Well-Founded Ordered Search
(Extended Abstract)

Peter J. Stuckey' and S. Sudarshan?

! Department of Computer Science, University of Melbourne
Parkville 3052, Australia
pjs@cs.mu.oz.au
2 AT&T Bell Labs., 600 Mountain Ave.
Murray Hill, NJ 07974, U.S.A.

sudarsha@research.att.com

Abstract. There have been several evaluation mechanisms proposed for
computing query answers based on the well-founded semantics, for pro-
grams with negation. However, these techniques are costly; in particular,
for the special case of modularly stratified programs Ordered Search is
more efficient than the general purpose techniques. However, Ordered
Search is applicable only to modularly stratified programs. In this pa-
per, we extend Ordered Search to compute the well-founded semantics
for all (non-floundering) programs with negation. Our extension behaves
exactly like Ordered Search on programs that are modularly stratified,
and hence pays no extra cost for such programs.

1 Introduction

In the recent past, much attention has been paid to the semantics and evaluation
of programs that use negation. To handle programs that combine the use of
negation with recursion, three-valued semantics, which allow the truth status of
some facts to be undefined, have been proposed. The well-founded semantics
[19] is the leading candidate among the three-valued semantics that have been
proposed. The well-founded semantics is non-trivial to compute; in particular,
it 1s non-trivial to make the computation ‘goal-directed’; that is, given a query
on a program, make sure that intermediate facts are generated only if they
are relevant to answering the query. Early evaluation mechanisms, such as the
alternating fixpoint technique of [18], were not goal-directed. Other techniques,
such as that of Ross [14], were goal-directed, but (as with Prolog) can repeat
computation of subgoals multiple times and, worse, were non-effective (i.e., could
loop) even for DATALOG programs.

For situations where the cost of recomputation is high (as when computation
goes into a loop), memoing evaluations, which remember subgoals and avoid re-
computation, are important. For the simple case of programs without negation,
several memoing evaluation techniques have been proposed [1, 12, 17]. Sev-
eral attempts have been made at extending some of these for computing the
well-founded semantics. These past attempts have the problem that either com-
putation is not completely goal-directed [9, 7, 8, 11] since some facts that are

irrelevant to the computation may be generated, or compute only relevant facts,
but may compute some of them multiple times [5]. We present more details on
related work in Section 4. But, in particular, for the important special case of
modularly stratified programs [15], these techniques are less efficient than special
purpose techniques such as Ordered Search [13].

Although Ordered Search is more efficient than the general purpose evaluation
techniques proposed in the past, as described in [13] it applies only to modularly
stratified programs, and not to the class of all programs with recursive negation.
In this paper we extend the Ordered Search evaluation algorithm to compute the
well-founded semantics for all (non-floundering) programs with negation. We call
our technique Well-Founded Ordered Search. Our technique has the benefits of
performing memoization of facts, and being goal-directed.

For the case of modularly stratified programs, our technique reduces to the
original Ordered Search algorithm, thereby reaping the cost benefits of Ordered
Search. For the general case, our technique has important advantages over eval-
uation techniques proposed in the past. Recently Chen, Swift and Warren [6, 4]
have developed a goal-directed technique for computing the well-founded model.
Our technique was developed independently of theirs. Their technique and ours
each have advantages and disadvantages with respect to the other; we present
details in Section 4.

1.1 Background
Due to space limitations we omit background material from this extended ab-

stract. We assume familiarity with logic programming terminology (see [10]) and
the issues involved in the bottom-up evaluation of logic programs. In particular,
we assume the reader is familiar with Magic Templates rewriting [12] (however,
we give an example of its use), and with Semi-Naive bottom-up evaluation [1].

For the purposes of this paper, a program is a set of definite clauses with pos-
sible use of negation in the rule body. We assume familiarity with the modularly
stratified semantics [15], the well-founded semantics [19] and the alternating fix-
point evaluation method for computing the well-founded semantics [18, 7]. We
assume that the programs we evaluate are non-floundering, i.e., any subgoal set
up on a negative literal is ground. We say that a subgoal 7p(3) depends on a
subgoal 7q(7) if there is an instantiation of a rule with p(5) as the head, ¢(%) as
a body literal, and every literal preceding ¢(%) is either true or undefined in the
well-founded model of the program.

