
Well-Founded Ordered Search(Extended Abstract)Peter J. Stuckey1 and S. Sudarshan21 Department of Computer Science, University of MelbourneParkville 3052, Australiapjs@cs.mu.oz.au2 AT&T Bell Labs., 600 Mountain Ave.Murray Hill, NJ 07974, U.S.A.sudarsha@research.att.comAbstract. There have been several evaluation mechanisms proposed forcomputing query answers based on the well-founded semantics, for pro-grams with negation. However, these techniques are costly; in particular,for the special case of modularly strati�ed programs Ordered Search ismore e�cient than the general purpose techniques. However, OrderedSearch is applicable only to modularly strati�ed programs. In this pa-per, we extend Ordered Search to compute the well-founded semanticsfor all (non-
oundering) programs with negation. Our extension behavesexactly like Ordered Search on programs that are modularly strati�ed,and hence pays no extra cost for such programs.1 IntroductionIn the recent past, much attention has been paid to the semantics and evaluationof programs that use negation. To handle programs that combine the use ofnegation with recursion, three-valued semantics, which allow the truth status ofsome facts to be unde�ned, have been proposed. The well-founded semantics[19] is the leading candidate among the three-valued semantics that have beenproposed. The well-founded semantics is non-trivial to compute; in particular,it is non-trivial to make the computation `goal-directed', that is, given a queryon a program, make sure that intermediate facts are generated only if theyare relevant to answering the query. Early evaluation mechanisms, such as thealternating �xpoint technique of [18], were not goal-directed. Other techniques,such as that of Ross [14], were goal-directed, but (as with Prolog) can repeatcomputation of subgoals multiple times and, worse, were non-e�ective (i.e., couldloop) even for DATALOG programs.For situations where the cost of recomputation is high (as when computationgoes into a loop), memoing evaluations, which remember subgoals and avoid re-computation, are important. For the simple case of programs without negation,several memoing evaluation techniques have been proposed [1, 12, 17]. Sev-eral attempts have been made at extending some of these for computing thewell-founded semantics. These past attempts have the problem that either com-putation is not completely goal-directed [9, 7, 8, 11] since some facts that are



irrelevant to the computation may be generated, or compute only relevant facts,but may compute some of them multiple times [5]. We present more details onrelated work in Section 4. But, in particular, for the important special case ofmodularly strati�ed programs [15], these techniques are less e�cient than specialpurpose techniques such as Ordered Search [13].AlthoughOrdered Search is more e�cient than the general purpose evaluationtechniques proposed in the past, as described in [13] it applies only to modularlystrati�ed programs, and not to the class of all programs with recursive negation.In this paper we extend the Ordered Search evaluation algorithm to compute thewell-founded semantics for all (non-
oundering) programs with negation. We callour technique Well-Founded Ordered Search. Our technique has the bene�ts ofperforming memoization of facts, and being goal-directed.For the case of modularly strati�ed programs, our technique reduces to theoriginal Ordered Search algorithm, thereby reaping the cost bene�ts of OrderedSearch. For the general case, our technique has important advantages over eval-uation techniques proposed in the past. Recently Chen, Swift and Warren [6, 4]have developed a goal-directed technique for computing the well-founded model.Our technique was developed independently of theirs. Their technique and ourseach have advantages and disadvantages with respect to the other; we presentdetails in Section 4.1.1 BackgroundDue to space limitations we omit background material from this extended ab-stract. We assume familiarity with logic programming terminology (see [10]) andthe issues involved in the bottom-up evaluation of logic programs. In particular,we assume the reader is familiar with Magic Templates rewriting [12] (however,we give an example of its use), and with Semi-Naive bottom-up evaluation [1].For the purposes of this paper, a program is a set of de�nite clauses with pos-sible use of negation in the rule body. We assume familiarity with the modularlystrati�ed semantics [15], the well-founded semantics [19] and the alternating �x-point evaluation method for computing the well-founded semantics [18, 7]. Weassume that the programs we evaluate are non-
