
Materialized View Maintenance and Integrity ConstraintChecking: Trading Space for TimeKenneth A. Ross�Columbia Universitykar@cs.columbia.edu Divesh SrivastavaAT&T Researchdivesh@research.att.com S. SudarshanIndian Institute of Technologysudarsha@cse.iitb.ernet.inAbstractWe investigate the problem of incremental maintenance ofan SQL view in the face of database updates, and showthat it is possible to reduce the total time cost of viewmaintenance by materializing (and maintaining) additionalviews. We formulate the problem of determining the optimalset of additional views to materialize as an optimizationproblem over the space of possible view sets (which includesthe empty set). The optimization problem is harder thanquery optimization since it has to deal with multiple viewsets, updates of multiple relations, and multiple ways ofmaintaining each view set for each updated relation.We develop a memoing solution for the problem; the so-lution can be implemented using the expression DAG repre-sentation used in rule-based optimizers such as Volcano. Wedemonstrate that global optimization cannot, in general, beachieved by locally optimizing each materialized subview,because common subexpressions between di�erent material-ized subviews can allow nonoptimal local plans to be com-bined into an optimal global plan. We identify conditionson materialized subviews in the expression DAG when localoptimization is possible. Finally, we provide a systematicspace of heuristics that can be used to e�ciently determinea useful set of additional views to materialize.Our results are particularly important for the e�cientchecking of assertions (complex integrity constraints) in theSQL-92 standard, since the incremental checking of suchintegrity constraints is known to be essentially equivalentto the view maintenance problem.1 IntroductionThe problem of incremental view maintenance has seenrenewed interest in the recent past (see, e.g., [3, 6, 9,�The research of Kenneth Ross was supported by a grantfrom the AT&T Foundation, by a David and Lucile PackardFoundation Fellowship in Science and Engineering, by a SloanFoundation Fellowship, by NSF grants IRI-9209029, CDA-90-24735, and by an NSF Young Investigator award.

10]). Given a materialized view de�ned using databaserelations, the problem is to compute and perform theupdates to this materialized view when the underlyingdatabase relations are updated.In this paper we show that, given a materializedSQL view V to be maintained, it is possible to reducethe time cost of view maintenance by materializing(and maintaining) additional views. Obviously there isalso a time cost for maintaining these additional views,but their use can often signi�cantly reduce the cost ofcomputing the updates to V , thereby reducing the totalcost. This paper addresses the following question:Given a materialized view V , what additionalviews should be materialized (and maintained)for the optimal incremental maintenance of V ?The SQL-92 standard permits the speci�cation ofcomplex integrity constraints (called assertions) de-�ned using the SQL data manipulation language (see,e.g., [13]). These integrity constraints have to bechecked on updates to the underlying database rela-tions; hence it is very important that they be checkede�ciently. These integrity constraints can be modeledas materialized views whose results are required to beempty. Our results on what additional views to materi-alize are particularly important for the e�cient checkingof SQL-92 assertions.Example 1.1 (Additional Materialized Views)Consider a corporate database with two relations:� Dept (DName, MName, Budget), which gives themanager and budget for each department in thecorporation, and� Emp (EName, DName, Salary), which gives the de-partment and the salary of each employee in the cor-poration.The followingmaterialized view ProblemDept is used todetermine those departments whose expense (i.e., thesum of the salaries of the employees in the department)exceeds their budget. 1

CREATE VIEW ProblemDept (DName) ASSELECT Dept.DNameFROM Emp, DeptWHERE Dept.DName = Emp.DNameGROUPBY Dept.DName, BudgetHAVING SUM(Salary) > BudgetWhen the database relations Emp and Dept are updated,view maintenance of ProblemDept, even using incre-mental techniques (e.g., [2, 6, 10]), can be expensive.For example, when a new employee is added to a de-partment that is not in ProblemDept, or the salary ofan employee in such a department is raised, the sumof the salaries of all the employees in that departmentneeds to be recomputed and compared with the depart-ment's budget; this can be expensive!The view ProblemDept can also be used to specifythe integrity constraint \a department's expense shouldnot exceed it's budget", by requiring that the viewProblemDept be empty. This can be speci�ed in SQL-92as follows:CREATE ASSERTION DeptConstraint CHECK(NOT EXISTS (SELECT * FROM ProblemDept))The e�ciency of incremental view maintenance ofProblemDept (and therefore also the e�ciency of check-ing the integrity constraint DeptConstraint) can beconsiderably improved if the view SumOfSals below, isadditionally kept materialized.CREATE VIEW SumOfSals (DName, SalSum) ASSELECT DName, SUM(Salary)FROM EmpGROUPBY DNameWhen new employees are added, existing employ-ees are removed, or salaries of existing employees aremodi�ed, e�cient incremental view maintenance ofSumOfSals is possible by adding to or subtracting fromthe previous aggregate values. View ProblemDept canalso be e�ciently maintained by performing a naturaljoin of the changed tuples of view SumOfSals with theDept relation (on DName), and checking whether thenewly computed sum of salaries exceeds the depart-ment's budget. Similarly, when a department's budgetis modi�ed, the changed tuple of the Dept relation canbe joined with the materialized view SumOfSals for e�-cient view maintenance of ProblemDept. This improvede�ciency of view maintenance of ProblemDept comes atthe expense of:� additional space cost in representing the material-ized view SumOfSals, and� additional time cost in maintaining the materializedview SumOfSals.