2 Ordered Search
We now describe the Ordered Search evaluation method [13], which is applicable

to modularly stratified programs. The Ordered Search evaluation algorithm [13]
has two phases. The first rewrites the program at compile time. The second
evaluates the rewritten program.

2.1 Modified Magic Templates Rewriting
We describe the rewriting phase using an example rule. Suppose we have the

following rule in a program:

p(X) = r(X,Y),—q(Y), s(Y).

the modified Magic Templates rewriting [13] of the rule generates the following
rules:

p(X) i query(p(X)), T(X’ Y)’ dOne(Q(Y))a _'Q(Y)’ S(Y)'
query(r(X,Y)) = query(p(X)).

query(q(Y)) := query(p(X)), r(X,Y).

query(s(Y)) i= query(p(X)), r(X,Y), done_q(Y), ~q(Y).

The first rule is basically the original rule, but with two modifications. First, a
literal query(p(X)) has been inserted, which ensures that an ‘answer’ fact for
the predicate p is generated only if there is a corresponding query fact. This is
done in Magic Templates rewriting to avoid generating irrelevant facts. Second, a
literal done(q(Y)) has been added to the rule to guard the —¢(Y) literal . A fact
done(q(a)) is created when Ordered Search decides that all answers to the query
?q(a) have been generated. Without the guard literal done(q(Y")), the rule could
potentially be used in a Semi-Naive evaluation to make an inference, assuming
—¢(a)) is true even if a fact ¢(a) is indeed generated later.

The next three rules specify how to generate subgoals on the three body
literals, given a subgoal on the head literal. These subgoals need to be solved in
order to answer the subgoal on the head literal. For example, the second rule,
read declaratively, says that if there is a subgoal 7p(X) then a subgoal 7r(X,Y)
is generated. The third rule says that if there is a subgoal 7p(X) and an answer
r(X,Y), then a subgoal 7¢(Y) is generated.

The modified Magic Templates rewriting of a program is the union of the
modified Magic Templates rewriting of all the rules in the program.

2.2 Ordered Search Evaluation

The second phase of the Ordered Search algorithm evaluates the rewritten rules.
We present an intuitive description of the evaluation algorithm here, but refer
the reader to [13] for details. The algorithm makes inferences from the rewritten
rules, using the incremental evaluation idea of Semi-Naive evaluation. But unlike
normal Semi-Naive evaluation it orders the use of generated subgoals in a manner
somewhat like Prolog, but with duplicate elimination on subgoals and answers.
It is, in a sense, a hybrid between pure (tuple-oriented) top-down evaluation and
pure (set-oriented) bottom-up evaluation.

The central data structure used by Ordered Search, the Context, is used to
preserve “dependency information” between subgoals. The C'ontext 1s a sequence
of ContextNodes. Each ContextNode has an associated set of query facts and
each query fact 1s associated with a unique C'ontext Node. In the rest of this pa-
per, when we use adjectives like “earlier” | “later”, etc. to refer to C'ontext Nodes
in C'ontext, we mean their position in the sequence and not the time at which
these nodes were inserted in Context.

The Ordered Search evaluation algorithm is summarized below.

Algorithm Ordered Search

Input: Rewritten Program Pmd-mod

and query 7¢(a).

Output: Answers to 7¢(@).
1. Insert a seed query fact query(q(a)).
2. Repeat
Repeat
Evaluate the rules of the program using Semi-Naive evaluation.
However, instead of inserting newly generated facts query(p(b))
into the query relation,
2(a) insert them in C'ontext and
2(b) perform duplicate elimination as described later.
/* Consequently they are hidden from the evaluation. */
Until no new derivations can be made
3. Make facts from the context visible as described later
4. Until there is no change in the set of visible facts.
/* At this stage C'ontext is empty, and there are no hidden facts. */

Newly generated facts other than query facts are inserted in the differential
relations, and made available to the evaluation, as usual in Semi-Naive evalua-
tion. When a fact in C'ontext is made available to the evaluation, it is said to
be “marked” in the Context. A C'ontext Node is said to be “marked” if any fact
associated with the Context Node is marked.