oundering, i.e., any subgoal setup on a negative literal is ground. We say that a subgoal ?p(s) depends on asubgoal ?q(t) if there is an instantiation of a rule with p(s) as the head, q(t) asa body literal, and every literal preceding q(t) is either true or unde�ned in thewell-founded model of the program.2 Ordered SearchWe now describe the Ordered Search evaluation method [13], which is applicableto modularly strati�ed programs. The Ordered Search evaluation algorithm [13]has two phases. The �rst rewrites the program at compile time. The secondevaluates the rewritten program.2.1 Modi�ed Magic Templates RewritingWe describe the rewriting phase using an example rule. Suppose we have thefollowing rule in a program:p(X) :- r(X;Y );:q(Y ); s(Y ):



the modi�ed Magic Templates rewriting [13] of the rule generates the followingrules:p(X) :- query(p(X)); r(X;Y ); done(q(Y ));:q(Y ); s(Y ):query(r(X;Y )) :- query(p(X)):query(q(Y )) :- query(p(X)); r(X;Y ):query(s(Y )) :- query(p(X)); r(X;Y ); done q(Y );:q(Y ):The �rst rule is basically the original rule, but with two modi�cations. First, aliteral query(p(X)) has been inserted, which ensures that an `answer' fact forthe predicate p is generated only if there is a corresponding query fact. This isdone in Magic Templates rewriting to avoid generating irrelevant facts. Second, aliteral done(q(Y )) has been added to the rule to guard the :q(Y ) literal . A factdone(q(a)) is created when Ordered Search decides that all answers to the query?q(a) have been generated. Without the guard literal done(q(Y )), the rule couldpotentially be used in a Semi-Naive evaluation to make an inference, assuming:q(a)) is true even if a fact q(a) is indeed generated later.The next three rules specify how to generate subgoals on the three bodyliterals, given a subgoal on the head literal. These subgoals need to be solved inorder to answer the subgoal on the head literal. For example, the second rule,read declaratively, says that if there is a subgoal ?p(X) then a subgoal ?r(X;Y )is generated. The third rule says that if there is a subgoal ?p(X) and an answerr(X;Y ), then a subgoal ?q(Y ) is generated.The modi�ed Magic Templates rewriting of a program is the union of themodi�ed Magic Templates rewriting of all the rules in the program.2.2 Ordered Search EvaluationThe second phase of the Ordered Search algorithm evaluates the rewritten rules.We present an intuitive description of the evaluation algorithm here, but referthe reader to [13] for details. The algorithm makes inferences from the rewrittenrules, using the incremental evaluation idea of Semi-Naive evaluation. But unlikenormal Semi-Naive evaluation it orders the use of generated subgoals in a mannersomewhat like Prolog, but with duplicate elimination on subgoals and answers.It is, in a sense, a hybrid between pure (tuple-oriented) top-down evaluation andpure (set-oriented) bottom-up evaluation.The central data structure used by Ordered Search, the Context, is used topreserve \dependency information" between subgoals. The Context is a sequenceof ContextNodes. Each ContextNode has an associated set of query facts andeach query fact is associated with a unique ContextNode. In the rest of this pa-per, when we use adjectives like \earlier", \later", etc. to refer to ContextNodesin Context, we mean their position in the sequence and not the time at whichthese nodes were inserted in Context.The Ordered Search evaluation algorithm is summarized below.Algorithm Ordered SearchInput: Rewritten Program Pmg mod and query ?q(a).



