence node
between each operation node and its parent, adding an
equivalence node above the root of the expression tree,
and replacing each relation by an equivalence node. A
new expression tree is incorporated into the DAG by
making each operation node of that tree a child of an ex-
isting equivalence node whose label is equivalent to the
expression tree (or a new equivalence node if there is no
such existing node), and replacing each of its operands
by their equivalence nodes. The cost of generation is
greatly reduced when generating new expression trees
using equivalence rules since the rules operate locally
on the DAG representation. For details on how query
optimization uses expression DAGs, see [12].

Example 2.1 Two expression trees for the view Prob-



N1

E1: Select (SumSal > Budget)

N2

E2: Join (DName) E3: Aggregate (SUM Salary by DName, Budget)

N3 N4

E4: Aggregate (SUM Salary by DName) E5: Join (DName)

N5(Emp) N6(Dept)

Figure 2: Expression DAG for trees of Figure 1

lemDept of Example 1.1 are given in Figure 1. The
expression DAG representation of those trees is given in
Figure 2. The bold nodes Ni are equivalence nodes,
and the remaining nodes are operation nodes. In
practice, an expression DAG would represent a much
larger number of trees; we have used a small example
for simplicity of presentation. O

2.2 Incremental Updating of Expression Trees

Materialized views can be incrementally maintained
when the underlying database relations are updated
using the techniques of, e.g., [2, 6, 10]. The basic
idea is to use differentials AR; for each relation R;
that is updated, and compute the differential AV for
a materialized view V as an expression involving the
updates to the database relations (AR;), the state of
the database relations prior to the updates (R¢'¢), and
the state of the materialized view prior to the updates
(V°'4). 1In this paper, we consider differentials that
include inserted tuples, deleted tuples, and modified
tuples. Our technique follows the approach of [2, 14].

To compute the A on the result of an operation,
queries may have to be set up on the inputs to the
operation; when an input is materialized, the query may
be answered by a lookup.

Consider, for example, a node N for the operation
FEy My E5, and suppose an update AF; is propagated
up to node N. When N is not materialized, in order
to compute the update to the result of £y My Es, a
query has to be posed to Es asking for all tuples that
match AF; on the join attributes; formally, this set of
tuples 1s defined by a semijoin operation. When FE5 is
a database relation, or a materialized view, a lookup
is sufficient; in general, the query must be evaluated.
Similar techniques apply to other operations.

Consider now an expression tree. Given updates
to the database relations at the leaves of the tree,

1One can be generated from the other by using equivalence
rules such as those proposed by Yan and Larson [19].

the update to the result of an expression tree can
be computed by starting from the updated database
relations and propagating the updates all the way up
to the root of the tree one node at a time. At each
node, the update to the result of the node is computed
from the updates to the children of the node, using
the techniques described previously. Given one or more
database relations that are updated, the set of affected
nodes in the tree are those that have an updated relation
as a descendant.

At each operation node where an update is computed,
there is a A on one or more of the inputs to the
operation. We assume that the sizes of the A on the
inputs are available. Given statistics about the inputs
to an operation, we can then compute the size of the
update to the result of the operation, for each of the
above operations. Qur techniques are independent of
the exact formulae for computing the size of the A,
although our examples use specific formulae.

3 Exhaustive Enumeration

Given a materialized view V, it may be worthwhile
materializing and maintaining additional views, as
illustrated in Example 1.1. In general, there are several
possible views that can be additionally materialized
and used for the incremental maintenance of V. For
example, suppose we want to maintain the SPJ view
Ry W Ro X Rs. There are several choices of sets of
additional views to maintain, namely, { }, {R1 X Rs},
{Rs X Rs}, {R1 ™ R3}, {R1 M Ry, Rs X R3}, {Ry X
Rs, Ry ™ Rg}, {R1 X Ro, R X Rg} Different
choices may have different costs associated with them.
In this section we present an exhaustive approach to the
problem of determining the optimal set of additional
views to materialize.

The following example illustrates some of the issues
that arise when determining what views to additionally
materialize.

Example 3.1 Consider a database with the relations
Dept and Emp of Example 1.1, and an additional relation
ADepts (DName), which gives the departments of type
A. Let ADeptsStatus (DName, Budget, SumSal) be
the view defined by the following query:

SELECT Dept.DName, Budget, SUM (Salary)

FROM Emp, Dept, ADepts

WHERE Dept.DName = Emp.DName AND
Emp.DName = ADepts.DName

GROUPBY Dept.DName, Budget

An optimal plan for evaluating ADeptsStatus, when
treated as a query, could be the tree labeled “Query
Optimization” in Figure 3, if the number of tuples in
ADepts is small compared to the number of tuples in
Dept.