We now intuitively describe some of the operations performed in Step 2 of
the above algorithm

2(a). Insertion: When a new query fact is inserted in Conteat, it is associated
with a new ContextNode. Let query(q(@)) be a query fact derived from

query fact query(p(b)).

1. If done(q(a@)) is present do not insert query(q(a)) in Context (since it
has been fully evaluated already).

2. Else, query(p(b)) must be in the Contexrt and must be marked since it is
visible and has just been used to derive query(g(@)). Insert query(q(@))
in a new unmarked Context Node immediately before the next marked
Context N ode following the marked node containing query(p(b)). (If there
is no such marked ContextNode, query(q(@)) is inserted as the last
ContexrtNode in the Context.)

2(b). Duplicate Elimination: Duplicate elimination is now performed in the
Context to ensure that there is at most one copy of query(q(@)) in Context.
If there is more than one unmarked copy of query(¢(@)) in Context at this
stage, only the last copy of query(q(@)) is retained. If there is a marked
copy of query(q(a@)) in Context, i.e., if query(q(a)) has already been made
available to the evaluation, there are two possibilities:

(i) Tf the marked copy of query(g(@)) occurs after the unmarked copy, only
the marked copy of query(q(@)) is retained in Context.

(ii) If the unmarked copy of query(q(@)) occurs after the marked copy,
query(q(a)) depends on itself. We have thus detected a cyclic depen-

dency between the set of all marked facts in C'ontext in between the two

occurrences of query(¢q(@)). Ordered Search deletes the unmarked copy of

query(q(@)) and collapses the above set of marked facts into the node of
the marked copy of query(q(@)) in Context.

In the above, we consider variants of a fact (i.e., facts that are equal, up to a
renaming of the variables, to the given fact) as being the same as the fact. The
insertion step ensures that facts on C'ontext are stored in an ordered fashion,
such that if query fact 1 depends on the query fact)2, then @5 is stored after
or along with ()1 in the Context. But, unlike the stack of subgoals in Prolog
evaluation, cyclic dependencies are handled gracefully by means of collapsing
nodes together. Each subgoals in a node depends on all the other subgoals in
the node, and hence we cannot in general deduce that we have found all answers
for one until we are convinced we have found all answers for the others.

3. Making Facts Visible This step makes facts in the Context visible to the
evaluation when no new facts can be computed using the set of available
facts. Intuitively, this is done as follows:

(i) If the last ContextNode contains at least one unmarked query fact,
Ordered Search chooses one such unmarked fact, marks it and makes it
available to the evaluation by inserting it in the corresponding differential
relation. (Note that this fact still remains in the Context.)

(ii) If all facts in the last Context Node are marked, all the facts in the last
ContextNode can be considered to be completely evaluated in the case
of Ordered Search. Once all subgoals in the last C'ontextNode are deter-
mined to have been fully evaluated, the node is removed from Context,
and for each subgoal query(p(@)) in the node, a fact done(p(a@)) is cre-
ated.

A major difference between Ordered Search and Well-Founded Ordered Search,
which we describe in Section 3, is in the above step.

3 Well-Founded Ordered Search

We now describe Well-Founded Ordered Search (WF-OS for short), our extension
to Ordered Search. A one-sentence summary (for the expert) of the idea behind
WE-OS is that it combines Ordered Search with the alternating fixpoint technique
for evaluating the well-founded semantics, and manages to use the (costly) al-
ternating fixpoint technique on subregions of the program rather than on the
entire program. As with Ordered Search, we split the description of WF-OS into
two parts. The first part describes the extended magic rewriting, and the second
part describes the actual WF-OS evaluation technique.

3.1 The Undef Magic Templates Rewriting

We now give the intuition behind the Undef Magic Rewriting, our extension of
Magic Templates rewriting [12] which we use in WF-OS. In order to compute the
well-founded semantics we may need to know if a literal later in the rule is true
or false, even if the truth value of a literal earlier in the rule is not known [7].
For example, with a rule p : —=p, ¢, and no rule defining ¢, the truth value of ¢

is needed in order to determine that p is false; a subgoal 7¢ must be generated to
find the truth status of ¢, at a point when the truth status of —p is not known.

