
J. LOGIC PROGRAMMING (1997:32(3): 171-205) 171WELL-FOUNDED ORDERED SEARCH: GOALDIRECTED BOTTOM-UP EVALUATION OFWELL-FOUNDED MODELSPETER J. STUCKEY� AND S. SUDARSHANy. There have been several evaluation mechanisms proposed for computingquery answers based on the well-founded semantics, for programs with neg-ation. However, these techniques are costly; in particular, for the specialcase of modularly strati�ed programs, Ordered Search is more e�cient thanthe general purpose techniques. However, Ordered Search is applicable onlyto modularly strati�ed programs. In this paper, we extend Ordered Searchto compute the well-founded semantics for all (non-oundering) programswith negation. Our extension behaves exactly like Ordered Search on pro-grams that are modularly strati�ed, and hence pays no extra cost for suchprograms. /1. INTRODUCTIONIn the recent past, much attention has been paid to the semantics and evaluationof programs that use negation. To handle programs that combine the use of neg-ation with recursion, three-valued semantics, which allow the truth status of somefacts to be unde�ned, have been proposed. If negation is used in conjunction withrecursion, it is non-trivial to provide semantics to all programs based purely onlogical implication. Early techniques to work around this problem (e.g. [1, 16, 21])restricted the class of programs for which semantics (and correspondingly evalu-ation mechanisms) were de�ned. These semantics were two-valued, in that eachfact (ground atom) is either true or it is false. For the general case of programswith recursion and negation, two-valued semantics were found to be inadequate inmany situations. For example, with a rule p :- :p, it is not clear whether p should� Department of Computer Science, University of Melbourne, Parkville 3052, Australiay Computer Science and Engineering Department, Indian Institute of Technology, Bombay400076, IndiaTHE JOURNAL OF LOGIC PROGRAMMINGc Elsevier Science Inc.655 Avenue of the Americas, New York, NY 10010

172 be true or false. If it is false, it would imply that it is true. But there is no basisfor deducing it to be true. More recently, three-valued semantics were proposedthat allow the truth value of facts to be unde�ned. In the case of the rule p :- :p,a three-valued semantics can leave p unde�ned (if this is the only rule de�ning p),thereby solving the problem of whether to make p true or false.The well-founded semantics [26] is the leading candidate among the three-valuedsemantics that have been proposed. The well-founded semantics is non-trivial tocompute; in particular, it is non-trivial to make the computation `goal-directed', thatis, given a query on a program, make sure that intermediate facts are generated onlyif they are relevant to answering the query. Early evaluationmechanisms, such as thealternating �xpoint technique of [25], were not goal-directed. Other techniques, suchas that of Ross [20], were goal-directed, but (as with Prolog) can repeat computationof subgoals multiple times and, worse, were non-e�ective (i.e., could loop) even forDATALOG programs.For situations where the cost of re-computation is high (as when computationgoes into a loop), memoing evaluations, which remember subgoals and avoid re-computation, are important. For the simple case of programs without negation,several memoing evaluation techniques have been proposed [2, 17, 24, 27]. Severalattempts have been made at extending some of these for computing the well-foundedsemantics. These past attempts have the problem that either the computation isnot completely goal-directed [13, 11, 12, 15] since some facts that are irrelevantto the computation may be generated, or compute only relevant facts, but maycompute some of themmultiple times [9]. We present more details on related work inSection 7. But, in particular, for the important special case of modularly strati�edprograms [21], these techniques are less e�cient than special purpose techniquessuch as Ordered Search [18].Although Ordered Search is more e�cient than the general purpose evaluationtechniques proposed in the past, as described in [18] it applies only to modularlystrati�ed programs, and not to the class of all programs with recursive negation.In this paper we extend the Ordered Search evaluation algorithm to compute thewell-founded semantics for all (non-oundering) programs with negation. We callour technique Well-Founded Ordered Search. Our technique has the bene�ts of per-forming memoization of facts, and being goal-directed.For the case of modularly strati�ed programs, our technique reduces to the ori-ginal Ordered Search algorithm, thereby reaping the cost bene�ts of Ordered Search.For the general case, our technique has important advantages over evaluation tech-niques proposed in the past. Recently Chen, Swift andWarren [10, 8] have developeda goal-directed technique for computing the well-founded model. Our technique wasdeveloped independently of theirs. Their technique and ours each have advantagesand disadvantages with respect to the other; we present details in Section 7.The rest of this paper is organized as follows. In Section 2 we present some back-ground material. In Section 3 we present a short background on Ordered Search [18].We then present details of the extended Ordered Search algorithm, Well-FoundedOrdered Search in Section 4. The correctness of the algorithm is shown in Section 5,and in Section 6 we discuss extensions. Finally in Section 7 we discuss related work.

1732. BACKGROUNDWe assume familiarity with logic programming terminology (see [14]). Familiaritywith Magic Templates rewriting [17], and with semi-naive bottom-up evaluation [2]would help in reading this paper, but we provide some background information.For the purposes of this paper, a program is a set of normal clauses which possiblyinclude negative literals in the rule body. We assume that the programs we evaluateare non-oundering, i.e., any subgoal set up on a negative literal is ground. In thecontext of deductive databases this restriction is not severe, as most programs areallowed, that is, they satisfy a syntactic condition called allowedness which ensuresthat they do not ounder. A program is allowed if in each clause every variableappearing in the clause appears in a positive body literal.As is standard in the deductive database literature, we di�erentiate between theextensional database which consists of the facts for relations that are explicitly storedin the database, and the intensional database which consists of the predicates thatare de�ned using rules. Predicates in the extensional database are called EDBpredicates, and predicates in the intensional database are called IDB predicates. Wemake the standard assumption that the set of EDB predicates is disjoint from theset of IDB predicates.2.1. The Well-Founded SemanticsThe well-founded semantics [26] is generally viewed as the desired choice of se-mantics of programs with negation from a deductive database point of view becauseit extends the iterated model semantics [1] for strati�ed programs to arbitrary nor-mal programs and gives a unique model to any such program.We extend the de�nition of the usual consequence operator TP for de�nite pro-grams, to infer information from normal rules using a �xed set M of informationabout negative literals. Let M be a set of atoms.TP (M)(I) = fa j where there is a ground instance of a clause in Pa :- q1; : : : ; qn;:p1; : : : ;:prsuch that 81 � i � n; qi 2 I and 81 � j � r; pj 62MgEssentially, we do not infer new negative information using TP , but we allow the useof �xed negative information, the complement of M , in inferring positive informa-tion.For successor ordinals � + 1, TP (M) " (� + 1)(I) is de�ned as TP (M)(TP (M) "�(I)), and for limit ordinals �, TP (M) " �(I) is de�ned as S�<� TP (M) " �(I).It is straightforward to show that TP (M)(I) is monotonic and continuous on Ifor all M , and TP (M) " !(;) (usually written TP (M) " !) is the least �xpoint ofTP (M).If A is a set of atoms then let : �A be the set of literals f:a j a 2 Ag. Given aprogram P , its well-founded semantics, denoted W �P , is de�ned using an alternating�xpoint formulation as below:FP (T) def= TP (T) " !(;)F 2P (T) def= FP (FP (T))W �P def= lfp(F 2P) [: � (HBP � gfp(F 2P))