Output: Answers to ?q(a).1: Insert a seed query fact query(q(a)).2: RepeatRepeatEvaluate the rules of the program using Semi-Naive evaluation.However, instead of inserting newly generated facts query(p(b))into the query relation,2(a) insert them in Context and2(b) perform duplicate elimination as described later./* Consequently they are hidden from the evaluation. */Until no new derivations can be made3: Make facts from the context visible as described later4: Until there is no change in the set of visible facts./* At this stage Context is empty, and there are no hidden facts. */Newly generated facts other than query facts are inserted in the di�erentialrelations, and made available to the evaluation, as usual in Semi-Naive evalua-tion. When a fact in Context is made available to the evaluation, it is said tobe \marked" in the Context. A ContextNode is said to be \marked" if any factassociated with the ContextNode is marked.We now intuitively describe some of the operations performed in Step 2 ofthe above algorithm2(a). Insertion: When a new query fact is inserted in Context, it is associatedwith a new ContextNode. Let query(q(a)) be a query fact derived fromquery fact query(p(b)).1. If done(q(a)) is present do not insert query(q(a)) in Context (since ithas been fully evaluated already).2. Else, query(p(b)) must be in the Context and must be marked since it isvisible and has just been used to derive query(q(a)). Insert query(q(a))in a new unmarked ContextNode immediately before the next markedContextNode following the marked node containing query(p(b)). (If thereis no such marked ContextNode, query(q(a)) is inserted as the lastContextNode in the Context.)2(b). Duplicate Elimination: Duplicate elimination is now performed in theContext to ensure that there is at most one copy of query(q(a)) in Context.If there is more than one unmarked copy of query(q(a)) in Context at thisstage, only the last copy of query(q(a)) is retained. If there is a markedcopy of query(q(a)) in Context, i.e., if query(q(a)) has already been madeavailable to the evaluation, there are two possibilities:(i) If the marked copy of query(q(a)) occurs after the unmarked copy, onlythe marked copy of query(q(a)) is retained in Context.(ii) If the unmarked copy of query(q(a)) occurs after the marked copy,query(q(a)) depends on itself. We have thus detected a cyclic depen-dency between the set of all marked facts in Context in between the two



occurrences of query(q(a)). Ordered Search deletes the unmarked copy ofquery(q(a)) and collapses the above set of marked facts into the node ofthe marked copy of query(q(a)) in Context.In the above, we consider variants of a fact (i.e., facts that are equal, up to arenaming of the variables, to the given fact) as being the same as the fact. Theinsertion step ensures that facts on Context are stored in an ordered fashion,such that if query fact Q1 depends on the query fact Q2, then Q2 is stored afteror along with Q1 in the Context. But, unlike the stack of subgoals in Prologevaluation, cyclic dependencies are handled gracefully by means of collapsingnodes together. Each subgoals in a node depends on all the other subgoals inthe node, and hence we cannot in general deduce that we have found all answersfor one until we are convinced we have found all answers for the others.3. Making Facts Visible This step makes facts in the Context visible to theevaluation when no new facts can be computed using the set of availablefacts. Intuitively, this is done as follows:(i) If the last ContextNode contains at least one unmarked query fact,Ordered Search chooses one such unmarked fact, marks it and makes itavailable to the evaluation by inserting it in the corresponding di�erentialrelation. (Note that this fact still remains in the Context.)(ii) If all facts in the last ContextNode are marked, all the facts in the lastContextNode can be considered to be completely evaluated in the caseof Ordered Search. Once all subgoals in the last ContextNode are deter-mined to have been fully evaluated, the node is removed from Context,and for each subgoal query(p(a)) in the node, a fact done(p(a)) is cre-ated.A major di�erence between Ordered Search and Well-Founded Ordered Search,which we describe in Section 3, is in the above step.3 Well-Founded Ordered SearchWe now describe Well-Founded Ordered Search (WF-OS for short), our extensionto Ordered Search. A one-sentence summary (for the expert) of the idea behindWF-OS is that it combinesOrdered Search with the