When the time cost of maintaining SumOfSals isless than the time bene�t of using SumOfSals formaintaining ProblemDept, the overall time cost of viewmaintenance/integrity constraint checking is reduced.We present a detailed cost model and an analysis forthis example in Section 3.6. On a sample dataset,we shall show how a threefold decrease in (estimated)materialization cost can be achieved by maintainingthe additional view SumOfSals. Thus maintaining asuitable set of additional materialized views can leadto a substantial reduction in maintenance cost. 21.1 Contributions and OutlineThe �rst contribution of this paper is to show that itis possible to reduce the cost of view maintenance of amaterialized view V by materializing (and maintaining)additional views.Given a materialized view V , there are severalpossible views that can be additionally materializedand used for the incremental maintenance of V . Oursecond contribution is to formulate the problem ofdetermining what additional views to materialize as anoptimization problem over the space of possible viewsets, and to develop an exhaustive memoing algorithmto solve the optimization problem that works under any\monotonic cost model"; this can be implemented usingthe expression DAG representation used in rule-basedoptimizers such as Volcano [5] (Section 3).Our third contribution is to present a principle ofoptimality that allows problem solutions for subviewsto be combined to determine the solution for the top-level view. (In general, local optimization does notensure global optimization.) We identify conditions,based on the expression DAG representation, whenthis principle can be used to restrict the search spaceexplosion (Section 4).Our fourth contribution is to present a systematicspace of heuristics that can be used to prune thesearch space, and reduce optimization cost (Section 5).We discuss possible extensions to our techniques inSection 6.1.2 Related WorkView maintenance (and the closely related problem ofintegrity constraint checking) has been studied exten-sively in the literature (e.g., [2, 3, 6, 9, 10, 14, 18]) forvarious view de�nition languages, e.g., Select-Project-Join (or SPJ) views, views with multiset semantics,views with grouping/aggregation, and recursive views;for various types of updates, e.g., insertions, deletions,modi�cations, to the database relations; and for modi�-cations to the view de�nition itself. For a recent surveyof the view maintenance literature, see [8].However, the problem of determining in a cost-based fashion what additional views to materialize toreduce the cost of incremental maintenance of a given 2

materialized view has not been studied before. To ourknowledge, this is the �rst paper on the topic.The supplementary relations used in the bottom-upevaluation of recursive queries [1] can be viewed as ad-ditional materialized views that are maintained (duringquery evaluation) in order to e�ciently maintain theview relations de�ning the original query. However, sup-plementary relations are introduced as part of a queryrewriting step and do not take cost into consideration.They may be introduced when they are not required fore�cient view maintenance, or not be introduced evenwhen they are useful for e�cient view maintenance.The maintenance of a collection of simple (Select-Project) views in a distributed system is discussedin [16], where a very simple form of multi-queryoptimization is used to screen updates that need tobe sent to remote sites. The work is extendedin [15], which considers using the updates to one viewto maintain other views, rather than using databaserelation updates; the applicability conditions presentedare however very restricted.A related problem is to make use of availablematerialized views in order to e�ciently evaluate a givenquery, and there has been considerable work in this area(e.g., [4, 7, 11, 20]).2 Background2.1 Expression Trees and Expression DAGsOur algorithms for determining what views to addition-ally materialize (and maintain) make use of expressiontrees and expression DAGs developed for performingcost-based query optimization (although the problem ofquery optimization is quite di�erent from our problem).We brie
y describe the expression tree and expressionDAG representations here, and in Section 3 we describein more detail how we use the trees and the DAGs.An expression tree for a query/view V is a binarytree; each leaf node corresponds to a database relationthat is used to de�ne V ; each non-leaf node contains anoperator (e.g., join, grouping/aggregation), and eitherone or two children; the algebraic expression computedby the root node is equivalent to V . (While we havecalled them trees here, it is possible that they could havecommon subexpressions, and hence be directed acyclicgraphs.) Expression trees are used in query optimizersto determine the cost of a particular way of evaluatingthe query.Expression DAGs are used by rule-based optimizerssuch as Volcano [5, 12] to compactly represent thespace of equivalent expression trees as a directed acyclicgraph. An expression DAG is a bipartite directedacyclic graph with \equivalence" nodes and \operation"nodes. An equivalence node has edges to one ormore operation nodes. An operation node contains anoperator, either one or two children that are equivalence

Aggregate (SUM Salary by DName) Dept

Emp

Join (DName)

Select (SumSal > Budget)

Aggregate (SUM Salary by DName, Budget)

Join (DName)

Emp Dept

Select (SumSal > Budget)Figure 1: Two trees for the view ProblemDeptnodes, and only one parent equivalence node. Anequivalence node is labeled by the algebraic expressionit computes; operation nodes correspond to variousexpression trees that give a result that is algebraicallyequivalent to the label of the parent equivalence node.The leaves of an expression DAG are equivalence nodescorresponding to database relations.An important aspect of an expression DAG is itssimilarity to an AND/OR tree. An equivalence nodecan be \computed" by computing one of its operationnode children. An operation node can be computed onlyby computing all of its equivalence node children.Given an expression tree for the query, rule-basedquery optimizers generate an expression DAG repre-sentation of the set of equivalent expression trees andsubexpressions trees by using a set of equivalence rules,starting from the given query expression tree. Details ofhow this step is carried out may be found in [12]; the in-tuition is as follows. The initial DAG is generated fromthe query expression tree by adding an equivalence nodebetween each operation node and its parent, adding anequivalence node above the root of the expression tree,and replacing each relation by an equivalence node. Anew expression tree is incorporated into the DAG bymaking each operation node of that tree a child of an ex-isting equivalence node whose label is equivalent to theexpression tree (or a new equivalence node if there is nosuch existing node), and replacing each of its operandsby their equivalence nodes. The cost of generation isgreatly reduced when generating new expression treesusing equivalence rules since the rules operate locallyon the DAG representation. For details on how queryoptimization uses expression DAGs, see [12].Example 2.1 Two expression trees for the view Prob- 3

N1

N2

N3 N4

E3: Aggregate (SUM Salary by DName, Budget)

E5: Join (DName)E4: Aggregate (SUM Salary by DName)

N5(Emp)

E1: Select (SumSal > Budget)

E2: Join (DName)