174 Where lfp and gfp denote the least and greatest �xpoints respectively, and HBPdenotes the Herbrand base of program P . (The above formulation is adapted fromthe alternating �xpoint formulation in [25], and is similar to that of [5]). We shalldenote the true, false and unde�ned atoms in the well-founded model of a programP as T [P]; F [P] and U [P] respectively.The alternating �xpoint determines a method of computing the well-foundedmodel of a program P (see [25, 11]), by computing the sets FP (;); F 2P (;) = F 2P "1(;); FP (F 2P " 1(;)); F 2P " 2(;); : : :. The computation terminates with the two sets:lfp(F 2P) = F 2P " �(;) for some �, representing all the true atoms of the program;and gfp(F 2P) = FP (F 2P " �(;)) representing all the true and undefined atoms ofthe program (the complement of the false atoms). In general � could be trans�nite,but so long as the program is a �nite DATALOG program with �nite relations, the�xpoint terminates with a �nite �. The actual set of false facts (which is typicallymuch larger than the number of true or unde�ned facts) is never directly computed.De�ne an unfounded set (of P) with respect to T [:�F as a set of atoms A suchthat, for each a 2 A and each ground instance of a rule in P of the forma :- q1; : : : ; qm;:p1; : : : ;:preither (i) there exists qi 2 F or pj 2 T , or (ii) there exists qi 2 A. The ori-ginal formulation of the well-founded semantics was in terms of unfounded sets; theintuition is that given any unfounded set (with respect to the set of known trueand false facts) at any point, all facts in the unfounded set can be inferred to befalse in the well-founded semantics. The alternating �xpoint formulation of the well-founded semantics is better for our purposes, although we occasionally use the ideaof unfounded sets to provide extra intuition.2.2. Query Restricted Bottom-Up EvaluationQuery optimization transformations for bottom-up evaluation of programs (e.g. [17])restrict computation to facts that are \interesting" to the query by calculating theset of queries that the original query `depends on'. They were originally de�ned onlyfor positive programs, and most such transformations are incorrect when appliedto programs with negation since their notion of `depends on' is not applicable ifnegation is used (see [12]). We provide some background on bottom-up evaluationusing the Magic Templates transformation.The bottom-up approach to answering queries consists of a two-part process.First, the program-query pair is rewritten in a form so that the bottom-up �xpointevaluation of the program will be more e�cient; next, the �xpoint of the rewrit-ten program is computed by bottom-up iteration. Section 2.3 describes the initialrewriting, while Section 2.4 investigates the computation of the �xpoint of the re-written program.2.3. The Magic Templates Rewriting AlgorithmWe present below a simpli�ed version of the Magic Templates rewriting algorithm[17].1 The idea is to compute an auxiliary predicate query that stores subgoals1As described in [6, 17], the initial rewriting of a program and query is guided by a choice ofsideways information passing strategies, or sips. For each rule, the associated sip determines the

175generated on predicates in the program. A fact of the form query(p(t)) denotes that?p(t) is a subgoal generated on p. In the fact query(p(t)), p is formally treated as afunction symbol, rather than a predicate, since the language is �rst order. We thushave a predicate and a function symbol of the same name | they are distinguishedbased on where they occur in the rule.The rules in the program are then modi�ed by attaching a literal to the rule bodythat uses the query predicate to act as a �lter that prevents the rule from generatingirrelevant facts when evaluated bottom-up. Further, the rewriting generates rulesthat de�ne how to generate a query fact for a body literal, given a query fact on thehead literal. For e�ciency, query facts are only generated for intensional database(IDB) relations, those de�ned by rules, and not for extensional database (EDB)relations, de�ned by sets of facts.De�nition 2.1. The Magic Templates AlgorithmLet P be a program, and ?q(c) a query on the program. We construct a newprogram Pmg. Initially, Pmg is empty.1. For each rule in P , add the modi�ed version of the rule to Pmg. If rule rhas head, say, p(�t), the modi�ed version is obtained by adding the literalquery(p(�t)) to the body.2. For each rule r in P with head, say, p(�t), and for each occurrence of a IDBliteral qi(�ti) in its body, add a query rule to Pmg . The head is query(qi(�ti)).The body contains the literal query(p(�t)), and all literals that precede qi(�ti)in the rule.3. Create a seed fact query(q(c)) from the query on the program.We refer to the rules de�ning the query predicate as query rules. We sometimesrefer to query rules as magic rules, and the query predicate as the magic predicate,when we need to be consistent with the terminology used in [4, 6, 17].The rewriting has the important e�ect of mimicking Prolog in that (modulooptimizations such as tail recursion optimization and intelligent backtracking, andmodulo some ine�ciencies when non-ground facts are generated) only goals andfacts generated by Prolog are generated.Example 2.1. Consider the following program. (In this program sg stands for\same generation".)R1 : sg(X;Y) :- flat(X;Y):R2 : sg(X;Y) :- up(X;U); sg(U; V); down(V; Y):?� sg(john; Z)order in which the body literals are evaluated. The version we present is tailored to the case thatsips correspond to left-to-right evaluation with all arguments considered \bound" (perhaps to afree variable), as in Prolog.