alternating �xpoint techniquefor evaluating the well-founded semantics, and manages to use the (costly) al-ternating �xpoint technique on subregions of the program rather than on theentire program. As with Ordered Search, we split the description of WF-OS intotwo parts. The �rst part describes the extended magic rewriting, and the secondpart describes the actual WF-OS evaluation technique.3.1 The Undef Magic Templates RewritingWe now give the intuition behind the Undef Magic Rewriting, our extension ofMagic Templates rewriting [12] which we use in WF-OS. In order to compute thewell-founded semantics we may need to know if a literal later in the rule is trueor false, even if the truth value of a literal earlier in the rule is not known [7].For example, with a rule p : �:p; q, and no rule de�ning q, the truth value of q



is needed in order to determine that p is false; a subgoal ?q must be generated to�nd the truth status of q, at a point when the truth status of :p is not known.To do so, we use an extended Magic Templates rewriting, which we call Un-def Magic Templates rewriting, which can generate `possibly true' facts (ratherthan just true facts) when provided appropriate `seed facts'. Undef Magic Tem-plates rewriting generates facts of the form un(p(a)) and un(:q(a)). These factsrespectively indicate that p(a) is possibly true (i.e., has not been shown to befalse), and q(a) is possibly false (i.e., has not been shown to be true). Facts ofthe form un(: : :) are used to represent information about the truth value of afact as of some point in the evaluation, and unlike other facts, may be presentat some point of an evaluation but absent later. We say a fact p(a) is possiblyunde�ned if a fact un(p(a)) is present.We consider again the rule used to describe Ordered Search:p(X) :- r(X;Y );:q(Y ); s(Y ):Undef Magic rewriting of this rule generates the following rules:query(r(X;Y )) :- query(p(X)):query:(q(Y )) :- query(p(X)); un(r(X;Y )):query(s(Y )) :- query(p(X)); un(r(X;Y )); un(:q(Y )):un(p(X)) :- query(p(X)); un(r(X;Y )); un(:q(Y )); un(s(Y )):p(X) :- query(p(X)); r(X;Y ); done(q(Y ));:un(q(Y )); s(Y ):Further, for every predicate p(X) (including base predicates) we generate rulesun(p(X)) :- p(X):un(:p(X)) :- done(p(X));:p(X):The intuition behind the above rules is as follows. The �rst three rules gen-erate subgoals, but di�er from the rewriting used in Ordered Search in that theycan generate a subgoal on a literal not only when earlier literals are true, butalso when they are possibly unde�ned (i.e., corresponding un(: : :) facts havebeen generated). Another di�erence is illustrated in the second rule, where thegenerated query fact is tagged with a superscript :. The tag is used in Contextto recognize that the subgoal is generated from a negative literal. We treat thepredicates query:(: : :) and query(: : :) as seperate facts in the Context but assynonymous for the purposes of semi-naive evaluation. The tag is used by theWF-OS evaluation algorithm. The fourth rule in the rewritten program generatesan un(: : :) fact for the head predicate in case each literal in the body is possiblyunde�ned. The last rule generated from the original rule derives answer factsthat are de�nitely true.The purpose of the two other rules shown above is to make sure a literal is pos-sibly unde�ned if it is true. The general case of the rewriting is presented in thefull version of the paper. The rewriting of a program P , denoted MagUnd(P ),is the union of the rewriting of each of its rules.An inspection of the above rules indicates that a fact of the form un(p(a))can be generated using the rules only if there is already a fact p(a). However,



there is another mechanism to generate facts of the form un(: : :) | the WF-OSevaluation algorithm described in the next section. Such facts are generated inorder to bypass negative literals so as to generate subgoals on later literals in arule, in case cycles containing negative subgoals are encountered.3.2 The Well-Founded Ordered Search AlgorithmWe now present some details of the WF-OS algorithm. The algorithm is basicallythe same as the Ordered Search algorithm presented in Section 2.2, except that(a) the Undef Magic rewriting is used instead of Magic rewriting, (b) Steps 2(b)and 3 of the evaluation algorithm are modi�ed as follows:2(b). Duplicate elimination Unmarked copies of query(q(a)) and query:(q(a))are treated as distinct objects, and only the latest unmarked copy of each isretained. If there is a marked copy and an unmarked copy of query[:](q(a))(with or without tag `:') in Context, there are two possibilities:(i) If the marked copy of query[:] (q(a)) occurs after the unmarked copy,only the marked copy of query[:](q(a)) is retained in Context if they areboth tagged `:' or both untagged, otherwise they are both retained.