Join (DName)

Aggregate (SUM Salary by DName) Dept
Join (DName)

ADepts Emp

Query Optimization

Join (DName)

V1 = Join (DName) ADepts

Dept Aggregate (SUM Salary by DName)
Emp
View Maintenance

Figure 3: Expression trees for query optimization and
view maintenance

When ADeptsStatus is a materialized view that has
to be maintained under updates only to the relation
ADepts, the cost of processing updates would be reduced
significantly by materializing the view defined by Vi1
in the tree labeled “View Maintenance” in Figure 3.
This is because an update to ADepts only needs to look
up the matching tuple in V1 to incrementally maintain
ADeptsStatus, whereas if V1 were not maintained, a
query would have to be invoked on V1 to compute the
matching tuples. Since there are no updates to the
relations Dept and Emp, view V1 does not need to be
updated. In this example, {V1} is likely to be the
optimal set of additional views to maintain.

If there were updates on the relations Dept and
Emp, the cost of maintaining view V1 would have to
be balanced against the benefit of using V1 to process
updates on ADepts. Based on the cost of propagating
updates, an optimal set of additional views to maintain
has to be chosen.

Note also that the expression tree used for processing
updates on a view can be quite different from the
expression tree used for evaluating the view (as a query),
as 1llustrated in this example. Hence we cannot simply
use the optimal expression tree for evaluating the view
in order to propagate updates. O

3.1 Space of Views

We first define the space of views that we consider for
possible additional materialization.

Let Dy denote the expression DAG obtained from
view V by using a given set of equivalence rules, and

a rule-based optimizer such as Volcano.? The first step
in determining the additional views to materialize for
efficient incremental maintenance of V is to generate
Dy, and the algorithms in the rest of the paper assume
the availability of Dy .

Definition 3.1 (View Set) Given a view V| let Ey
denote the set of all equivalence nodes in Dy, other than
the leaf nodes. A view set is a subset of £y .

The space of possible views to materialize is the set
of all subsets of Ey that include the equivalence node
corresponding to V. O

We always materialize the root node V, and the leaf
nodes correspond to database relations, which are
already materialized.

Consider a materialized view V that needs to be
maintained, and suppose the set of materialized views
we decide to maintainis V (where V C Ey, and V € V).
The views in V \ {V} are the additional views that
are maintained in order to reduce the total cost of
view maintenance; each additional view in V is thus a
subexpression of an expression algebraically equivalent
to V.

Fach materialized view (including V) corresponds to
a distinct equivalence node in Dy ; hence these equiva-
lence nodes can be “marked” to indicate their material-
ization status. The equivalence nodes corresponding to
the database relations are also considered “marked”.

3.2 Update and Query Models

We assume a set of transaction types T1,1T», ..., T,
that can update the database, where each transaction
type defines the relations that are updated, the kinds
of updates (insertions, deletions, modifications) to the
relations, and the size of the update to each of the
relations.> We also assume that each of the transaction
types T; has an associated wetght f; that could reflect
the relative frequency of the transaction type, or the
relative importance of efficiently maintaining view V'
when that transaction is executed.

Consider a view V| a transaction type 7;, and let V be
the set of views to be maintained. It would be inefficient
to compute the updates to each view in V independently,
since they have a lot of commonality and updates to
one can be used to compute updates to others. Our
approach to maintaining a set of views ) is based on
the expression DAG Dy of V; this approach takes into
account the possibility of shared computation between
the update computations for the different materialized
views in V.

For each transaction type 7; we propagate database
relation updates up the expression DAG, in much

20ur results are independent of the actual set of equivalence
rules used, though a larger set of rules would obviously allow us
to explore a larger search space.

3The size information is needed for purposes of cost estimation.



the same way that updates to database relations
are propagated up an expression tree to maintain a
single materialized view. However, it is not necessary
to propagate the updates along every path up the
expression DAG simultaneously, since each operation
node below an equivalence node will generate the same
result, and only one need be chosen to propagate the
updates. In Section 3.3, we introduce the notions of
“subdags” and “update tracks” that make precise the
different minimal ways of propagating updates up an
expression DAG to maintain a set of materialized views
V), given a transaction type 7;.

In order to propagate database relation updates up
an expression DAG, additional queries may need to be
posed for many of the operations. When updates
are propagated up the nodes of the expression DAG,
the inputs to an operation node are equivalence nodes;
queries are thus posed on equivalence nodes. A query on
an equivalence node can be evaluated using any of the
operation nodes that are the children of the equivalence
node; they all generate the same result, but can have
different costs.