176 The Magic Templates algorithm rewrites it as follows:sg(X;Y) :- query(sg(X;Y)); flat(X;Y): [Mod. Rule R1]sg(X;Y) :- query(sg(X;Y)); up(X;U);sg(U; V); down(V; Y): [Mod. Rule R2]query(sg(U; V)) :- query(sg(X;Y)); up(X;U): [Query Rule]query(sg(john; Z)): [Seed Query]The �rst two rules above are the original rules, modi�ed by adding �lters. Thethird rule de�nes how to generate queries on the body of the second rule (in theoriginal program), given queries on its head predicate. The last rule is a fact thatcorresponds to the original query on the program, and it is called the seed queryfact.The following theorem ensures the soundness and completeness of the transformedprogram Pmg with respect to the query on the original program P .Theorem 2.1. [17] If P is a de�nite clause program without negation, P is equivalentto Pmg with respect to the set of answers to the query.Magic Templates is often presented along with an adornment rewriting that an-notates predicates with a string composed of characters `f' and `b', with one char-acter for each argument. This step, along with a modi�cation of Magic Templatesrewriting that projects out of query predicates those arguments that have an f ad-ornment, is used to ensure that the rewritten program generates only ground factsif the original program generated only ground facts. The bene�t of generating onlyground facts is achieved at the possible cost of some redundant computation, butis important since it permits the use of database systems that handle only groundfacts. For simplicity, we omit this step.2.4. Iterative Fixpoint EvaluationThe fundamental step in iterative �xpoint evaluation is a derivation. A derivationgenerates a fact f from a rule R and a substitution �, given a set of already knownfacts W where1. the fact f generated by the derivation is the head of R[�], and2. for each body literal pi(ti) in R, there is a fact in W that subsumes pi(ti)[�],and3. � is the most general such substitution.Given a set of facts W , a rule application generates all facts that can be inferredfrom the W using a derivation.A naive evaluation of the �xpoint of a program performs iterations, with eachiteration generating all facts that can be derived using the program rules, basefacts, and the facts derived in earlier iterations. Iteration proceeds until a �xpointis reached. In such a naive evaluation of the �xpoint, each iteration repeats allderivations made in earlier iterations.

177Semi-Naive evaluation (see e.g., [3, 2]), is an incremental version of naive �xpointevaluation. Semi-Naive evaluation avoids the repetition of derivations by performingin each iteration an incremental computation using facts generated in the previousiteration. That is, it only carries out derivations that use at least one fact generatedfor the �rst time in the previous iteration. Any other derivations must have beenperformed before and are not repeated. Semi-Naive evaluationmaintains di�erentialrelations corresponding to each relation in the program, to keep track of when eachfact in the relation was generated (before the last iteration, in the last iteration orin the current iteration).2.5. The Depends On RelationshipMagic Templates rewriting does not work correctly under the Well-Founded se-mantics. The problem is its notion of relevance, which says that a subgoal is relev-ant only if there is an instantiated rule pre�x whose last literal is the subgoal, andall literals before the subgoal are satis�ed. With the well-founded semantics, even ifthe truth of a rule body literal is undecided, it may be necessary to check if a laterliteral in the rule body is de�nitely false.The following de�nition gives the formal meaning of \depends on", and is ap-plicable to the well-founded semantics. Here we assume, as we do throughout thepaper, a complete left-to-right order on generation of subgoals.De�nition 2.2. (depends on) Let P be a given program. We say a query ?p(�t)directly depends on ?qi(�bi) if there is a rule instancep(�a) :- q1(�b1); : : : ; qi(�bi); : : : ; qn(�bn):where each qi(�bi) is a positive or negative literal, such that p(�a) is an instanceof p(�t), and each literal qj(�bj); 1 � j � i � 1 is either true or unde�ned in thewell-founded model of P .We de�ne depends on as the transitive closure of `directly depends on'.The de�nition essentially says that in order to solve the query ?p(�t), answers tothe subquery ?qi(�bi) are relevant. In the case of two-valued models, the de�nitionreduces to the regular de�nition of `depends on' [18] based on which relevance offacts is de�ned [17].Intuitively, the importance of depends on is this: to correctly compute the answersto query ?p(�t) wrt W �P we only require the correct answers (wrt W �P) of each of thequeries ?qi(�bi) that ?p(�t) depends on. (This is shown implicitly in the course of thecorrectness proofs of our technique.) Hence we would like to restrict computation toonly those queries that ?p(�t) depends on. This is not possible because the dependson relationship is known only once the well-founded model is computed. In generalwe must use a superset of the queries that ?p(�t) depends on. Minimizing this set isone of the main aims of this work.3. ORDERED SEARCHWe now describe the Ordered Search evaluation method [18], which is applicable tomodularly strati�ed programs. In the next section we describe our extension to the

178 technique to handle the general case. This technique generates subgoals and answersto subgoals asynchronously, as in bottom-up evaluation, but orders the use of gen-erated subgoals in a manner reminiscent of top-down evaluation, and is in a sense ahybrid between pure (tuple-oriented) top-down evaluation and pure (set-oriented)bottom-up evaluation. The Ordered Search evaluation algorithm [18] has two phases.The �rst rewrites the program at compile time. The second evaluates the rewrittenprogram. Unlike the case for programs without negation (Theorem 2.1), the re-written program is not equivalent to the original program, and ordinary bottom-upevaluation of the rewritten program does not yield the correct set of answers to thequery. Rather, it is equivalent in the sense that under a special evaluation mechan-ism, described below, the correct set of answers to the query are generated by therewritten program.3.1. Modi�ed Magic Templates RewritingWe describe the rewriting phase using an example rule. Suppose we have the fol-lowing rule in a program: p(X) :- r(X;Y);:q(Y); s(Y):the modi�ed Magic Templates rewriting [18] of the rule generates the following rules:p(X) :- query(p(X)); r(X;Y); done(q(Y));:q(Y); s(Y):query(r(X;Y)) :- query(p(X)):query(q(Y)) :- query(p(X)); r(X;Y):query(s(Y)) :- query(p(X)); r(X;Y); done(q(Y));:q(Y):The �rst rule is basically the original rule, but with two modi�cations. First, as inMagic Templates, a literal query(p(X)) has been inserted, which ensures that an`answer' fact for the predicate p is generated only if there is a corresponding queryfact. This is done to avoid generating irrelevant facts. Second, a literal done(q(Y))has been added to the rule to guard the :q(Y) literal; this is an extension to MagicTemplates, introduced byOrdered Search. A fact done(q(a)) is created whenOrderedSearch decides that all answers to the query ?q(a) have been generated.We then use a modi�cation of Semi-Naive evaluation where a ground negativeliteral :p(a) is satis�ed if p(a) is not known to be true or unde�ned. Withoutthe guard literal done(q(Y)), the rule could potentially be used in a Semi-Naiveevaluation to make an inference, assuming :q(a) is true even if a fact q(a) is indeedgenerated later. The guard literal ensures that such a derivation is made only whendone(q(a)) is present; by means of inserting facts done(: : :) at appropriate timesOrdered Search ensures the soundness of derivations.The next three rules specify how to generate subgoals on the three body literals,given a subgoal on the head literal. These subgoals need to be solved in order toanswer the subgoal on the head literal. For example, the second rule, read declar-atively, says that if there is a subgoal ?p(X) then a subgoal ?r(X;Y) is generated.The third rule says that if there is a subgoal ?p(X) and an answer r(X;Y), then asubgoal ?q(Y) is generated.The modi�ed Magic Templates rewriting of a program is the union of the modi�edMagic Templates rewriting of all the rules in the program.