N6(Dept)Figure 2: Expression DAG for trees of Figure 1lemDept of Example 1.1 are given in Figure 1.1 Theexpression DAG representation of those trees is given inFigure 2. The bold nodes Ni are equivalence nodes,and the remaining nodes are operation nodes. Inpractice, an expression DAG would represent a muchlarger number of trees; we have used a small examplefor simplicity of presentation. 22.2 Incremental Updating of Expression TreesMaterialized views can be incrementally maintainedwhen the underlying database relations are updatedusing the techniques of, e.g., [2, 6, 10]. The basicidea is to use di�erentials �Ri for each relation Rithat is updated, and compute the di�erential �V fora materialized view V as an expression involving theupdates to the database relations (�Ri), the state ofthe database relations prior to the updates (Roldi), andthe state of the materialized view prior to the updates(V old). In this paper, we consider di�erentials thatinclude inserted tuples, deleted tuples, and modi�edtuples. Our technique follows the approach of [2, 14].To compute the � on the result of an operation,queries may have to be set up on the inputs to theoperation; when an input is materialized, the query maybe answered by a lookup.Consider, for example, a node N for the operationE1 1� E2, and suppose an update �E1 is propagatedup to node N . When N is not materialized, in orderto compute the update to the result of E1 1� E2, aquery has to be posed to E2 asking for all tuples thatmatch �E1 on the join attributes; formally, this set oftuples is de�ned by a semijoin operation. When E2 isa database relation, or a materialized view, a lookupis su�cient; in general, the query must be evaluated.Similar techniques apply to other operations.Consider now an expression tree. Given updatesto the database relations at the leaves of the tree,1One can be generated from the other by using equivalencerules such as those proposed by Yan and Larson [19].

the update to the result of an expression tree canbe computed by starting from the updated databaserelations and propagating the updates all the way upto the root of the tree one node at a time. At eachnode, the update to the result of the node is computedfrom the updates to the children of the node, usingthe techniques described previously. Given one or moredatabase relations that are updated, the set of a�ectednodes in the tree are those that have an updated relationas a descendant.At each operation node where an update is computed,there is a � on one or more of the inputs to theoperation. We assume that the sizes of the � on theinputs are available. Given statistics about the inputsto an operation, we can then compute the size of theupdate to the result of the operation, for each of theabove operations. Our techniques are independent ofthe exact formulae for computing the size of the �,although our examples use speci�c formulae.3 Exhaustive EnumerationGiven a materialized view V , it may be worthwhilematerializing and maintaining additional views, asillustrated in Example 1.1. In general, there are severalpossible views that can be additionally materializedand used for the incremental maintenance of V . Forexample, suppose we want to maintain the SPJ viewR1 1 R2 1 R3. There are several choices of sets ofadditional views to maintain, namely, f g; fR1 1 R2g;fR2 1 R3g; fR1 1 R3g; fR1 1 R2; R2 1 R3g; fR2 1R3; R1 1 R3g; fR1 1 R2; R1 1 R3g. Di�erentchoices may have di�erent costs associated with them.In this section we present an exhaustive approach to theproblem of determining the optimal set of additionalviews to materialize.The following example illustrates some of the issuesthat arise when determining what views to additionallymaterialize.Example 3.1 Consider a database with the relationsDept and Emp of Example 1.1, and an additional relationADepts (DName), which gives the departments of typeA. Let ADeptsStatus (DName, Budget, SumSal) bethe view de�ned by the following query:SELECT Dept.DName, Budget, SUM(Salary)FROM Emp, Dept, ADeptsWHERE Dept.DName = Emp.DName ANDEmp.DName = ADepts.DNameGROUPBY Dept.DName, BudgetAn optimal plan for evaluating ADeptsStatus, whentreated as a query, could be the tree labeled \QueryOptimization" in Figure 3, if the number of tuples inADepts is small compared to the number of tuples inDept. 4

Join (DName)

Aggregate (SUM Salary by DName) Dept

EmpADepts

Query Optimization

Emp

Join (DName)

ADeptsV1 = Join (DName)

View Maintenance

Join (DName)

Dept Aggregate (SUM Salary by DName)Figure 3: Expression trees for query optimization andview maintenanceWhen ADeptsStatus is a materialized view that hasto be maintained under updates only to the relationADepts, the cost of processing updates would be reducedsigni�cantly by materializing the view de�ned by V1in the tree labeled \View Maintenance" in Figure 3.This is because an update to ADepts only needs to lookup the matching tuple in V1 to incrementally maintainADeptsStatus, whereas if V1 were not maintained, aquery would have to be invoked on V1 to compute thematching tuples. Since there are no updates to therelations Dept and Emp, view V1 does not need to beupdated. In this example, fV1g is likely to be theoptimal set of additional views to maintain.If there were updates on the relations Dept andEmp, the cost of maintaining view V1 would have tobe balanced against the bene�t of using V1 to processupdates on ADepts. Based on the cost of propagatingupdates, an optimal set of additional views to maintainhas to be chosen.Note also that the expression tree used for processingupdates on a view can be quite di�erent from theexpression tree used for evaluating the view (as a query),as illustrated in this example. Hence we cannot simplyuse the optimal expression tree for evaluating the viewin order to propagate updates. 23.1 Space of ViewsWe �rst de�ne the space of views that we consider forpossible additional materialization.Let DV denote the expression DAG obtained fromview V by using a given set of equivalence rules, and