Each transaction type defines the database relations
that are updated. Given a transaction type, one can
go up the expression DAG, starting from the updated
relations, determining the queries that need to be posed
at each equivalence node. We omit the straightforward
details of this process. Since each query is generated by
an operation node, the query can be identified by the
operation node that generates it, the child on which it
is generated, and the transaction type. In what follows
we assume that we have augmented the expression DAG
by attaching to each operation node the set of queries
needed for each possible transaction type.

Example 3.2 Consider the expression DAG of Exam-
ple 2.1, shown in Figure 2. The following are the queries
that may need to be posed. In each case we label
the query by the number of the operation node and
“L” or “R”, if the node has two operands, to denote
whether the query is on the left operand, or the right
operand. We consider two transactions, one which mod-
ifies the Salary of Emp tuples and one which modifies
the Budget of Dept tuples. We further (redundantly)
label the query with “e” or “d” to denote whether re-
lation Emp or Dept was updated (i.e., to identify the
transaction that generates the query).

Q2Ld: At E2, find the sum of salaries of the depart-
ment(s) that have been updated.

Q2Re: At E2, find the matching Dept tuple of the
department whose sum of salaries has changed.

Q3e, Q3d: At E3, find the sum of salaries of the
department(s) of the updated join tuple(s).

Q4e: At E4, find the sum of salaries of the depart-
ment(s) from which the updated Emp tuple(s) came.

Q5Ld: At Eb, find the employees of the updated Dept
tuple(s).

Q5Re: At Eb5, find the matching Dept tuple of the
updated Emp tuple(s).

O

3.3 Identifying Relevant Parts of the
Expression DAG

Consider a materialized view V and a given set 7 of
transaction types 71,75,...,T,. We must be able to
determine the cost of maintaining a given set of views
V for a given transaction type T;.

To maintain V), updates must be propagated up
the expression DAG from updated database relations
to every materialized view in V. However, it is not
necessary to propagate the updates along every path
up the DAG simultaneously. Update tracks, introduced
below, make precise the different minimal ways of
propagating updates up an expression DAG to maintain
a set of materialized views V| given a transaction type
T;.

First, we introduce the notion of a subdag of an
expression DAG, which identifies the different ways of
propagating updates up the expression DAG to the
set of views )V, independent of the specific database
relations updated by the transaction type.

Definition 3.2 (Subdags) Given an expression
DAG Dy and a set V of equivalence nodes in Dy, a
subdag of Dy containing V is any subset of the DAG
Dy satisfying the following properties:

e each equivalence node in V is in the subdag.

e for each non-leaf equivalence node in the subdag,
exactly one of its child operation nodes is in the

subdag.

e for every operation node in the subdag, each of its
child equivalence nodes is in the subdag.

e 1o other nodes are in the subdag.

e edges in Dy connecting the nodes in the subdag are
edges in the subdag.

SubDags(Dv,V) denotes the set of all subdags of Dy
containing V. O

The intuition behind subdags i1s that it suffices for
each equivalence node to compute its update using
one of its child operation nodes; computing updates
using other child operation nodes at the same time
would be redundant. So would computing updates



to nonmaterialized equivalence nodes used only in
operation nodes that are themselves not used.

The notion of subdags is a generalization of the notion
of an expression tree, to handle multiple materialized
views. If V contains only the view V| a subdag is merely
any expression tree represented by the DAG, rooted
at the equivalence node corresponding to the view V.
Just as the set of all expression trees represented by
an expression DAG for a single query is the set of
all ways to compute the query, the set of all subdags
of a DAG defines the set of all ways of computing
a set of queries (or materialized views, in our case).
Moreover, in our model, each way of computing the
materialized views corresponds to a way of propagating
updates to the materialized views. Hence the set of
subdags SubDags(Dy , V) also defines the set of all ways
of propagating updates to the materialized views.

Subdags are, however, too general for our task since
transactions do not necessarily update all the database
relations defining a view V. If the expression DAG Dy
of V' has nodes that do not have any descendant nodes
updated by transactions of a given type, updates need
not be propagated up to these nodes.

Definition 3.3 (Update Track) Consider a marked
expression DAG Dy for view V with the set of marked
nodes being V', and a transaction of type T;. Let Uy
denote the subset of equivalence/operation nodes of Dy
whose results are affected by transactions of type T;.
Given any subdag Sp of Dy | the subset of Sp consisting
of affected nodes and the edges between them in Sp is
an update track of Dy for transactions of type 7;. O

Given an update track Sp as above, and a set of
updates to database relations by a transaction of type
T;, the updates can be propagated up the nodes of the
update track. At each node, the update to the result is
computed based on the updates to its inputs using the
incremental techniques described in, e.g., [2, 14].