(ii) If the unmarked copy (tagged or untagged) of query[:](q(a)) occurs af-ter the (tagged or untagged) marked copy, we have detected a cyclicdependency involving query[:] (q(a)) and all marked facts in Context inbetween the two occurrences of query[:](q(a)). The unmarked copy ofquery[:](q(a)) and the above set of marked facts are collapsed into thenode of the marked copy of query[:](q(a)) in Context. If one of the factscollapsed into this node has a negative tag then the node is marked as aNEGLOOP.3. Making Facts Visible(i) While the last node in Context has an unmarked query fact,Choose an unmarked fact from the last nodeIf no marked (tagged or untagged) copy of the fact appearsearlier in contextthen found = 1; breakelse found = 0; perform duplicate elimination (Step 2(b)(ii))If (found == 1), mark the chosen fact and make it available to the evalu-ation by inserting it (sans tag) in the corresponding di�erential relation.(ii) Otherwise all facts in the last ContextNode are marked. If the node isnot marked NEGLOOP the node has been completely evaluated. Thenode is removed from Context, and for each (tagged or untagged) factquery[:](p(a)) in the node, a fact done(p(a)) is created.Otherwise execute Procedure Add Unde�ned. If no new facts are addedby Add Unde�ned, execute Procedure Local Alternation.The intuition behind the above is that if even if we �nd a cycle with negativesubgoals, we proceed with other subgoals that are generated from subgoals in thecycle since they may not be recursive with those in the cycle. When we can pro-ceed no further, we are at a stage where we have to bypass some of the negativesubgoals in order to compute the well-founded model. This is done by means of



Procedure Add Unde�ned, which lets the left-to-right subgoal generation orderskip over negative literals that are in the last node in Context, by introducingfacts of the form un(:q(a)).Procedure Add Unde�ned/* We are at a local �xpoint and there is a negative cycle.*/For every fact query:(q(a)) in the last ContextNode,if neither done(q(a)) nor q(a) is presentAdd un(:q(a)) to the set of facts.In case some new un(: : :) facts is added by Add Unde�ned, evaluation con-tinues as in Ordered Search. Further subgoals may be generated. If they do notdepend on the goals in the negative cycle, they get solved independently. If thereis a dependency, they get collapsed into the node containing the negative cycle.Eventually, a stage has been reached where all negative literals whose sub-goals are in the last node of Context are noted as unde�ned (and thus bypassed),and no further subgoals can be generated. At this stage all relevant subgoals havebeen generated (as we prove in the full version of the paper). These subgoals de-�ne a subprogram that contains a cycle with a negative subgoal. To compute thewell-founded model for this subprogram,WF-OS evaluation starts an alternating�xpoint evaluation [18, 7] using Procedure Local Alternation, shown below. Alter-nating �xpoint computation by itself is not goal directed, and if used on the entireprogram would generate a potentially large number of irrelevant facts. However,the alternating �xpoint performed in Procedure Local Alternation is `local' inthat it only involves answers for the subgoals in the last node of Context. Byrestricting the alternating �xpoint to a subprogram containing relevant facts,3we can reduce the time cost of computation considerably.Procedure Local Alternation1. Repeat2. For every query fact query:(q(a)) in the last ContextNode,3. If un(q(a)) is not present /* q(a) is de�nitely false */4. Add done(q(a)) to the set of facts.5. If q(a) is present /* q(a) is true */6. Add done(q(a)) to the set of facts.7. Remove un(:q(a))8. If there is no change in the set of facts Then9. Break; /* Last node in Context has been fully evaluated */10. Else /* Restart to �nd new upper-bound */3 Our technique, like other techniques that compute the well-founded semantics in agoal-directed fashion, generates some queries that may not actually be relevant, butduring the evaluation it is not possible to make out whether or not they are relevant.Speci�cally, we generate query facts from un facts that may be retracted later.