a rule-based optimizer such as Volcano.2 The �rst stepin determining the additional views to materialize fore�cient incremental maintenance of V is to generateDV , and the algorithms in the rest of the paper assumethe availability of DV .De�nition 3.1 (View Set) Given a view V , let EVdenote the set of all equivalence nodes inDV , other thanthe leaf nodes. A view set is a subset of EV .The space of possible views to materialize is the setof all subsets of EV that include the equivalence nodecorresponding to V . 2We always materialize the root node V , and the leafnodes correspond to database relations, which arealready materialized.Consider a materialized view V that needs to bemaintained, and suppose the set of materialized viewswe decide to maintain is V (where V � EV , and V 2 V).The views in V n fV g are the additional views thatare maintained in order to reduce the total cost ofview maintenance; each additional view in V is thus asubexpression of an expression algebraically equivalentto V .Each materialized view (including V) corresponds toa distinct equivalence node in DV ; hence these equiva-lence nodes can be \marked" to indicate their material-ization status. The equivalence nodes corresponding tothe database relations are also considered \marked".3.2 Update and Query ModelsWe assume a set of transaction types T1; T2; : : : ; Tnthat can update the database, where each transactiontype de�nes the relations that are updated, the kindsof updates (insertions, deletions, modi�cations) to therelations, and the size of the update to each of therelations.3 We also assume that each of the transactiontypes Ti has an associated weight fi that could re
ectthe relative frequency of the transaction type, or therelative importance of e�ciently maintaining view Vwhen that transaction is executed.Consider a view V , a transaction type Ti, and let V bethe set of views to be maintained. It would be ine�cientto compute the updates to each view in V independently,since they have a lot of commonality and updates toone can be used to compute updates to others. Ourapproach to maintaining a set of views V is based onthe expression DAG DV of V ; this approach takes intoaccount the possibility of shared computation betweenthe update computations for the di�erent materializedviews in V.For each transaction type Ti we propagate databaserelation updates up the expression DAG, in much2Our results are independent of the actual set of equivalencerules used, though a larger set of rules would obviously allow usto explore a larger search space.3The size information is needed for purposes of cost estimation. 5

the same way that updates to database relationsare propagated up an expression tree to maintain asingle materialized view. However, it is not necessaryto propagate the updates along every path up theexpression DAG simultaneously, since each operationnode below an equivalence node will generate the sameresult, and only one need be chosen to propagate theupdates. In Section 3.3, we introduce the notions of\subdags" and \update tracks" that make precise thedi�erent minimal ways of propagating updates up anexpression DAG to maintain a set of materialized viewsV, given a transaction type Ti.In order to propagate database relation updates upan expression DAG, additional queries may need to beposed for many of the operations. When updatesare propagated up the nodes of the expression DAG,the inputs to an operation node are equivalence nodes;queries are thus posed on equivalence nodes. A query onan equivalence node can be evaluated using any of theoperation nodes that are the children of the equivalencenode; they all generate the same result, but can havedi�erent costs.Each transaction type de�nes the database relationsthat are updated. Given a transaction type, one cango up the expression DAG, starting from the updatedrelations, determining the queries that need to be posedat each equivalence node. We omit the straightforwarddetails of this process. Since each query is generated byan operation node, the query can be identi�ed by theoperation node that generates it, the child on which itis generated, and the transaction type. In what followswe assume that we have augmented the expression DAGby attaching to each operation node the set of queriesneeded for each possible transaction type.Example 3.2 Consider the expression DAG of Exam-ple 2.1, shown in Figure 2. The following are the queriesthat may need to be posed. In each case we labelthe query by the number of the operation node and\L" or \R", if the node has two operands, to denotewhether the query is on the left operand, or the rightoperand. We consider two transactions, one which mod-i�es the Salary of Emp tuples and one which modi�esthe Budget of Dept tuples. We further (redundantly)label the query with \e" or \d" to denote whether re-lation Emp or Dept was updated (i.e., to identify thetransaction that generates the query).Q2Ld: At E2, �nd the sum of salaries of the depart-ment(s) that have been updated.Q2Re: At E2, �nd the matching Dept tuple of thedepartment whose sum of salaries has changed.Q3e, Q3d: At E3, �nd the sum of salaries of thedepartment(s) of the updated join tuple(s).

Q4e: At E4, �nd the sum of salaries of the depart-ment(s) from which the updated Emp tuple(s) came.Q5Ld: At E5, �nd the employees of the updated Depttuple(s).Q5Re: At E5, �nd the matching Dept tuple of theupdated Emp tuple(s).23.3 Identifying Relevant Parts of theExpression DAGConsider a materialized view V and a given set T oftransaction types T1; T2; : : : ; Tn. We must be able todetermine the cost of maintaining a given set of viewsV for a given transaction type Ti.To maintain V, updates must be propagated upthe expression DAG from updated database relationsto every materialized view in V. However, it is notnecessary to propagate the updates along every pathup the DAG simultaneously. Update tracks, introducedbelow, make precise the di�erent minimal ways ofpropagating updates up an expression DAG to maintaina set of materialized views V, given a transaction typeTi.First, we introduce the notion of a subdag of anexpression DAG, which identi�es the di�erent ways ofpropagating updates up the expression DAG to theset of views V, independent of the speci�c databaserelations updated by the transaction type.De�nition 3.2 (Subdags) Given an expressionDAG DV and a set V of equivalence nodes in DV , asubdag of DV containing V is any subset of the DAGDV satisfying the following properties:� each equivalence node in V is in the subdag.� for each non-leaf equivalence node in the subdag,exactly one of its child operation nodes is in thesubdag.� for every operation node in the subdag, each of itschild equivalence nodes is in the subdag.� no other nodes are in the subdag.� edges in DV connecting the nodes in the subdag areedges in the subdag.SubDags(DV ;V) denotes the set of all subdags of DVcontaining V. 2The intuition behind subdags is that it su�ces foreach equivalence node to compute its update usingone of its child operation nodes; computing updatesusing other child operation nodes at the same timewould be redundant. So would computing updates 6