3.4 Cost of Maintaining a Set of Views

Consider the time cost of maintaining a set of views
V for a given transaction type 7;. There are multiple
update tracks along which updates by transactions of
type T; can be propagated; these could have different
costs. We now discuss the issue of computing the cost of
propagating updates along a single update track. This
cost can be divided into two costs: (a) computing the
updates to the various nodes in the update track, and
(b) performing the updates to the views in V.

Cost of Computing Updates : The computation
of updates to nodes in an update track poses queries
that can make use of the other materialized views in V
(which is the reason for maintaining additional views).
Determining the cost of computing updates to a node

in an update track in the presence of materialized views
in V thus reduces to the problem of determining the
cost of evaluating a query ) on an equivalence node
in Dy, in the presence of the materialized views in V.
This is a standard query optimization problem, and the
optimization techniques of Chaudhuri et al. [4], e.g., can
be easily adapted for this task.

When propagating updates along an update track,
many queries may need to be posed. This set of
queries can have common subexpressions, and multi-
query optimization techniques (see, e.g., [17]) can be
used for optimizing the evaluation of the collection of
queries. Shared work between the queries could lead to
locally nonoptimal plans being globally optimal. Note
that the presence of common subexpressions in the
expression DAG influence a solution to the problem of
determining what additional views to materialize in two
distinct ways:

e First, subexpressions can be shared between differ-
ent views along a path for propagating updates. The
notions of subdags and update tracks were used to
deal with such subexpressions.

e Second, subexpressions can be shared between dif-
ferent queries generated along a single update track.
Multi-query optimization is used to deal with such
subexpressions.

Our technique and results are applicable for any
monotonic cost model, i.e., any cost model where the
cost of evaluating a specific expression tree is no less
than the cost of evaluating a subtree of that expression
tree. Hence, we omit details of the exact way of
determining the cheapest way of evaluating the set of
queries generated, and computing their costs. The plan
chosen for computing the updates will of course depend
on the cost model used. In our examples, we describe
and use a specific cost model for estimating the costs of
the queries.

Cost of Performing Updates to V : The cost of
materializing a view also includes the cost of performing
updates to the materialized view. The cost of perform-
ing updates depends on the physical storage model, in-
cluding the availability of suitable indices (which must
themselves be updated too). The update cost also de-
pends on the expected size of the incoming set of up-
dates, which we have calculated as the size of “delta”
relations, but is independent of the way the delta rela-
tions are computed.

For example, at node N4 in Example 2.1 we might
expect one update tuple for an update to the Emp
relation, but 10 update tuples for an update to the
Dept relation if the average department contains 10
employees. Another example is node N3, where the



cost of materialization is zero for updates to the Dept
relation. There are a number of reasonable cost models
for calculating the cost of performing updates; our
techniques apply no matter which is chosen.

3.5 Exhaustive Algorithm

Algorithm OptimalViewSet, in Figure 4, is an exhaustive
algorithm for determining the optimal set of additional
views to materialize for incremental maintenance of V.

The cost of maintaining a view set )V for transaction
type T; is obtained as the cost of the cheapest update
track that can be used for propagating updates to V;
let C'(V,T;) denote this cost. By weighting the cost
C(V,T;) with the weight f; of transaction type T;, the
weighted average cost of maintaining materialized views
V can be computed as:

B0, T) * fi

X fi
The optimal view set V' to be materialized for
maintaining V can be chosen by enumerating all
possible markings of equivalence nodes of Dy, and
choosing one that minimizes the weighted average cost.

(Recall that the root equivalence node of Dy is always

marked.)

)

Theorem 3.1 Given a view V, and an expression DAG
Dy for V, the view set VP! selected by Algorithm
OptimalViewSet has the lowest maintenance cost among
all view sets that are subsets of Ey and contain V. O

The need for update tracks that are not trees in
Algorithm OptimalViewSet results in cost calculations
that are inherently nonlocal. We shall return to this
issue in Section 4.

3.6 Motivating Example Revisited

Let us consider Example 1.1 once more. The expression
trees and expression DAG are given in Figures 1 and 2.
The subqueries generated are given in Example 3.2. For
the sake of clarity, we shall use a simplified cost model
described below. In practice, more realistic cost models
would be used. We assume all indices are hash indices,
that there are no overflowed hash buckets, and that
there is no clustering of the tuples in the relation. We
count the number of page I/O operations.

e Looking up a materialized relation using an index
involves reading one index page and as many relation
pages as the number of tuples returned.

e Updating a materialized relation involves reading
and writing (when required) one index page per
index maintained on the materialized relation, one
relation page read per tuple to read the old value,
and one relation page write per tuple to write the
new value.

Let us suppose that we have 1000 departments, 10000
employees, and a uniform distribution of employees to
departments. Further, let us assume that none of the
data 1s memory-resident initially. We have two types
of transactions: DEmp that modifies the salary of a
single employee, and [>Dept that modifies the budget
of a single department. We shall consider three possible
additional view sets to materialize: (a) @, (b) {N3}, and
(¢) {N4}. (The exhaustive algorithm would consider all
possible view sets.)