11. For every query fact query(q(a)) that is in the last ContextNode,and done(q(a)) is not present12. Remove all facts un(q(a; :::)) .13. /* Note: Facts un(:q(a)) are not removed at this step. */14. Fire all rules that de�ne un-predicates in the current last ContextNode.15. Do Semi-Naive evaluation on all rules until �xpoint.16. Forever;17. /* Local alternating �xpoint has terminated; Clean up and pop node */18. Pop the last node from Context.19. For every fact query(q(a)) in the node,20. Add a fact done(q(a)) to the set of facts.Example 1. Consider the following simple two-rule program.p :- :q; r q :- :pWF-OS evaluation starting with query(p) would generate query:(q), which isthen marked, and in turn generates query:(p). The facts appear in consecutivenodes in Context. Step 2(b)(ii) collapses all the above facts into the node ofquery(p), and the node gets marked NEGLOOP. No more facts can be generated,and facts un(:p) and un(:q) are introduced by Add Unde�ned.. A fact query(r)then gets derived and put in a new context node, and gets marked, but generatesno more subgoals/answers. The node is removed from Context. An iteration ofLocal Alternation then derives q but not p, which means p is false. In the nextiteration q is derived again. Alternating �xpoint then terminates with p false andq true. After the node containing fquery:(q); query:(p); query(p)g is removed,Context is empty, and evaluation terminates. Thus r and p are false, and q istrue in the well-founded model of the program. 2Theorem1. Let T [P ]; F [P ] and U [P ] denote the true, false and unde�ned factsin the well-founded semantics of program P . Given any non-
oundering programP , and a terminating query ?q(�t), WF-OS evaluation is sound and partially com-plete w.r.t. the well-founded semantics of P . That is1. q(�t)[�] 2 T [P ] i� q(�t)[�] is a ground instance of a fact derived by WF-OS.2. q(�t)[�] 2 U [P ] i� un(q(�t))[�] is a ground instance of a fact derived by WF-OS, and q(�t)[�] is not an instance of any fact that is derived.3. q(�t)[
] 2 F [P ] i� un(q(�t))[
] does not unify with any fact derived by WF-OS.3.3 ExtensionsWe presented a simple version of WF-OS for ease of exposition. Straightforwardimprovements include not using un predicates for base predicates, and not gener-ating un facts when it is clear that they are not needed (e.g. for programs withoutnegation). Although our description of Undef Magic rewriting assumed a left-to-right evaluation order, WF-OS can be extended to handle arbitrary evaluationorders. The idea of common-subexpression elimination used in SupplementaryMagic Templates rewriting [2, 12] can also be used to derive a \Supplementary"version of the Undef Magic Templates rewriting.



Procedure Local Alternation is roughly equivalent to the magic sets basedalternating �xpoint technique of [8] applied to a small part of the program. Wecan use the optimization of [8] suggested by [11], which permits some queryfacts to be discarded if they are found to be irrelevant due to some facts earlier(temporarily) assumed unde�ned being found to be either true or false.4 Related WorkThe most closely related work is SLG resolution (Chen and Warren [6] andChen, Swift and Warren [4]). Our work is independent of theirs, and in fact thetwo techniques approach the problem from di�erent directions; while WF-OSis based on bottom-up evaluation made query directed, SLG is based on top-down evaluation made memoing. Their technique maintains instantiated rulesand answers that may contain \delayed" literals. Their \delaying" step for anegative literal :p(�a) corresponds to a step where we introduce a fact un(:p(�a)).There are three interesting di�erences between our techniques. The �rst isthat when they delay a negative literal, they remove the negative dependenciesthat are introduced by the literal. They are thus able to relate positive cyclesin unfounded sets directly to positive cycles in their dependency information.Since we do not update dependency information at the time of our equivalentto delaying, we cannot make this connection. They also optimize some of theiractions by incrementally maintaining dependency information. By combining theabove optimizations, they avoid using the alternating �xpoint technique.The second di�erence is that their technique does not use exact dependencyinformation | a sequence of SCCs in the depends on relation may be mergedand viewed as if it were a single SCC. As a result they may delay a negativeliteral that is not really in a negative cycle, but appears to be in a negative cycledue to the merging of SCCs. We maintain the separation of SCCs, and are thusable to avoid `delaying literals' in some cases where they delay the literal. Thusthere are cases where we compute fewer facts than they do.The third di�erence is that using the optimization of [8] proposed by [11] wecan recognize that some queries are irrelevant and delete them in the course ofthe alternating �xpoint, as we noted in Section 3.3. In the technique of Chen etal., once a query is generated it is never deleted even if it is irrelevant.Our technique performs better than that of [8] and its optimization [11]since it is able to restrict the alternating �xpoint to a subpart of the program.In parts of the program where there are no cyclic dependencies WF-OS is ableto determine the status of a fact before using it, and thereby avoid unnecessarycomputation caused by treating them as unde�ned. As a special case of theabove, for modularly strati�ed programs WF-OS reduces to Ordered Search, andperforms no irrelevant computation and repeats no computation. Our techniqueis better than WELL! [3] and QSQR/SLS resolution [16] since both performrepeated computation even for programs without negation. Unlike XOLDTNF[5] our technique is able to share answers to subgoals e�ectively; XOLDTNFrepeats computation even for modularly strati�ed programs. The technique of[9] is not goal directed, although they mention that they can use a restrictedversion of Magic sets (where no negative literals are used in query rules).