to nonmaterialized equivalence nodes used only inoperation nodes that are themselves not used.The notion of subdags is a generalization of the notionof an expression tree, to handle multiple materializedviews. If V contains only the view V , a subdag is merelyany expression tree represented by the DAG, rootedat the equivalence node corresponding to the view V .Just as the set of all expression trees represented byan expression DAG for a single query is the set ofall ways to compute the query, the set of all subdagsof a DAG de�nes the set of all ways of computinga set of queries (or materialized views, in our case).Moreover, in our model, each way of computing thematerialized views corresponds to a way of propagatingupdates to the materialized views. Hence the set ofsubdags SubDags(DV ;V) also de�nes the set of all waysof propagating updates to the materialized views.Subdags are, however, too general for our task sincetransactions do not necessarily update all the databaserelations de�ning a view V . If the expression DAGDVof V has nodes that do not have any descendant nodesupdated by transactions of a given type, updates neednot be propagated up to these nodes.De�nition 3.3 (Update Track) Consider a markedexpression DAG DV for view V with the set of markednodes being V, and a transaction of type Ti. Let UVdenote the subset of equivalence/operation nodes ofDVwhose results are a�ected by transactions of type Ti.Given any subdag SD ofDV , the subset of SD consistingof a�ected nodes and the edges between them in SD isan update track of DV for transactions of type Ti. 2Given an update track SD as above, and a set ofupdates to database relations by a transaction of typeTi, the updates can be propagated up the nodes of theupdate track. At each node, the update to the result iscomputed based on the updates to its inputs using theincremental techniques described in, e.g., [2, 14].3.4 Cost of Maintaining a Set of ViewsConsider the time cost of maintaining a set of viewsV for a given transaction type Ti. There are multipleupdate tracks along which updates by transactions oftype Ti can be propagated; these could have di�erentcosts. We now discuss the issue of computing the cost ofpropagating updates along a single update track. Thiscost can be divided into two costs: (a) computing theupdates to the various nodes in the update track, and(b) performing the updates to the views in V.Cost of Computing Updates : The computationof updates to nodes in an update track poses queriesthat can make use of the other materialized views in V(which is the reason for maintaining additional views).Determining the cost of computing updates to a node

in an update track in the presence of materialized viewsin V thus reduces to the problem of determining thecost of evaluating a query Q on an equivalence nodein DV , in the presence of the materialized views in V.This is a standard query optimization problem, and theoptimization techniques of Chaudhuri et al. [4], e.g., canbe easily adapted for this task.When propagating updates along an update track,many queries may need to be posed. This set ofqueries can have common subexpressions, and multi-query optimization techniques (see, e.g., [17]) can beused for optimizing the evaluation of the collection ofqueries. Shared work between the queries could lead tolocally nonoptimal plans being globally optimal. Notethat the presence of common subexpressions in theexpression DAG in
uence a solution to the problem ofdetermining what additional views to materialize in twodistinct ways:� First, subexpressions can be shared between di�er-ent views along a path for propagating updates. Thenotions of subdags and update tracks were used todeal with such subexpressions.� Second, subexpressions can be shared between dif-ferent queries generated along a single update track.Multi-query optimization is used to deal with suchsubexpressions.Our technique and results are applicable for anymonotonic cost model, i.e., any cost model where thecost of evaluating a speci�c expression tree is no lessthan the cost of evaluating a subtree of that expressiontree. Hence, we omit details of the exact way ofdetermining the cheapest way of evaluating the set ofqueries generated, and computing their costs. The planchosen for computing the updates will of course dependon the cost model used. In our examples, we describeand use a speci�c cost model for estimating the costs ofthe queries.Cost of Performing Updates to V : The cost ofmaterializing a view also includes the cost of performingupdates to the materialized view. The cost of perform-ing updates depends on the physical storage model, in-cluding the availability of suitable indices (which mustthemselves be updated too). The update cost also de-pends on the expected size of the incoming set of up-dates, which we have calculated as the size of \delta"relations, but is independent of the way the delta rela-tions are computed.For example, at node N4 in Example 2.1 we mightexpect one update tuple for an update to the Emprelation, but 10 update tuples for an update to theDept relation if the average department contains 10employees. Another example is node N3, where the 7

cost of materialization is zero for updates to the Deptrelation. There are a number of reasonable cost modelsfor calculating the cost of performing updates; ourtechniques apply no matter which is chosen.3.5 Exhaustive AlgorithmAlgorithmOptimalViewSet, in Figure 4, is an exhaustivealgorithm for determining the optimal set of additionalviews to materialize for incremental maintenance of V .The cost of maintaining a view set V for transactiontype Ti is obtained as the cost of the cheapest updatetrack that can be used for propagating updates to V;let C(V; Ti) denote this cost. By weighting the costC(V; Ti) with the weight fi of transaction type Ti, theweighted average cost of maintainingmaterialized viewsV can be computed as:C(V) = �iC(V; Ti) � fi�ifiThe optimal view set Vopt to be materialized formaintaining V can be chosen by enumerating allpossible markings of equivalence nodes of DV , andchoosing one that minimizes the weighted average cost.(Recall that the root equivalence node of DV is alwaysmarked.)Theorem 3.1 Given a view V , and an expression DAGDV for V , the view set Vopt selected by AlgorithmOptimalViewSet has the lowest maintenance cost amongall view sets that are subsets of EV and contain V . 2The need for update tracks that are not trees inAlgorithm OptimalViewSet results in cost calculationsthat are inherently nonlocal. We shall return to thisissue in Section 4.3.6 Motivating Example RevisitedLet us consider Example 1.1 once more. The expressiontrees and expression DAG are given in Figures 1 and 2.The subqueries generated are given in Example 3.2. Forthe sake of clarity, we shall use a simpli�ed cost modeldescribed below. In practice, more realistic cost modelswould be used. We assume all indices are hash indices,that there are no over
owed hash buckets, and thatthere is no clustering of the tuples in the relation. Wecount the number of page I/O operations.� Looking up a materialized relation using an indexinvolves reading one index page and as many relationpages as the number of tuples returned.� Updating a materialized relation involves readingand writing (when required) one index page perindex maintained on the materialized relation, onerelation page read per tuple to read the old value,and one relation page write per tuple to write thenew value.