1793.2. Ordered Search EvaluationThe second phase of the Ordered Search algorithm evaluates the rewritten rules.We present an intuitive description of the evaluation algorithm here, but refer thereader to [18] for details. The algorithm makes inferences from the rewritten rules,and is built on top of the Semi-Naive evaluation technique. But unlike normal Semi-Naive evaluation it orders the use of generated subgoals in a manner somewhat likeProlog. Unlike Prolog, Ordered Search performs duplicate elimination on subgoalsand answers. It is, in a sense, a hybrid between pure (tuple-oriented) top-downevaluation and pure (set-oriented) bottom-up evaluation.The central data structure used by Ordered Search, the Context, is used to pre-serve \dependency information" between subgoals. The Context is a sequence ofContextNodes. Each ContextNode has an associated set of query facts and eachquery fact is associated with a unique ContextNode.The Context behaves somewhat like a stack in that for the most part nodes areeither added to its end or removed from its end. However, other operations suchas collapsing together nodes are also performed on the Context. In the rest of thispaper, when we use adjectives like \earlier", \later", etc. to refer to ContextNodesin Context, we mean their position in the sequence and not the time at which thesenodes were inserted in Context.The Ordered Search evaluation algorithm is summarized below.Algorithm Ordered SearchInput: Rewritten Program Pmg mod (without the seed query fact), and query ?q(t).Output: Answers to ?q(t).1: Initialize Context to consist of a single context-node containing the(unmarked) seed fact query(q(t)).2: RepeatRepeatEvaluate the rules of the program using Semi-Naive evaluation.However, for each newly generated query fact, call it query(q(a)),instead of inserting it into the query relation,2(a) insert query(q(a)) in Context (as described later) and2(b) perform duplicate elimination on query(q(a)) (as described later)./* query(q(a)) is not made visible to the evaluation yet */Until no new derivations can be made3: Make facts from the context visible (as described later)4: Until there is no change in the set of visible facts./* At this stage Context is empty, and there are no hidden facts. */Newly generated facts other than query facts are inserted in the di�erential re-lations, and made available as usual to the Semi-Naive evaluation. When queryfacts are �rst inserted into Context they are \hidden", that is, they are not madeavailable to the evaluation. The Ordered Search algorithm makes each query fact\visible" to the evaluation later; when a query fact that is in the Context is madeavailable to the evaluation, the copy in the Context is marked. A ContextNode issaid to be marked if any fact associated with the ContextNode is marked.We now describe some of the context manipulation operations performed in Step

180 A Zquery(p(b))� query(r(c))�query(q(a))Z query(r(c))�Aquery(p(b))�FIGURE 3.1. Inserting query(q(a)) in the Context2 and 3 of the above algorithm in more detail:2(a). Insertion: When a new query fact query(q(a)) is inserted in Context, it isinserted in a new ContextNode. Let query(q(a)) be a query fact derivedfrom query fact query(p(b)).(i) If done(q(a)) is present do not insert query(q(a)) in Context (since ithas been fully evaluated already).(ii) Else, query(p(b)) must be in the Context and must be marked since it isvisible and has just been used to derive query(q(a)). Insert query(q(a))in a new unmarked ContextNode immediately before the next markedContextNode following the marked node containing query(p(b)). (Ifthere is no such markedContextNode, query(q(a)) is inserted as the lastContextNode in the Context.) Some subsection of the initial Contextis shown at the top of Figure 3.1, where nodes marked A and Z areunmarked and the next marked ContextNode contains query(r(c)). Theresulting subsection after the insertion is illustrated in the bottom ofFigure 3.1.2(b). Duplicate Elimination: Duplicate elimination is performed on query(q(a)) inthe Context to ensure that there is at most one copy of it in Context. Ifthere is more than one unmarked copy of query(q(a)) in Context at thisstage, only the last copy of query(q(a)) is retained, and the rest deleted. Ifthere is a marked copy of query(q(a)) in Context, i.e., if query(q(a)) hasalready been made available to the evaluation, there are two possibilities:(i) If the marked copy of query(q(a)) occurs after the unmarked copy, onlythe marked copy of query(q(a)) is retained in Context.(ii) If the unmarked copy of query(q(a)) occurs after the marked copy,query(q(a)) depends on itself. We have thus detected a cyclic depend-ency between the set of all marked facts in Context between the twooccurrences of query(q(a)). Ordered Search deletes the unmarked copyof query(q(a)) and collapses the above set of marked facts into the nodeof the marked copy of query(q(a)) in Context.3. Making Query Facts Visible This step makes query facts in the Context visibleto the evaluation when no new facts can be computed using the set of availablefacts. Intuitively, this is done as follows:

181(i) If the last ContextNode contains at least one unmarked query fact,Ordered Search chooses one such unmarked fact, marks it and makes itavailable to the evaluation by inserting it in the corresponding di�erentialrelation. (Note that this fact still remains in the Context.)(ii) If all query facts in the last ContextNode are marked, all the facts in thelast ContextNode can be considered to be completely evaluated in thecase of Ordered Search. Then the node is removed from Context, andfor each subgoal query(q(a)) in the node, a fact done(q(a)) is createdand made available to the Semi-Naive evaluation.A major di�erence between Ordered Search and Well-Founded Ordered Search,which we describe in Section 4, is in Step 3.In the above, we consider variants of a fact (i.e., facts that are equal, up to arenaming of the variables, to the given fact) as being the same as the fact. Thealgorithm can be easily extended to perform subsumption checking, and detailsare presented in [19]. The insertion step (2(a)) ensures that facts on Context arestored in an ordered fashion, such that if query fact Q1 depends on the query factQ2, then Q2 is stored after or along with Q1 in the Context. But, unlike thestack of subgoals in Prolog evaluation, cyclic dependencies are handled gracefullyby means of collapsing nodes together. Each subgoal in a node depends on all theother subgoals in the node, and hence we cannot in general deduce that we havefound all answers for one until we are convinced we have found all answers for theothers. In Step 2(b), on detecting a cyclic dependency between subgoals on theContext, the associated ContextNodes are collapsed into one ContextNode, andall the facts associated with these ContextNodes are now kept together. Thus wehave the following property:� If a subgoal query(q(a)) depends on another subgoal query(p(b)) then eitherquery(p(b)) is completely evaluated before query(q(a)) is made available toevaluation (i.e., marked on Context) or at some point in the evaluationquery(p(b)) is in a node in Context above a node containing a marked versionof query(q(a)).The above property is used to show that when a query is declared to be completelyevaluated (i.e., a corresponding done fact is created), all answers to it have indeedbeen generated.The Ordered Search algorithm also satis�es the following property.� Each marked subgoal in the context sequence depends directly on the follow-ing marked subgoal in the Context, and on each unmarked subgoal that liesbetween it and the following marked subgoal in the sequence.The above property is used to show that no false dependencies between query factsare introduced by the algorithm. The full dependence relation known at any stagecan be computed by a transitive closure on the immediate dependencies. It is clearthat each marked subgoal depends (transitively) on all marked subgoals later in thecontext.Example 3.1. We now give an example of the Ordered Search procedure in action.Consider the following program, which determines a winning positions for gamessuch as checkers where each player alternately makes a move, and the winner is

182 the person who makes the last move. Sometimes a player may make extra moves.Board positions are encoded as simple letters.win(X) :- move(X;Y);:win(Y):win(X) :- extramove(X;Y); win(Y):move(a; b):move(a; d):move(b; c):extramove(a; e):extramove(e; a):For simplicity we will consider the move and extramove relations to be in the EDBand not determine query facts for them. The Magic Templates rewriting iswin(X) :- query(win(X));move(X;Y); done(win(Y));:win(Y):win(X) :- query(win(X)); extramove(X;Y); win(Y):query(win(Y)) :- query(win(X));move(X;Y):query(win(Y)) :- query(win(X)); extramove(X;Y):Given the query ?win(a) Ordered Search evaluation starts by adding query(win(a))to the Context; query(win(a)) is not made available for inferences yet. Nothingmore can be derived, and hence Step 3(i) marks the fact and makes it availablefor making inferences. Using this fact, facts query(win(b)), query(win(d)) andquery(win(e)) then get derived, each is added to a new node at the end of Context.First query(win(e)) is marked and made available for inferences. This derives thefact query(win(a)) which is initially placed at the end of the Context. We havediscovered a cyclic dependency and the two marked nodes are collapsed together.The Context now looks like fquery(win(a))�; query(win(e))�g fquery(win(b))gfquery(win(d))g.Now query(win(d)) is marked and made available for inferences. No inferencescan be made hence using Step 3(ii) we add a fact done(win(d)) and the Contextnode is removed. We have thus determined :win(d). Now we generate the factswin(a) and win(e). The last Context node is now query(win(b)), this is markedand the fact query(win(c)) is derived and placed on the end of the context andas before, gets marked and made available for making inferences. Similarly to thewin(d) case we add done(win(c)) (inferring :win(c) since win(c) is absent) andremove the Context node. We now derive the fact win(b), before done(win(b)) isderived and the query(win(b)) node is deleted. Finally the last remaining Contextnode is fquery(win(a))�; query(win(e))�g. All possible facts upon which thesefacts depend has been investigated. The last Context node is deleted and the factsdone(win(a)) and done(win(e)) are added. This is the end of computation.Ordered search is correct for this program because there are no loops throughnegation, but if we add the single extra fact move(d; a) Ordered Search is no longerapplicable.4. WELL-FOUNDED ORDERED SEARCHWe now describe Well-Founded Ordered Search (WF-OS for short), our extensionto Ordered Search. A one-sentence summary (for the expert) of the idea behindWF-

183OS is that it combines Ordered Search with the alternating �xpoint technique forevaluating the well-founded semantics, and manages to use the (costly) alternating�xpoint technique on subregions of the program rather than on the entire program.As with Ordered Search, we split the description of WF-OS into two parts. The�rst part describes the extended magic rewriting, and the second part describes theactual WF-OS evaluation technique.In the case of a cycle of subgoals, Ordered Search keeps track of the cycle, andwhen no more subgoals and no more answers can be generated from subgoals in thecycle, Ordered Search decides that all answers for subgoals in the cycle have beenobtained. If a cycle of subgoals containing a negative subgoal is found, OrderedSearch concludes that the program is not modularly strati�ed and proceeds nofurther. However, to compute the well-founded semantics for all programs, onecannot stop at a point where a negative cycle has been found.Well-Founded Ordered Search extends Ordered Search by the actions that are takenin Step 3 (the \Making Facts Visible" step) of the Ordered Search algorithm, in thecase that a negative cycle is present in the last node of the Context. The actions aredescribed in more detail later in this section, but the intuition behind our extensionis as follows. There are two parts to the extension | generating more subgoals, andperforming \local" alternating �xpoints rather than performing a single \global"alternating �xpoint.We describe the intuition for each extension below.Let us consider the motivation for the �rst part of the extension. Consider (forsimplicity) a ground rule, with a subgoal that uni�es with the head of the rule. Inorder to answer the subgoal on the head, subgoals have to be generated on bodyliterals. In Ordered Search the left-to-right subgoal generation mechanism generatesa subgoal on a literal only if all preceding literals are true (i.e., for positive literalsp(a), it is known that p(a) is true, and for a negative literal :p(a) it is known thatp(a) is false). In order to compute the well-founded semantics we may need toknow if a literal later in the rule is true or false, even if the truth value of a literalearlier in the rule is not known [11]. Hence, to extend Ordered Search to computewell-founded models, we may need to generate a subgoal on a later literal even incases where the truth value of earlier literals is not known.In this respect, WF-OS di�ers from Ordered Search; in the restricted context ofmodularly strati�ed programs, using Ordered Search one can generate only subgoalsthat the original query depends on, directly or indirectly. In the general case handledby WF-OS we may have to generate a superset of these subgoals.The �rst part of our extension to Ordered Search is to generate extra subgoalswhen required. When WF-OS �nds a negative cycle, it starts o� the computation of`possibly true' facts (rather than just true facts) by considering negative literals thatform part of the cycle as `possibly true'. This computation ensures that a supersetof all required subgoals are generated. Further, the computation generates a set of`possibly true' facts that contains the set of true facts.Note that new subgoals that are generated as above may be added to the end ofthe Context, and the node with the negative cycle may no longer be the last node.But eventually the nodes added above it will be removed, and it will become thelast node again. More new subgoals may then be added, and the cycle repeats.But eventually a stage is reached when no new subgoals can be added as above.At this stage, the last node in Context has a negative cycle, and all subgoals onwhich subgoals in the node depend have already been generated, and have either