To do so, we use an extended Magic Templates rewriting, which we call Un-
def Magic Templates rewriting, which can generate ‘possibly true’ facts (rather
than just true facts) when provided appropriate ‘seed facts’. Undef Magic Tem-
plates rewriting generates facts of the form un(p(@)) and un(—¢(@)). These facts
respectively indicate that p(@) is possibly true (i.e., has not been shown to be
false), and ¢(@) is possibly false (i.e., has not been shown to be true). Facts of
the form un(...) are used to represent information about the truth value of a
fact as of some point in the evaluation, and unlike other facts, may be present
at some point of an evaluation but absent later. We say a fact p(a@) is possibly
undefined if a fact un(p(@)) is present.

We consider again the rule used to describe Ordered Search:

p(X) = r(X,Y),—q(Y), s(Y).
Undef Magic rewriting of this rule generates the following rules:

query(r(X,Y)) = query(p(X)).

query” (¢(Y)) = query(p(X)), un(r(X,Y))

query(s(Y)) i= query(p(X)), un(r(X,Y)), un(—q(Y)).

un(p(X)) i= query(p(X)), un(r(X,Y)), un(—q(Y)), un(s(Y")).
p(X) i= query(p(X)), r(X,Y),done(q(Y)), mun(g(Y)), s(Y).

Further, for every predicate p(X) (including base predicates) we generate rules

un(p(X)) = p(X).

un(—p(X)) = done(p(X)), p(X).

The intuition behind the above rules is as follows. The first three rules gen-
erate subgoals, but differ from the rewriting used in Ordered Search in that they
can generate a subgoal on a literal not only when earlier literals are true, but
also when they are possibly undefined (i.e., corresponding un(...) facts have
been generated). Another difference is illustrated in the second rule, where the
generated query fact is tagged with a superscript ~. The tag is used in Context
to recognize that the subgoal is generated from a negative literal. We treat the
predicates query™(...) and query(...) as seperate facts in the Context but as
synonymous for the purposes of semi-naive evaluation. The tag is used by the
WEF-0S evaluation algorithm. The fourth rule in the rewritten program generates
an un(...) fact for the head predicate in case each literal in the body is possibly
undefined. The last rule generated from the original rule derives answer facts
that are definitely true.

The purpose of the two other rules shown above is to make sure a literal is pos-
sibly undefined if it is true. The general case of the rewriting is presented in the
full version of the paper. The rewriting of a program P, denoted MagUnd(P),
is the union of the rewriting of each of its rules.

An inspection of the above rules indicates that a fact of the form un(p(@))
can be generated using the rules only if there is already a fact p(@). However,

there is another mechanism to generate facts of the form un(...) — the WF-OS
evaluation algorithm described in the next section. Such facts are generated in
order to bypass negative literals so as to generate subgoals on later literals in a
rule, in case cycles containing negative subgoals are encountered.

3.2 The Well-Founded Ordered Search Algorithm

We now present some details of the WF-OS algorithm. The algorithm is basically
the same as the Ordered Search algorithm presented in Section 2.2, except that
(a) the Undef Magic rewriting is used instead of Magic rewriting, (b) Steps 2(b)
and 3 of the evaluation algorithm are modified as follows:

2(b). Duplicate elimination Unmarked copies of query(¢(@)) and query™(¢(@))
are treated as distinct objects, and only the latest unmarked copy of each is
retained. If there is a marked copy and an unmarked copy of query™(¢(a@))
(with or without tag ‘=’) in Context, there are two possibilities:

(i) Tf the marked copy of queryl™(q(@)) occurs after the unmarked copy,
only the marked copy of queryt™(q(@)) is retained in Context if they are
both tagged ‘=’ or both untagged, otherwise they are both retained.