The costs of various queries are summarized in the
following table.  (Recall that the query is labeled
by the number of the operation node on which it is
posed, not the number of the equivalence node.) For
example, when no additional views are materialized,
answering Q2Ld involves finding all the Emp tuples
with the department matching the modified Dept tuple,
and computing the sum of their salaries. Since each
department has an average of 10 employees, an indexed
read of the Emp relation has a cost of 11 page 1/Os
(including one index page read). The cost of computing
the sum of the salaries is negligible compared to the 1/0O
costs. Answering Q2Ld has the same cost when {N4}
is the additional view set materialized. However, when
{N3} is the additional view set materialized, answering
Q2Ld merely involves looking up a single tuple in the
N3 materialized view relation; this has a cost of 2 page
I/0s.

Similarly, when no additional views are materialized
or {N3} is the additional view set materialized, an-
swering Q3e involves retrieving all the Emp tuples cor-
responding to a given department (11 page I/Os) and
retrieving the Dept tuple corresponding to a given de-
partment (2 page I/Os); this has a cost of 13 page I/Os.
When {N4} is the additional materialized view set, only
10 tuples of N4 need to be accessed to answer Q3e; this
has a cost of 11 page I/Os.

An entry marked “—” indicates that the correspond-
ing query is not posed when that view set is material-
ized. For example, when {N3} is the additional view
set materialized, query Q4e is not posed; N3 can be up-
dated by accessing the tuple in N3 corresponding to the
department of the modified employee tuple, subtracting
the old salary of the employee from the sum of salaries
and adding the new salary.

7 | (N3] | (N4}

Q2Ld | 11 | 2 11
Q2Re |2 |2 2

Q3e |13 ] 13 11
Q4e |11 | — 11

Q5Ld | 11 | 11 —
Q5Re |2 |2 —

The total incremental maintenance costs of various
materializations are summarized in the following table,
assuming that each of the materializations has a single



Algorithm OptimalViewSet (V') {
/* compute update costs */
for each equivalence node N of Dy
for each transaction type T}
calculate the update cost for N and store in M[N, j].

/* compute weighted cost for each view set */
for each possible view set V {
for each transaction type T; {
compute the total update cost m; for all members of V; /* m; computation uses M [*, j] */
find the update track from the marked nodes to the leaves with minimum total accumulated
query cost ¢; along the update track; /* g; computation utilizes multi-query optimization */

}
}
}

associate with V the cost ¢; + m; for updates to transactions of type 75;
calculate the weighted cost for V according to the weights f; for each Tj;

select the view set VP! with the minimum weighted cost.

Figure 4: Exhaustive algorithm for determining optimal view set

index on DName. (We do not count the cost of
updating the database relations, or the top-level view
ProblemDept.) For example, the cost of incrementally
maintaining N4 when a Dept tuple is modified involves
reading, modifying and writing 10 tuples; this has a
cost of 21 page I/Os (including one index page read;
no index page write is necessary). Similarly, the cost
of incrementally maintaining N3 when an Emp tuple
is modified involves reading, modifying and writing 1
tuple; this has a cost of 3 page I/0s (again, no index
page write is necessary).

0 {N3} | {N4}
N3 >Emp — |3 —
N4 >Emp — | — 3
N4 pDept | — | — 21

There are no common subexpressions in the expres-
sion DAG for this example, so the only update tracks
we need consider are simple paths from the root to each
leaf. There are four paths we need to consider. Their to-
tal query cost is given in the table below. For example,
the cost of the update track N1,E1,N2 E2 N3 E4,N5
for the transaction >Emp is the sum of the costs of the
two queries Q2Re and Q4e along that update track,
for the appropriate view set materialized. Similarly, the
cost of the update track N1,E1,IN2,E2,N6 for the trans-
action [>Dept is the cost of the only query Q2Ld along
that update track, for the appropriate view set materi-
alized.

Query Q3d can be evaluated particularly efficiently
on the update track N1,E1,N2 E3 N4 E5 N6: Since
Dname is a key for the Dept relation, the A result
propagated up along Eb and N4 contains all the tuples
in the group. Thus no I/0O is generated for Q3d and we
omit it from the cost tables. The conditions under which

keys can be used to reduce the set of needed queries will
be presented in the full version of this paper.