Acknowledgements We would like to thank Divesh Srivastava and WeidongChen for useful discussions.References1. I. Balbin and K. Ramamohanarao. A generalization of the di�erential approach torecursive query evaluation. Journal of Logic Programming, 4(3), September 1987.2. Catriel Beeri and Raghu Ramakrishnan. On the power of Magic. In Procs. of theACM Symp. on Principles of Database Systems, pages 269{283, Mar. 1987.3. N. Bidoit and P. Legay. WELL! An evaluation procedure for all logic programs. InProcs. of the International Conf. on Database Theory, pages 335{348, Dec. 1990.4. Weidong Chen, Terrance Swift and David S. Warren. E�cient Top-Down Com-putation of Queries under the Well-Founded Semantics Tech. Report 93-CSE-33,Southern Methodist University, Aug. 1993.5. Weidong Chen and Davis S. Warren. A goal-oriented approach to computing thewell founded semantics. In Procs. of the Joint Int'l Conf. and Symp. on LogicProgramming, 589{606, 1992.6. Weidong Chen and Davis S. Warren. Query Evaluation under the Well-FoundedSemantics. In Procs. of the ACM Symp. on Principles of Database Systems 1993.7. David Kemp, Divesh Srivastava, and Peter Stuckey. Magic sets and bottom-upevaluation of well-founded models. In Procs. of the International Logic ProgrammingSymposium, 337{351, 1991.8. David Kemp, Divesh Srivastava, and Peter Stuckey. Query restricted bottom-upevaluation of normal logic programs. In Procs. of the Joint Int'l Conf. and Symp.on Logic Programming, 288{302, 1992.9. Leone, N. and Rullo, P. Safe computation of the well-founded semantics of DATA-LOG queries. Information Systems 17(1) (1992), 17{31.10. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ed., 1987.11. Morishita, S. An alternating �xpoint tailored to magic programs. In Procs. of the1993 ACM Symp. on Principles of Database Systems, 1993.12. Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-grams. In Procs. of the International Conf. on Logic Programming, 140{159, 1988.13. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the searchin bottom-up evaluation. In Joint Int'l Conf. and Symp. on Logic Programming1992, 273{287, 1992.14. Kenneth A. Ross A procedural semantics for well-founded negation in logic pro-grams. In Procs. of the ACM Symp. on Principles of Database Systems (1989).15. Kenneth A. Ross. Modular Strati�cation and Magic Sets for DATALOG programswith negation. In Procs. of the ACM Symp. on Principles of Database Systems,161{171, 1990.16. Kenneth A. Ross. The Semantics of Deductive Databases. Ph.D. thesis, Depart-ment of Computer Science, Stanford University, Aug. 1991.17. H. Tamaki and T. Sato. OLD resolution with tabulation. In Procs. of the ThirdInternational Conference on Logic Programming (LNCS 225), 84{98, 1986.18. A. Van Gelder. The alternating �xpoint of logic programs with negation. In Procs.of the ACM Symp. on Principles of Database Systems, 1{10, 1989.19. A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-mantics for general logic programs. Journal of the ACM, 38(3):620{650, 1991.This article was processed using the LaTEX macro package with LLNCS style