(ii) If the unmarked copy (tagged or untagged) of queryl™(q(@)) occurs af-
ter the (tagged or untagged) marked copy, we have detected a cyclic
dependency involving queryt™ (¢(@)) and all marked facts in Context in
between the two occurrences of queryl™(q(@)). The unmarked copy of
queryl™(q(@)) and the above set of marked facts are collapsed into the
node of the marked copy of queryl™] (¢(@)) in Context. If one of the facts
collapsed into this node has a negative tag then the node is marked as a
NEGLOOP.

3. Making Facts Visible
(i) While the last node in Context has an unmarked query fact,

Choose an unmarked fact from the last node
If no marked (tagged or untagged) copy of the fact appears
earlier in context
then found = 1; break
else found = 0; perform duplicate elimination (Step 2(b)(ii))
If (found == 1), mark the chosen fact and make it available to the evalu-
ation by inserting it (sans tag) in the corresponding differential relation.

(ii) Otherwise all facts in the last Context Node are marked. If the node is
not marked NEGLOOP the node has been completely evaluated. The
node is removed from Context, and for each (tagged or untagged) fact
queryt™(p(@)) in the node, a fact done(p(@)) is created.

Otherwise execute Procedure Add_Undefined. If no new facts are added
by Add_Undefined, execute Procedure Local_Alternation.

The intuition behind the above is that if even if we find a cycle with negative
subgoals, we proceed with other subgoals that are generated from subgoals in the
cycle since they may not be recursive with those in the cycle. When we can pro-
ceed no further, we are at a stage where we have to bypass some of the negative
subgoals in order to compute the well-founded model. This 1s done by means of

Procedure Add_Undefined, which lets the left-to-right subgoal generation order
skip over negative literals that are in the last node in Context, by introducing
facts of the form un(—¢(@)).

Procedure Add_Undefined

/* We are at a local fixpoint and there is a negative cycle.*/
For every fact query™(q(@)) in the last Conteat Node,
if neither done(q(@)) nor ¢(@) is present
Add un(—q(@)) to the set of facts.

In case some new un(...) facts is added by Add_Undefined, evaluation con-
tinues as in Ordered Search. Further subgoals may be generated. If they do not
depend on the goals in the negative cycle, they get solved independently. If there
is a dependency, they get collapsed into the node containing the negative cycle.

Eventually, a stage has been reached where all negative literals whose sub-
goals are in the last node of Context are noted as undefined (and thus bypassed),
and no further subgoals can be generated. At this stage all relevant subgoals have
been generated (as we prove in the full version of the paper). These subgoals de-
fine a subprogram that contains a cycle with a negative subgoal. To compute the
well-founded model for this subprogram, WF-OS evaluation starts an alternating
fixpoint evaluation [18, 7] using Procedure Local_Alternation, shown below. Alter-
nating fixpoint computation by itself is not goal directed, and if used on the entire
program would generate a potentially large number of irrelevant facts. However,
the alternating fixpoint performed in Procedure Local_Alternation is ‘local’ in
that it only involves answers for the subgoals in the last node of C'ontext. By
restricting the alternating fixpoint to a subprogram containing relevant facts,3
we can reduce the time cost of computation considerably.

Procedure Local_Alternation

1. Repeat

2 For every query fact query™(¢(@)) in the last Context Node,

3 If un(q(@)) is not present /* ¢(@) is definitely false */

4, Add done(q(@)) to the set of facts.

5. If ¢(@) is present /* ¢(@) is true */

6 Add done(q(@)) to the set of facts.

7 Remove un(—¢(a))

8 If there is no change in the set of facts Then

9. Break; /* Last node in C'ontext has been fully evaluated */
10. Else /* Restart to find new upper-bound */

® Our technique, like other techniques that compute the well-founded semantics in a
goal-directed fashion, generates some queries that may not actually be relevant, but
during the evaluation it is not possible to make out whether or not they are relevant.
Specifically, we generate query facts from un facts that may be retracted later.

11. For every query fact query(q(@)) that is in the last Context Node,
and done(q(@)) is not present

12. Remove all facts un(q(a, ...))

13. /* Note: Facts un(—q(@)) are not removed at this step. */

14. Fire all rules that define un-predicates in the current last C'ontext Node.
15. Do Semi-Naive evaluation on all rules until fixpoint.