7 | (N3} | {N4}
N1,El,N2,E2,N3,E4 N5 BEmp | 13 | 2 13
N1,E1,N2,E3 N4, E5 N5 bEmp | 15 | 15 11
N1,E1,N2,E2,N6 [>Dept 1|2 11
N1,E1,N2,E3 N4 E5N6 >Dept | 11 | 11 0

Combining the materialization and query costs, and
minimizing the costs for each updated relation we
get the following table. For example, the cheap-
est way of maintaining the view set {N3} for trans-
action type [>Emp involves using the update track
N1,E1,N2,E2,N3E4, N5 (for a cost of 2 page 1/0s);
the cost of maintaining N3 itself for transaction type
>Emp is 3 page I/Os; the total is 5 page I/0Os.

7 | (N3} | {N4}
SEmp | 13 | 5 14
>Dept | 11 | 2 21

Independent of the weighting for each transaction
type, strategy (b) (which maintains the set of additional
views {N3}) wins over not maintaining any additional
views, as well as over maintaining the view set {IN4};
this strategy corresponds to maintaining the view
Sum0fSals from Example 1.1. Strategy (c¢) (which
maintains the set of additional views {N4}) is always
worse than strategy (a) and strategy (b); by making
a wrong choice of additional views to materialize,
the cost of view maintenance can be worse than not
materializing any additional views. If we assume that
the top-level view changes rarely, because the integrity
constraint is rarely violated, then by using strategy (b)
we use an average of 3.5 page I/Os per transaction



for maintenance compared with 12 for strategy (a),
assuming an equal weight for the two transactions.
That’s a reduction to about 30% of the cost incurred
when no additional views are maintained.

4 Impact of Common Subexpressions

We present a principle of optimality that allows problem
solutions for subviews to be combined to determine the
solution for the top-level view, and identify conditions,
based on the expression DAG representation, when
this principle can be used to restrict the search space
explosion, without compromising on the optimality of
the solution obtained.

4.1 Suboptimal + Suboptimal = Optimal

A close examination of Algorithm OptimalViewSet re-
veals that:

e it does not compute the update cost of a DAG
node based on the update costs of its children,
independent of the update track being considered,
and

e it does not associate the cost of answering a query
on an operation node with the node, independent of
the update track being considered.

It would certainly be more efficient to do so, since
we would not have to redo cost computation for a
subtree, or cost computation for a query, with a given
marking, once per update track. Unfortunately, such a
computation would not be correct in that it may ignore
a globally optimal plan for propagating updates that is
composed of plans that are not locally optimal. Locally
suboptimal plans may be part of a globally optimal
plan due to the costs of common subexpressions being
amortized by multiple uses.

Common subexpressions between two views in the
view set V can arise because the view V itself had
common subexpressions. Even when V itself does not
have common subexpressions, it is possible for the
expression DAG Dy to have common subexpressions.
In estimating the cost of maintaining an arbitrary
view set (i.e., a set of equivalence nodes) V, a similar
argument shows that suboptimal plans for maintaining
individual views in V can be combined to obtain an
optimal plan for maintaining V.

As a consequence, 1t appears that there is inherently
little scope for reuse of lower-level cost computations
in deriving globally optimal costs. We next look at a
special case where there is a higher degree of locality.

4.2 Principle of Optimality

Definition 4.1 (Articulation Node) An articula-
tion node of a connected undirected graph is a node
whose removal disconnects the graph. O

Join (Item)
Aggregate (SUM (S.Quantity «T.Price) by T.ltem) R

Join (Item)

T

S T

Figure 5: Articulation node

When the expression DAG Dy (viewed as an undi-
rected graph) of a view V has equivalence nodes that
are articulation nodes, it turns out that only optimal
cost expression trees for the materialized subviews cor-
responding to articulation nodes are used in determining
the optimal choice for V.

The intuition is as follows: Consider an equivalence
node N that is an articulation node of Dy ; let N1
denote any descendant equivalence node of N; and N2
denote any ancestor equivalence node of N1 that is
not also a descendant of N. Then N1 can be part
of an expression tree with root N2 only if N 1is also
part of that expression tree. Consequently, the subview
corresponding to node N can be optimized locally. This
intuitive notion is formalized in the following principle
of local optimality. Recall that Ey denotes the set of all
subviews of view V. We let Opt(V') denote the optimal
subset of Ey chosen for maintenance of V.

Theorem 4.1 (Shielding Principle): If V1 e
Opt(V), and the equivalence node corresponding to
V1 is an articulation node of Dy, then Opt(V1) =
Opt(V) N EV1~ O

A similar argument establishes that query costs can
be minimized at articulation nodes.