Let us suppose that we have 1000 departments, 10000employees, and a uniform distribution of employees todepartments. Further, let us assume that none of thedata is memory-resident initially. We have two typesof transactions: >Emp that modi�es the salary of asingle employee, and >Dept that modi�es the budgetof a single department. We shall consider three possibleadditional view sets to materialize: (a) ;, (b) fN3g, and(c) fN4g. (The exhaustive algorithm would consider allpossible view sets.)The costs of various queries are summarized in thefollowing table. (Recall that the query is labeledby the number of the operation node on which it isposed, not the number of the equivalence node.) Forexample, when no additional views are materialized,answering Q2Ld involves �nding all the Emp tupleswith the department matching the modi�ed Dept tuple,and computing the sum of their salaries. Since eachdepartment has an average of 10 employees, an indexedread of the Emp relation has a cost of 11 page I/Os(including one index page read). The cost of computingthe sum of the salaries is negligible compared to the I/Ocosts. Answering Q2Ld has the same cost when fN4gis the additional view set materialized. However, whenfN3g is the additional view set materialized, answeringQ2Ld merely involves looking up a single tuple in theN3 materialized view relation; this has a cost of 2 pageI/Os.Similarly, when no additional views are materializedor fN3g is the additional view set materialized, an-swering Q3e involves retrieving all the Emp tuples cor-responding to a given department (11 page I/Os) andretrieving the Dept tuple corresponding to a given de-partment (2 page I/Os); this has a cost of 13 page I/Os.When fN4g is the additional materialized view set, only10 tuples ofN4 need to be accessed to answer Q3e; thishas a cost of 11 page I/Os.An entry marked \|" indicates that the correspond-ing query is not posed when that view set is material-ized. For example, when fN3g is the additional viewset materialized, query Q4e is not posed;N3 can be up-dated by accessing the tuple inN3 corresponding to thedepartment of the modi�ed employee tuple, subtractingthe old salary of the employee from the sum of salariesand adding the new salary.; fN3g fN4gQ2Ld 11 2 11Q2Re 2 2 2Q3e 13 13 11Q4e 11 | 11Q5Ld 11 11 |Q5Re 2 2 |The total incremental maintenance costs of variousmaterializations are summarized in the following table,assuming that each of the materializations has a single 8

Algorithm OptimalViewSet (V) f/* compute update costs */for each equivalence node N of DVfor each transaction type Tjcalculate the update cost for N and store in M [N; j]./* compute weighted cost for each view set */for each possible view set V ffor each transaction type Tj fcompute the total update cost mj for all members of V; /* mj computation uses M [�; j] */�nd the update track from the marked nodes to the leaves with minimum total accumulatedquery cost qj along the update track; /* qj computation utilizes multi-query optimization */associate with V the cost qj +mj for updates to transactions of type Tj ;gcalculate the weighted cost for V according to the weights fj for each Tj ;gselect the view set Vopt with the minimum weighted cost.g Figure 4: Exhaustive algorithm for determining optimal view setindex on DName. (We do not count the cost ofupdating the database relations, or the top-level viewProblemDept.) For example, the cost of incrementallymaintainingN4 when a Dept tuple is modi�ed involvesreading, modifying and writing 10 tuples; this has acost of 21 page I/Os (including one index page read;no index page write is necessary). Similarly, the costof incrementally maintaining N3 when an Emp tupleis modi�ed involves reading, modifying and writing 1tuple; this has a cost of 3 page I/Os (again, no indexpage write is necessary). ; fN3g fN4gN3 >Emp | 3 |N4 >Emp | | 3N4 >Dept | | 21There are no common subexpressions in the expres-sion DAG for this example, so the only update trackswe need consider are simple paths from the root to eachleaf. There are four paths we need to consider. Their to-tal query cost is given in the table below. For example,the cost of the update track N1,E1,N2,E2,N3,E4,N5for the transaction >Emp is the sum of the costs of thetwo queries Q2Re and Q4e along that update track,for the appropriate view set materialized. Similarly, thecost of the update trackN1,E1,N2,E2,N6 for the trans-action >Dept is the cost of the only query Q2Ld alongthat update track, for the appropriate view set materi-alized.Query Q3d can be evaluated particularly e�cientlyon the update track N1,E1,N2,E3,N4,E5,N6: SinceDname is a key for the Dept relation, the � resultpropagated up along E5 and N4 contains all the tuplesin the group. Thus no I/O is generated for Q3d and weomit it from the cost tables. The conditions under which

keys can be used to reduce the set of needed queries willbe presented in the full version of this paper.; fN3g fN4gN1,E1,N2,E2,N3,E4,N5 >Emp 13 2 13N1,E1,N2,E3,N4,E5,N5 >Emp 15 15 11N1,E1,N2,E2,N6 >Dept 11 2 11N1,E1,N2,E3,N4,E5,N6 >Dept 11 11 0Combining the materialization and query costs, andminimizing the costs for each updated relation weget the following table. For example, the cheap-est way of maintaining the view set fN3g for trans-action type >Emp involves using the update trackN1,E1,N2,E2,N3,E4,N5 (for a cost of 2 page I/Os);the cost of maintaining N3 itself for transaction type>Emp is 3 page I/Os; the total is 5 page I/Os.; fN3g fN4g>Emp 13 5 14>Dept 11 2 21Independent of the weighting for each transactiontype, strategy (b) (which maintains the set of additionalviews fN3g) wins over not maintaining any additionalviews, as well as over maintaining the view set fN4g;this strategy corresponds to maintaining the viewSumOfSals from Example 1.1. Strategy (c) (whichmaintains the set of additional views fN4g) is alwaysworse than strategy (a) and strategy (b); by makinga wrong choice of additional views to materialize,the cost of view maintenance can be worse than notmaterializing any additional views. If we assume thatthe top-level view changes rarely, because the integrityconstraint is rarely violated, then by using strategy (b)we use an average of 3.5 page I/Os per transaction 9