16. Forever;

17. /* Local alternating fixpoint has terminated; Clean up and pop node */
18. Pop the last node from Context.

19. For every fact query(g(@)) in the node,

20. Add a fact done(q(@)) to the set of facts.

Ezample 1. Consider the following simple two-rule program.
pi-og,r q:=-p

WEF-0S evaluation starting with query(p) would generate query™(q), which is
then marked, and in turn generates query™(p). The facts appear in consecutive
nodes in Context. Step 2(b)(ii) collapses all the above facts into the node of
query(p), and the node gets marked NEGLOOP. No more facts can be generated,
and facts un(—p) and un(—q) are introduced by Add_Undefined.. A fact query(r)
then gets derived and put in a new context node, and gets marked, but generates
no more subgoals/answers. The node is removed from Context. An iteration of
Local_Alternation then derives ¢ but not p, which means p is false. In the next
iteration ¢ is derived again. Alternating fixpoint then terminates with p false and
q true. After the node containing {query™(¢), query™(p), query(p)} is removed,
Context i1s empty, and evaluation terminates. Thus r and p are false, and ¢ is
true in the well-founded model of the program. O

Theorem 1. Let T[P], F[P] and U[P] denote the true, false and undefined facts
wn the well-founded semantics of program P. Given any non-floundering program

P, and a terminating query 7q(t), WF-OS evaluation is sound and partially com-
plete w.r.t. the well-founded semantics of P. That s

1. q@)[0] € T[P] iff ¢(¥)[6] is a ground instance of a fact derived by WF-OS.
2. q(t)[o] € ULP] iff un(q(t))[c] is a ground instance of a fact derived by WF-
0S, and q(t)[c] is not an instance of any fact that is derived.

3. q@D)[v] € FIP] iff un(q(@))[y] does not unify with any fact derived by WF-OS.

3.3 Extensions

We presented a simple version of WF-QS for ease of exposition. Straightforward
improvements include not using un predicates for base predicates, and not gener-
ating un facts when it is clear that they are not needed (e.g. for programs without
negation). Although our description of Undef Magic rewriting assumed a left-to-
right evaluation order, WF-QOS can be extended to handle arbitrary evaluation
orders. The idea of common-subexpression elimination used in Supplementary
Magic Templates rewriting [2, 12] can also be used to derive a “Supplementary”
version of the Undef Magic Templates rewriting.

Procedure Local_Alternation is roughly equivalent to the magic sets based
alternating fixpoint technique of [8] applied to a small part of the program. We
can use the optimization of [8] suggested by [11], which permits some query
facts to be discarded if they are found to be irrelevant due to some facts earlier
(temporarily) assumed undefined being found to be either true or false.

4 Related Work

The most closely related work is SLG resolution (Chen and Warren [6] and
Chen, Swift and Warren [4]). Our work is independent of theirs, and in fact the
two techniques approach the problem from different directions; while WF-OS
is based on bottom-up evaluation made query directed, SLG is based on top-
down evaluation made memoing. Their technique maintains instantiated rules
and answers that may contain “delayed” literals. Their “delaying” step for a
negative literal =p(a@) corresponds to a step where we introduce a fact un(—p(a)).

There are three interesting differences between our techniques. The first is
that when they delay a negative literal, they remove the negative dependencies
that are introduced by the literal. They are thus able to relate positive cycles
in unfounded sets directly to positive cycles in their dependency information.
Since we do not update dependency information at the time of our equivalent
to delaying, we cannot make this connection. They also optimize some of their
actions by incrementally maintaining dependency information. By combining the
above optimizations, they avoid using the alternating fixpoint technique.

The second difference is that their technique does not use exact dependency
information — a sequence of SCCs in the depends on relation may be merged
and viewed as if it were a single SCC. As a result they may delay a negative
literal that is not really in a negative cycle, but appears to be in a negative cycle
due to the merging of SCCs. We maintain the separation of SCCs, and are thus
able to avoid ‘delaying literals’ in some cases where they delay the literal. Thus
there are cases where we compute fewer facts than they do.