184 been solved or are in the node, and the `possible true' facts are a superset of thetrue and unde�ned facts for subgoals in the last ContextNode.The second part of our extension of Ordered Search is applied when a stage asabove is reached. The subgoals in the last node de�ne a subpart of the program.Intuitively, WF-OS applies the alternating �xpoint technique [25, 11] for comput-ing the well-founded semantics (in a non-goal directed fashion) to this subpart ofthe program. (Since all relevant subgoals are generated and have been taken intoaccount in de�ning the subpart of the program, goal-directed evaluation need notbe used for this subpart of the program.) The alternating �xpoint technique (andother techniques for computation of the well-founded semantics) can be quite costly,and by applying it only to well-chosen subparts of the full program we are able toreduce the cost of evaluation considerably.4.1. The Undef Magic Templates RewritingWe now give the intuition behind the Undef Magic Rewriting, our extension ofMagic Templates rewriting [17] which we use in WF-OS. In order to compute thewell-founded semantics we may need to know if a literal later in the rule is trueor false, even if the truth value of a literal earlier in the rule is not known [11].For example, with a rule r :- :r; s, and no rule de�ning s, the truth value of s isneeded in order to determine that r is false; a subgoal ?s must be generated to �ndthe truth status of s, at a point when the truth status of :r is not known.To do so, we use an extended Magic Templates rewriting, which we call UndefMagic Templates rewriting, which can generate `possibly true' facts (rather than justtrue facts) when provided appropriate `seed facts'. Undef Magic Templates rewritinggenerates facts of the form un(p(a)) and un(:q(a)).2 These facts respectivelyindicate that p(a) is possibly true (i.e., has not been shown to be false), and q(a) ispossibly false (i.e., has not been shown to be true). Facts of the form un(: : :) areused to represent information about the truth value of a fact as of some point in theevaluation, and unlike other facts, may be present at some point of an evaluationbut absent later. However, a fact un(p(a)) is always present when p(a) is known tobe true (and similarly un(:q(a)) is always present when q(a) is known to be false).We say a fact p(a) is possibly unde�ned if a fact un(p(a)) is present.We say `possibly' since the fact may not actually be unde�ned in the well-foundedsemantics; it could be true, unde�ned, or even false. Such facts are needed tocompute an overestimate of what (relevant) facts are true (resp. false).We consider again the rule used to describe Ordered Search:p(X) :- r(X;Y);:q(Y); s(Y):Undef Magic rewriting of this rule generates the following rules:query(r(X;Y)) :- query(p(X)):query:(q(Y)) :- query(p(X)); un(r(X;Y)):query(s(Y)) :- query(p(X)); un(r(X;Y)); un(:q(Y)):un(p(X)) :- query(p(X)); un(r(X;Y)); un(:q(Y)); un(s(Y)):p(X) :- query(p(X)); r(X;Y); done(q(Y));:un(q(Y)); s(Y):2In an abuse of notation we treat the negation symbol : as an uninterpreted function symbolwhen it occurs inside an un fact.

185Further, for every predicate p(X) we generate rulesun(p(X)) :- p(X):un(:p(X)) :- done(p(X));:p(X):The intuition behind the above rules is as follows. The �rst three rules generatesubgoals, but di�er from the rewriting used in Ordered Search in that they cangenerate a subgoal on a literal not only when earlier literals are true, but also whenthey are possibly unde�ned (i.e., corresponding un(: : :) facts have been generated).Another di�erence is illustrated in the second rule, where the generated query factis tagged with a superscript :. The tag is used in Context to recognize that thesubgoal is generated from a negative literal. We treat the predicates query:(: : :)and query(: : :) as separate facts in the Context but as synonymous for the purposesof semi-naive evaluation. The tag is used by the WF-OS evaluation algorithm. Thefourth rule in the rewritten program generates an un(: : :) fact for the head predicatein case each literal in the body is possibly unde�ned. The last rule generated fromthe original rule derives answer facts that are de�nitely true. The purpose of thetwo other rules shown above is to make sure a literal is possibly unde�ned if it istrue.The general case of the rewriting is as follows:De�nition 4.1. The Undef Magic Templates AlgorithmLet P be a program, and ?q(c) a query on the program. We construct a newprogram MagUnd(P). Initially,MagUnd(P) is empty.1. For each rule in P , add the modi�ed version of the rule to MagUnd(P). Ifrule r has head, say, p(�t), the modi�ed version is obtained by adding theliteral query(p(�t)) to the body. and for each negative literal :q(�s) in thebody where q is an IDB relation, adding the literal done(q(�s)) before theliteral :q(�s), and replacing :q(�s) by :un(q(�s)).2. For each rule in P , add the unde�ned version of the rule to MagUnd(P). Ifrule r has head, say, p(�t), the unde�ned version is obtained by adding theliteral query(p(�t)) to the beginning of the body, and for each IDB relationliteral in the rule (including the head) q(�s) or :q(�s) , wrapping it with un()i.e. un(q(�s)) or un(:q(�s)).3. For each rule r in P with head, say, p(�t), and for each occurrence of a IDBliteral qi(�ti) (or :qi(�ti)) in its body, add a query rule to MagUnd(P). Thehead is query(qi(�ti)) (resp. query:(qi(�ti))). The body contains all literalsthat precede un(qi(�ti)) in the unde�ned version of r.4. For each IDB relation p in the program add the rulesun(p(X)) :- p(X):un(:p(X)) :- done(p(X));:p(X):to MagUnd(P).5. Create a seed fact query(q(c)) from the query on the program.