Given a materialized view V', the algorithm Opti-
malViewSet presented previously operated on the ex-
pression DAG Dy of view V, and computed update
costs and query costs separately for each update track
in Dy. When Dy has equivalence nodes that are ar-
ticulation nodes, the Shielding Principle can be used to
considerably optimize this algorithm. For each equiva-
lence node N in Dy that is an articulation node, let Dy
denote the subset of Dy consisting of N, its descendant
nodes, and edges between them. Then, for each Dy,
update costs and query costs can be computed for up-
date tracks independently of (update and query) cost
computations for other Dy’s. These costs can be di-
rectly combined to compute the update and query costs
for update tracks in Dy . This can considerably restrict
the search space that needs to be explored to obtain an
optimal solution!

Articulation nodes often arise in expression DAGs
of complex views, especially when the view is defined



in terms of other views with grouping/aggregation.
Consider, for example, the expression tree in Figure 5.
The aggregation cannot be pushed down the expression
tree because it needs both S.Quantity and T.Price. If
Item is not a key for relation R, then the aggregation
cannot be pushed up the expression tree because the
multiplicities would change. Hence, the equivalence
node that is the parent of the grouping/aggregation
node in the expression DAG is a natural articulation
point.

5 Heuristic Pruning of the Search Space

The exhaustive approach, even with the optimizations
described above, can be expensive for complex SQL
views since the search space is inherently large. By the
very nature of the problem, optimization does not have
to be performed very often, and hence the exhaustive
approach may be feasible even for complex views. If,
however, the view is too complex for an exhaustive
search strategy to be feasible, or the optimization time
is required to be small, heuristics can be used to
drastically reduce the search space. We briefly describe
alternative ways of reducing the search space.

Using a Single Expression Tree : Using a single
expression tree equivalent to V for determining a view
set can dramatically reduce the search space: the
number of equivalence nodes that need to be considered
is smaller than in the expression DAG Dy, and each
equivalence node has only one child operation node
whose costs need to be computed.

One possibility is to first generate an expression tree
that has a low cost for evaluating V' when {reated as
a query, and then choose this expression tree only
if relations with high weights are close to the root
of this expression tree. Standard query optimization
techniques (e.g., Volcano, greedy approach, simulated
annealing) can be used for the first phase. The
importance of the second phase can be understood as
follows: If a relation K with a high weight is far from
the root of the expression tree, many of the views that
are considered for possible materialization would have R
as a subexpression, and would consequently have a high
weighted average cost of maintenance; this may result in
a very poor choice of view set for efficient maintenance

of V. (See Example 3.1.)

Choosing a Single View Set : Given an expression
tree, a marking of its nodes can be chosen heuristically.
A simple heuristic 1s to mark each equivalence node of
the single expression tree that is the (unique) parent of
a join or grouping/aggregation operator, or the child
of a duplicate elimination operator, and materialize
the corresponding additional views, provided that the
cost of this option is cheaper than the cost of not

materializing any additional views. Materializing these
equivalence nodes can be expected to be beneficial
for efficient incremental updates. The rationale for
not materializing equivalence nodes corresponding to
selections is that indices can be used to efficiently obtain
the tuples satisfying the desired conditions.

Using Approximate Costing An alternative
to using the heuristics described above is based on
approzimate costing. One possibility is to use a greedy
approach to costing, and only maintain a single update
cost with each equivalence node, and a single cost with
each query at an equivalence node during the exhaustive
procedure, even when the equivalence node 1s not an
articulation node of expression DAG Dy (see Section 4).
The result of the greedy approach of associating a single
cost with each query, on Algorithm OptimalViewSet,
is to move the query cost computation out of the
inner-most loop, which reduces the complexity of the
algorithm.

6 Discussion

The problem of efficient view maintenance is especially
important for implementing SQL-92 assertions. These
assertions are simply queries that return true/false, and
the database is required to be such that the assertions
are always true. When the database is updated, it
is important to check if the update will make the
assertion false. An assertion can be modeled as a
materialized view, and the problem then becomes one of
computing the incremental update to the materialized
view. Standard integrity constraint checking techniques
can be used for simple assertions. However, if assertions
are complex, incrementally checking them may be
quite costly unless additional views are materialized, as
illustrated in the motivating example (Example 1.1).

Our results can be applied in a straightforward
fashion to the problem of determining what views to
additionally materialize for efficiently maintaining a set
of materialized views. The key to this is the fact that
the expression DAG representation can also be used to
compactly represent the expression trees for a set of
queries, not just a single query. The only change will be
that the expression DAG will have to include multiple
view definitions, and may therefore have multiple roots,
and every view that must be materialized will be marked
in the expression DAG. Other details of our algorithms
remain unchanged.

7 Conclusions and Future Work

We have shown that it i1s possible to significantly
reduce the cost of maintaining a materialized view
by materializing (and maintaining) additional views.
The identification of views to additionally materialize



must be made in a cost-based fashion, and we have
presented an exhaustive algorithm for this task. We
have presented optimizations for the algorithm, as well
as a number of heuristics. Our techniques are needed for
maintaining complex SQL views and for the important
problem of incrementally checking complex SQL-92
assertions. Qur techniques are independent of the cost
model used, and any cost model can be “plugged in.”