The third difference is that using the optimization of [8] proposed by [11] we
can recognize that some queries are irrelevant and delete them in the course of
the alternating fixpoint, as we noted in Section 3.3. In the technique of Chen et
al., once a query 1s generated it is never deleted even if it is irrelevant.

Our technique performs better than that of [8] and its optimization [11]
since it is able to restrict the alternating fixpoint to a subpart of the program.
In parts of the program where there are no cyclic dependencies WF-OS is able
to determine the status of a fact before using it, and thereby avoid unnecessary
computation caused by treating them as undefined. As a special case of the
above, for modularly stratified programs WF-OS reduces to Ordered Search, and
performs no irrelevant computation and repeats no computation. Our technique
is better than WELL! [3] and QSQR/SLS resolution [16] since both perform
repeated computation even for programs without negation. Unlike XOLDTNF
[5] our technique is able to share answers to subgoals effectively; XOLDTNF
repeats computation even for modularly stratified programs. The technique of
[9] is not goal directed, although they mention that they can use a restricted
version of Magic sets (where no negative literals are used in query rules).

Acknowledgements We would like to thank Divesh Srivastava and Weidong
Chen for useful discussions.

References

1. I. Balbin and K. Ramamohanarao. A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming, 4(3), September 1987.

2. Catriel Beeri and Raghu Ramakrishnan. On the power of Magic. In Procs. of the
ACM Symp. on Principles of Database Systems, pages 269-283, Mar. 1987.

3. N. Bidoit and P. Legay. WELL! An evaluation procedure for all logic programs. In
Procs. of the International Conf. on Database Theory, pages 335-348, Dec. 1990.

4. Weidong Chen, Terrance Swift and David S. Warren. Efficient Top-Down Com-
putation of Queries under the Well-Founded Semantics Tech. Report 93-CSE-33,
Southern Methodist University, Aug. 1993.

5. Weidong Chen and Davis S. Warren. A goal-oriented approach to computing the
well founded semantics. In Procs. of the Joint Int’l Conf. and Symp. on Logic
Programming, 589-606, 1992.

6. Weidong Chen and Davis S. Warren. Query Evaluation under the Well-Founded
Semantics. In Procs. of the ACM Symp. on Principles of Database Systems 1993.

7. David Kemp, Divesh Srivastava, and Peter Stuckey. Magic sets and bottom-up
evaluation of well-founded models. In Procs. of the International Logic Programming
Symposium, 337-351, 1991.

8. David Kemp, Divesh Srivastava, and Peter Stuckey. Query restricted bottom-up
evaluation of normal logic programs. In Procs. of the Joint Int’l Conf. and Symp.
on Logic Programming, 288-302, 1992.

9. Leone, N. and Rullo, P. Safe computation of the well-founded semantics of DATA-
LOG queries. Information Systems 17(1) (1992), 17-31.

10. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ed., 1987.

11. Morishita, S. An alternating fixpoint tailored to magic programs. In Procs. of the
1993 ACM Symp. on Principles of Database Systems, 1993.

12. Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-
grams. In Procs. of the International Conf. on Logic Programming, 140-159, 1988.

13. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the search
in bottom-up evaluation. In Joint Int’l Conf. and Symp. on Logic Programming
1992, 273-287, 1992.

14. Kenneth A. Ross A procedural semantics for well-founded negation in logic pro-
grams. In Procs. of the ACM Symp. on Principles of Database Systems (1989).

15. Kenneth A. Ross. Modular Stratification and Magic Sets for DATALOG programs
with negation. In Procs. of the ACM Symp. on Principles of Database Systems,
161-171, 1990.

16. Kenneth A. Ross. The Semantics of Deductive Databases. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University, Aug. 1991.

17. H. Tamaki and T. Sato. OLD resolution with tabulation. In Procs. of the Third
International Conference on Logic Programming (LNCS 225), 84-98, 1986.

18. A. Van Gelder. The alternating fixpoint of logic programs with negation. In Procs.
of the ACM Symp. on Principles of Database Systems, 1-10, 1989.

19. A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.

This article was processed using the IANTRpX macro package with LLNCS style