186 In practice, we would use a variant of the above rewriting that generates `supple-mentary rules' to factor out common subexpressions in a manner similar to Sup-plementary Magic rewriting [6]. We omit details for simplicity. The rewriting andevaluation mechanism contain some redundancies, such as generating un facts evenwhen it is obvious that they are not needed (e.g. for programs without negation).Such ine�ciencies can be removed fairly easily; but for simplicity we describe onlythe unoptimized but less complicated algorithms.4.2. Intuition Behind the Well-Founded Ordered-Search AlgorithmAn inspection of the rules in MagUnd(P) indicates that a fact of the form un(p(a))can be generated using the rules only if there is already a fact p(a). However, thereis another mechanism to generate facts of the form un(: : :) | the WF-OS evaluationalgorithm described in the next section. Such facts are generated in order to bypassnegative literals so as to generate subgoals on later literals in a rule, in case cyclescontaining negative subgoals are encountered.WF-OS, proceeds like Ordered Search, except for ignoring negative cycles of sub-goals, until all subgoals in the top node of context have been made visible. At thisstage, WF-OS starts o� the computation of `possibly true' facts (rather than justde�nitely true facts) by considering negative literals that form part of the cycle as`possibly true' (these constitute the `seed facts'). This process eventually ensuresthat a superset of all required subgoals [12] are generated.Eventually a stage is reached when no new subgoals can be added as above.At this stage, the last node in Context has a negative cycle, and all subgoals onwhich subgoals in the node depend have already been generated, and have eitherbeen solved or are in the node. At this stage the un(: : :) facts are a superset ofthe true and unde�ned facts for subgoals in the last ContextNode. The subgoals inthe last node de�ne a subpart of the program. Intuitively, WF-OS now applies thealternating �xpoint technique [25, 11] for computing the well-founded semantics (ina non-goal directed fashion) to this subpart of the program, rather than to the wholeprogram. The alternating �xpoint technique (and other techniques for computationof the well-founded semantics) can be quite costly, and by applying it only to well-chosen subparts of the full program we are able to reduce the cost of evaluationconsiderably.4.3. The Well-Founded Ordered Search AlgorithmWe now present some details of the WF-OS algorithm. The algorithm is basicallythe same as the Ordered Search algorithm presented in Section 3.2, except that (a)the Undef Magic rewriting is used instead of Magic rewriting, and (b) Steps 2(b)and 3 of the evaluation algorithm are modi�ed to be as follows:2(b). Duplicate elimination Unmarked copies of query(q(a)) and query:(q(a)) aretreated as distinct facts, and only the latest unmarked copy of each is re-tained. It is important to note that no dependency information is lost thus{ a direct dependency is replaced by an indirect dependency.If there is a marked copy and an unmarked copy of query[:](q(a)) (with orwithout tag `:') in Context, there are two possibilities:

187(i) If the marked copy of query[:](q(a)) occurs after the unmarked copy,only the marked copy of query[:](q(a)) is retained in Context if theyare both tagged `:' or both untagged, otherwise they are both retained.(ii) If the unmarked copy (tagged or untagged) of query[:](q(a)) occurs afterthe (tagged or untagged) marked copy, we have detected a cyclic de-pendency involving query[:](q(a)) and all marked facts in Context inbetween the two occurrences of query[:](q(a)). The unmarked copy ofquery[:](q(a)) and the above set of marked facts are collapsed into thenode of the marked copy of query[:](q(a)) in Context. If one of the factscollapsed into this node has a negative tag then the node is marked as aNEGLOOP. If query:(q(a)) and query(q(a)) are both present and oneis marked, the other is marked as well.3. Making Query Facts Visible(i) While the last node in Context contains at least one unmarked queryfact,Choose an unmarked fact from the last nodePerform duplicate elimination using the fact (Step 2(b)(ii));If no marked (tagged or untagged) copy of the fact was found, break;If an unmarked fact was found above, mark it and make it available tothe evaluation by inserting it (without tag) in the corresponding di�er-ential relation.(ii) Otherwise all facts in the last ContextNode are marked. If the node isnot marked NEGLOOP the node has been completely evaluated. Thenode is removed from Context, and for each (tagged or untagged) factquery[:](p(a)) in the node, a fact done(p(a)) is created.Otherwise execute Procedure Add Unde�ned. If no new facts are addedby Add Unde�ned, execute Procedure Local Alternation.The intuition behind the above is that if even if we �nd a cycle with negativesubgoals, we proceed with other subgoals that are generated from subgoals in thecycle since they may not be recursive with those in the cycle. When we can proceedno further, we are at a stage where we have to bypass some of the negative subgoalsin order to compute the well-founded model. This is done by means of ProcedureAdd Unde�ned, which lets the left-to-right subgoal generation order skip over neg-ative literals that are in the last node in Context, by introducing facts of the formun(:q(a)).Procedure Add Unde�ned/* We are at a local �xpoint and there is a negative cycle.*/For every fact query:(q(a)) in the last ContextNode,if neither done(q(a)) nor q(a) is presentAdd un(:q(a)) to the set of facts.In case some new un(: : :) facts are added by Add Unde�ned, evaluation continuesas in Ordered Search. Further subgoals may be generated. If they do not dependon the goals in the negative cycle, they get solved independently. If there is adependency, they get collapsed into the node containing the negative cycle.