for maintenance compared with 12 for strategy (a),assuming an equal weight for the two transactions.That's a reduction to about 30% of the cost incurredwhen no additional views are maintained.4 Impact of Common SubexpressionsWe present a principle of optimality that allows problemsolutions for subviews to be combined to determine thesolution for the top-level view, and identify conditions,based on the expression DAG representation, whenthis principle can be used to restrict the search spaceexplosion, without compromising on the optimality ofthe solution obtained.4.1 Suboptimal + Suboptimal = OptimalA close examination of Algorithm OptimalViewSet re-veals that:� it does not compute the update cost of a DAGnode based on the update costs of its children,independent of the update track being considered,and� it does not associate the cost of answering a queryon an operation node with the node, independent ofthe update track being considered.It would certainly be more e�cient to do so, sincewe would not have to redo cost computation for asubtree, or cost computation for a query, with a givenmarking, once per update track. Unfortunately, such acomputation would not be correct in that it may ignorea globally optimal plan for propagating updates that iscomposed of plans that are not locally optimal. Locallysuboptimal plans may be part of a globally optimalplan due to the costs of common subexpressions beingamortized by multiple uses.Common subexpressions between two views in theview set V can arise because the view V itself hadcommon subexpressions. Even when V itself does nothave common subexpressions, it is possible for theexpression DAG DV to have common subexpressions.In estimating the cost of maintaining an arbitraryview set (i.e., a set of equivalence nodes) V, a similarargument shows that suboptimal plans for maintainingindividual views in V can be combined to obtain anoptimal plan for maintaining V.As a consequence, it appears that there is inherentlylittle scope for reuse of lower-level cost computationsin deriving globally optimal costs. We next look at aspecial case where there is a higher degree of locality.4.2 Principle of OptimalityDe�nition 4.1 (Articulation Node) An articula-tion node of a connected undirected graph is a nodewhose removal disconnects the graph. 2

S T

R

Join (Item)

Aggregate (SUM (S.Quantity T.Price) by T.Item)*

Join (Item)Figure 5: Articulation nodeWhen the expression DAG DV (viewed as an undi-rected graph) of a view V has equivalence nodes thatare articulation nodes, it turns out that only optimalcost expression trees for the materialized subviews cor-responding to articulation nodes are used in determiningthe optimal choice for V .The intuition is as follows: Consider an equivalencenode N that is an articulation node of DV ; let N1denote any descendant equivalence node of N ; and N2denote any ancestor equivalence node of N1 that isnot also a descendant of N . Then N1 can be partof an expression tree with root N2 only if N is alsopart of that expression tree. Consequently, the subviewcorresponding to node N can be optimized locally. Thisintuitive notion is formalized in the following principleof local optimality. Recall that EV denotes the set of allsubviews of view V . We let Opt(V) denote the optimalsubset of EV chosen for maintenance of V .Theorem 4.1 (Shielding Principle) : If V 1 2Opt(V), and the equivalence node corresponding toV 1 is an articulation node of DV , then Opt(V 1) =Opt(V) \EV 1. 2A similar argument establishes that query costs canbe minimized at articulation nodes.Given a materialized view V , the algorithm Opti-malViewSet presented previously operated on the ex-pression DAG DV of view V , and computed updatecosts and query costs separately for each update trackin DV . When DV has equivalence nodes that are ar-ticulation nodes, the Shielding Principle can be used toconsiderably optimize this algorithm. For each equiva-lence node N in DV that is an articulation node, let DNdenote the subset of DV consisting of N , its descendantnodes, and edges between them. Then, for each DN ,update costs and query costs can be computed for up-date tracks independently of (update and query) costcomputations for other DN 's. These costs can be di-rectly combined to compute the update and query costsfor update tracks in DV . This can considerably restrictthe search space that needs to be explored to obtain anoptimal solution!Articulation nodes often arise in expression DAGsof complex views, especially when the view is de�ned 10

in terms of other views with grouping/aggregation.Consider, for example, the expression tree in Figure 5.The aggregation cannot be pushed down the expressiontree because it needs both S.Quantity and T.Price. IfItem is not a key for relation R, then the aggregationcannot be pushed up the expression tree because themultiplicities would change. Hence, the equivalencenode that is the parent of the grouping/aggregationnode in the expression DAG is a natural articulationpoint.5 Heuristic Pruning of the Search SpaceThe exhaustive approach, even with the optimizationsdescribed above, can be expensive for complex SQLviews since the search space is inherently large. By thevery nature of the problem, optimization does not haveto be performed very often, and hence the exhaustiveapproach may be feasible even for complex views. If,however, the view is too complex for an exhaustivesearch strategy to be feasible, or the optimization timeis required to be small, heuristics can be used todrastically reduce the search space. We brie
y describealternative ways of reducing the search space.Using a Single Expression Tree : Using a singleexpression tree equivalent to V for determining a viewset can dramatically reduce the search space: thenumber of equivalence nodes that need to be consideredis smaller than in the expression DAG DV , and eachequivalence node has only one child operation nodewhose costs need to be computed.One possibility is to �rst generate an expression treethat has a low cost for evaluating V when treated asa query, and then choose this expression tree onlyif relations with high weights are close to the rootof this expression tree. Standard query optimizationtechniques (e.g., Volcano, greedy approach, simulatedannealing) can be used for the �rst phase. Theimportance of the second phase can be understood asfollows: If a relation R with a high weight is far fromthe root of the expression tree, many of the views thatare considered for possible materializationwould have Ras a subexpression, and would consequently have a highweighted average cost of maintenance; this may result ina very poor choice of view set for e�cient maintenanceof V . (See Example 3.1.)Choosing a Single View Set : Given an expressiontree, a marking of its nodes can be chosen heuristically.A simple heuristic is to mark each equivalence node ofthe single expression tree that is the (unique) parent ofa join or grouping/aggregation operator, or the childof a duplicate elimination operator, and materializethe corresponding additional views, provided that thecost of this option is cheaper than the cost of not