To our knowledge, ours is the first paper to examine
the issue of maintaining additional views to reduce
maintenance costs in a cost-based fashion. We identified
not only what can be done, but what cannot: in
particular that the problem is inherently nonlocal and
that the cost must be globally optimized. Our work
should stand as a foundation for future work in the area.

The view sets chosen using our (non-heuristic) tech-
niques are optimal under the update propagation model
we have used. The model is a complete and powerful
one, but there are other models for propagating updates
based on defining update expressions, such as the one
described in [6]. Tt would be interesting to consider how
to find the optimal way to maintain a view (or set of
views) under such a model.

Another direction for future work is to use a more
general abstraction of database relation updates than
the insert/delete/modify abstraction used in this pa-
per. Abstracting other types of updates, such as in-
crement /decrement, and recognizing the type of a given
update, can lead to better view maintenance techniques.

Yet another interesting direction is to explore the
effect of data distribution on the decision of what
additional views to materialize.

Acknowledgements

We would like to thank Zoltan Smogyi for pointing out
how our techniques could be extended to incorporate
user-query frequencies.

References

[1] C. Beeri and R. Ramakrishnan. On the power of Magic.
Journal of Logic Programming, 10(3&4):255-300, 1991.

[2] J. A. Blakeley, P.-A. Larson, and F. W. Tompa.
Efficiently updating materialized views. In Proceedings
of the ACM SIGMOD Conference on Management of
Data, pages 61-71, Washington D.C.; May 1986.

[3] S. Ceri and J. Widom. Production rules for incremental
view maintenance. In Proceedings of the International
Conference on Very Large Databases, Barcelona, Spain,
1991.

[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In Proceedings of International Conference on Data
Engineering, 1995.

[5] G. Graefe and W. J. McKenna. The Volcano optimizer

generator:  Extensibility and efficient search. In

[10]

[11]

[12]

[13]

[14]

[19]

[20]

Proceedings of the IEFE International Conference on
Data Fngineering, Vienna, Austria, 1993.

T. Gnffin and L. Libkin. Incremental maintenance
of views with duplicates. In Proceedings of the ACM
SIGMOD Conference on Management of Data, 1995.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-
query processing in data warehousing environments. In
Proceedings of the International Conference on Very
Large Databases, 1995.

A. Gupta and I. S. Mumick. Maintenance of materi-
alized views: Problems, techniques and applications.
IEEE Data Engineering Bulletin, 18(2), June 1995.
Special Issue on Materialized Views and Data Ware-
housing.

A. Gupta, I. S. Mumick, and K. Ross. Adapting
materialized views after redefinitions. In Proceedings
of the ACM SIGMOD Conference on Management of
Data, San Jose, CA, May 1995.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of the
ACM SIGMOD Conference on Management of Data,
pages 157-166, 1993.

A.Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-
tava. Answering queries using views. In Proceedings
of the ACM Symposium on Principles of Database Sys-
tems, San Jose, CA, May 1995.

W. J. McKenna. Efficient Search in Extensible Database
Query Optimazation: The Volcano optimizer generator.
PhD thesis, University of Colorado, 1993.

J. Melton and A. R. Simon.
SQL: A complete guide.
Francisco, CA, 1993.

X. Qian and G. Wiederhold. Incremental recomputa-
tion of active relational expressions. [IFEF Transac-
tions on Knowledge and Data Engineering, 3(3):337-
341, 1991.

A. Segev and W. Fang. Currency-based updates to
distributed materialized views. In ITEEF Conference on
Data Engineering, pages 512-520, 1990.

A. Segev and J. Park. Updating distributed material-
ized views. IFEFE Transactions on Knowledge and Data
Engineering, 1(2):173-184, June 1989.

T. Sellis. Multiple query optimization. ACM Transac-
tions on Database Systems, 13(1):23-52, Mar. 1988.

L. Viellle, P. Bayer, and V. Kiichenhoff. Integrity
checking and materialized views handling by update
propagation in the EKS-V1 system. Technical report,
CERMICS - Ecole Nationale Des Ponts Et Chaussees,
France, June 1991. Rapport de Recherche, CERMICS
91.1.

W. P. Yan and P.-A. Larson. Performing group-by
before join. In Proceedings of International Conference
on Data Engineering, pages 89-100, 1994.

H. Z. Yang and P.-A. Larson. Query transformation
for PSJ-queries. In Proceedings of the International
Conference on Very Large Databases, pages 245-254,
1987.

Understanding the new
Morgan Kaufmann, San