materializing any additional views. Materializing theseequivalence nodes can be expected to be bene�cialfor e�cient incremental updates. The rationale fornot materializing equivalence nodes corresponding toselections is that indices can be used to e�ciently obtainthe tuples satisfying the desired conditions.Using Approximate Costing : An alternativeto using the heuristics described above is based onapproximate costing. One possibility is to use a greedyapproach to costing, and only maintain a single updatecost with each equivalence node, and a single cost witheach query at an equivalence node during the exhaustiveprocedure, even when the equivalence node is not anarticulation node of expression DAGDV (see Section 4).The result of the greedy approach of associating a singlecost with each query, on Algorithm OptimalViewSet,is to move the query cost computation out of theinner-most loop, which reduces the complexity of thealgorithm.6 DiscussionThe problem of e�cient view maintenance is especiallyimportant for implementing SQL-92 assertions. Theseassertions are simply queries that return true/false, andthe database is required to be such that the assertionsare always true. When the database is updated, itis important to check if the update will make theassertion false. An assertion can be modeled as amaterialized view, and the problem then becomes one ofcomputing the incremental update to the materializedview. Standard integrity constraint checking techniquescan be used for simple assertions. However, if assertionsare complex, incrementally checking them may bequite costly unless additional views are materialized, asillustrated in the motivating example (Example 1.1).Our results can be applied in a straightforwardfashion to the problem of determining what views toadditionally materialize for e�ciently maintaining a setof materialized views. The key to this is the fact thatthe expression DAG representation can also be used tocompactly represent the expression trees for a set ofqueries, not just a single query. The only change will bethat the expression DAG will have to include multipleview de�nitions, and may therefore have multiple roots,and every view that must be materialized will be markedin the expression DAG. Other details of our algorithmsremain unchanged.7 Conclusions and Future WorkWe have shown that it is possible to signi�cantlyreduce the cost of maintaining a materialized viewby materializing (and maintaining) additional views.The identi�cation of views to additionally materialize 11

must be made in a cost-based fashion, and we havepresented an exhaustive algorithm for this task. Wehave presented optimizations for the algorithm, as wellas a number of heuristics. Our techniques are needed formaintaining complex SQL views and for the importantproblem of incrementally checking complex SQL-92assertions. Our techniques are independent of the costmodel used, and any cost model can be \plugged in."To our knowledge, ours is the �rst paper to examinethe issue of maintaining additional views to reducemaintenance costs in a cost-based fashion. We identi�ednot only what can be done, but what cannot: inparticular that the problem is inherently nonlocal andthat the cost must be globally optimized. Our workshould stand as a foundation for future work in the area.The view sets chosen using our (non-heuristic) tech-niques are optimal under the update propagation modelwe have used. The model is a complete and powerfulone, but there are other models for propagating updatesbased on de�ning update expressions, such as the onedescribed in [6]. It would be interesting to consider howto �nd the optimal way to maintain a view (or set ofviews) under such a model.Another direction for future work is to use a moregeneral abstraction of database relation updates thanthe insert/delete/modify abstraction used in this pa-per. Abstracting other types of updates, such as in-crement/decrement, and recognizing the type of a givenupdate, can lead to better view maintenance techniques.Yet another interesting direction is to explore thee�ect of data distribution on the decision of whatadditional views to materialize.AcknowledgementsWe would like to thank Zoltan Smogyi for pointing outhow our techniques could be extended to incorporateuser-query frequencies.References[1] C. Beeri and R. Ramakrishnan. On the power of Magic.Journal of Logic Programming, 10(3&4):255{300, 1991.[2] J. A. Blakeley, P.-A. Larson, and F. W. Tompa.E�ciently updating materialized views. In Proceedingsof the ACM SIGMOD Conference on Management ofData, pages 61{71, Washington D.C., May 1986.[3] S. Ceri and J. Widom. Production rules for incrementalview maintenance. In Proceedings of the InternationalConference on Very Large Databases, Barcelona, Spain,1991.[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, andK. Shim. Optimizing queries with materialized views.In Proceedings of International Conference on DataEngineering, 1995.[5] G. Graefe and W. J. McKenna. The Volcano optimizergenerator: Extensibility and e�cient search. In

Proceedings of the IEEE International Conference onData Engineering, Vienna, Austria, 1993.[6] T. Gri�n and L. Libkin. Incremental maintenanceof views with duplicates. In Proceedings of the ACMSIGMOD Conference on Management of Data, 1995.[7] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments. InProceedings of the International Conference on VeryLarge Databases, 1995.[8] A. Gupta and I. S. Mumick. Maintenance of materi-alized views: Problems, techniques and applications.IEEE Data Engineering Bulletin, 18(2), June 1995.Special Issue on Materialized Views and Data Ware-housing.[9] A. Gupta, I. S. Mumick, and K. Ross. Adaptingmaterialized views after rede�nitions. In Proceedingsof the ACM SIGMOD Conference on Management ofData, San Jose, CA, May 1995.[10] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.Maintaining views incrementally. In Proceedings of theACM SIGMOD Conference on Management of Data,pages 157{166, 1993.[11] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-tava. Answering queries using views. In Proceedingsof the ACM Symposium on Principles of Database Sys-tems, San Jose, CA, May 1995.[12] W. J. McKenna. E�cient Search in Extensible DatabaseQuery Optimization: The Volcano optimizer generator.PhD thesis, University of Colorado, 1993.[13] J. Melton and A. R. Simon. Understanding the newSQL: A complete guide. Morgan Kaufmann, SanFrancisco, CA, 1993.[14] X. Qian and G. Wiederhold. Incremental recomputa-tion of active relational expressions. IEEE Transac-tions on Knowledge and Data Engineering, 3(3):337{341, 1991.[15] A. Segev and W. Fang. Currency-based updates todistributed materialized views. In IEEE Conference onData Engineering, pages 512{520, 1990.[16] A. Segev and J. Park. Updating distributed material-ized views. IEEE Transactions on Knowledge and DataEngineering, 1(2):173{184, June 1989.[17] T. Sellis. Multiple query optimization. ACM Transac-tions on Database Systems, 13(1):23{52, Mar. 1988.[18] L. Vieille, P. Bayer, and V. K�uchenho�. Integritychecking and materialized views handling by updatepropagation in the EKS-V1 system. Technical report,CERMICS - Ecole Nationale Des Ponts Et Chaussees,France, June 1991. Rapport de Recherche, CERMICS91.1.[19] W. P. Yan and P.-A. Larson. Performing group-bybefore join. In Proceedings of International Conferenceon Data Engineering, pages 89{100, 1994.[20] H. Z. Yang and P.-A. Larson. Query transformationfor PSJ-queries. In Proceedings of the InternationalConference on Very Large Databases, pages 245{254,1987. 12