188 Eventually, a stage has been reached where all negative literals whose subgoalsare in the last node of Context are noted as unde�ned (and thus bypassed), andno further subgoals can be generated. At this stage all relevant subgoals have beengenerated. These subgoals de�ne a subprogram that contains a cycle with a negativesubgoal. To compute the well-founded model for this subprogram,WF-OS evaluationstarts an alternating �xpoint evaluation [25, 11] using Procedure Local Alternation,shown below. Alternating �xpoint computation by itself is not goal directed, and ifused on the entire program would generate a potentially large number of irrelevantfacts. However, the alternating �xpoint performed in Procedure Local Alternation is`local' in that it only involves answers for the subgoals in the last node of Context.By restricting the alternating �xpoint to a subprogram containing `relevant' facts,we can reduce the time cost of computation considerably.Procedure Local Alternation1. Repeat2. For every query fact query:(q(a)) in the last ContextNode,3. If un(q(a)) is not present /* q(a) is de�nitely false */4. Add done(q(a)) to the set of facts.5. If q(a) is present /* q(a) is true */6. Add done(q(a)) to the set of facts.7. Remove un(:q(a))8. If there is no change in the set of facts Then9. Break; /* Last node in Context has been fully evaluated */10. Else /* Restart to �nd new upper-bound */11. For every fact un(q(a)) that matches a tuple query(q(b)) in the last ContextNode,and does not match any fact done(q(c))12. Remove un(q(a)) .13. /* Note: Facts un(:q(a)) are not removed at this step. */14. Apply all rules that de�ne un-predicates in the last ContextNode.15. Do Semi-Naive evaluation on all rules until �xpoint.16. Forever;17. /* Local alternating �xpoint has terminated; Clean up and pop node */18. Pop the last node from Context.19. For every fact query(q(a)) in the node,20. Add a fact done(q(a)) to the set of facts.Procedure Local Alternation tightens the set of un(: : :) and un(: : : :) facts byremoving those whose truth status has been determined to be true or false, andrecomputing the set of un(: : :) facts while keeping the un(: : : :) facts �xed. There-computation (lines 14{15) begins by �ring all the rules that can produce un(: : :)facts and these are used as the di�erential relations for the Semi-Naive evaluation.Our technique, like other techniques that compute the well-founded semantics in agoal-directed fashion, generates some queries that may not actually be relevant, butduring the evaluation it is not possible to make out whether or not they are relevant.Speci�cally, we generate query facts from un facts that may be retracted later.WF-OS behaves nearly identically to OS on left-to-right modularly strati�ed pro-grams. In particular, Procedure Add Unde�ned is never invoked. The only di�erence

189is that for each fact [:]p(�a) generated by OS, a fact un([:]p(�a)) is also generated byWF-OS. This does not result in any change in complexity. The di�erence betweenOS andWF-OS shows up on programs that are not left-to-right modularly strati�ed.Example 4.1. To exemplify the relationship between the WF-OS procedure andOrdered Search, we now give an example of the WF-OS procedure in action on thewin program from Example 3.1, with a database of moves that makes the programno longer modularly strati�ed.win(X) :- move(X;Y);:win(Y):win(X) :- extramove(X;Y); win(Y):move(a; b):move(a; d):move(b; c):move(d; a):extramove(a; e):extramove(e; a):The Undef Magic rewriting iswin(X) :- query(win(X));move(X;Y); done(win(Y));:un(win(Y)):un(win(X)) :- query(win(X));move(X;Y); un(:win(Y)):win(X) :- query(win(X)); extramove(X;Y); win(Y):un(win(X)) :- query(win(X)); extramove(X;Y); un(win(Y)):un(win(X)) :- win(X):un(:win(X)) :- done(win(X));:win(X):query:(win(Y)) :- query(win(X));move(X;Y):query(win(Y)) :- query(win(X)); extramove(X;Y):The computation starts as in Example 3.1 using Ordered Search. query(win(a)) isadded to the Context, marked and the facts query:(win(b)), query:(win(d)) andquery(win(e)) are derived, each is added to a new node at the end of Context.First query(win(e)) is marked and made available for inferences. This derives thefact query(win(a)) and the Context is collapsed to become:fquery(win(a))�; query(win(e))�g fquery:(win(b))g fquery:(win(d))gNow query(win:(d)) is marked and made available for inferences. It derives thefact query:(win(a)) which is placed on the end of the context, then this node andthe marked node fquery(win:(d))�g are collapsed back into the �rst node which isnow marked as a NEGLOOP. The Context is now:fquery(win(a))�; query(win(e))� ; query:(win(d))�; query:(win(a))�g,fquery:(win(b))gExecution then proceeds (basically) as in Ordered Search (Example 3.1) markingquery:(win(b)), and adding query(win(c)), done(win(c)), win(b) and done(win(b)).In addition the facts un(:win(c)) and un(win(b)) are derived.Finally the last remaining Context node isfquery(win(a))� ; query(win(e))�; query:(win(d))�; query:(win(a))�g

190 Nothing more can be derived now, and all facts in the node are marked. Sincethe node is marked NEGLOOP there is a negative query in a cycle. Hence Step3(ii) calls Add Unde�ned which adds the facts un(:win(d)) and un(:win(a)) tothe negative query facts. Now facts un(win(a)), un(win(e)) and un(win(d)) arederived. (In general new queries may be generated and evaluated at this stage.)Finally we enter Local Alternation. Because un(win(a) and un(win(d)) are presentand win(a) and win(d) are not present, no change is made to the set of facts. Hencewe immediately exit the loop and pop the last Context node adding done(win(a)),done(win(e)) and done(win(d)).The WF-OS procedure terminates having determined that win(b) is true, win(c)is false, and win(a), win(d) and win(e) are unde�ned.Example 4.2. The above example does not fully illustrate WF-OS. In this examplewe see how Add Unde�ned and Local Alternation interact with the Ordered Searchpart of the procedure. Given the initial programr(X) :- :s(X):s(X) :- q(X;Y);:r(Y); t(Y):q(X; a) :- :r(X):the Undef Magic rewriting isr(X) :- query(r(X)); done(s(X));:un(s(X)):s(X) :- query(s(X)); q(X;Y); done(r(Y));:un(r(Y)); t(Y):q(X; a) :- query(q(X; a)); done(r(X));:un(r(X)):un(r(X)) :- query(r(X)); un(:s(X)):un(s(X)) :- query(s(X)); un(q(X;Y)); un(:r(Y)); un(t(Y)):un(q(X; a)) :- query(q(X; a)); un(:r(X)):un(r(X)) :- r(X):un(s(X)) :- s(X):un(q(X; a)) :- q(X; a):un(:r(X)) :- done(r(X));:r(X):un(:s(X)) :- done(s(X));:s(X):un(:q(X; a)) :- done(q(X; a));:q(X; a):query:(s(X)) :- query(r(X)):query(q(X;Y)) :- query(s(X)):query:(r(Y)) :- query(s(X)); un(q(X;Y)):query(t(Y)) :- query(s(X)); un(q(X;Y)); un(:r(Y)):query:(r(X)) :- query(q(X; a)):Given the query r(a)WF-OS evaluation starts by adding query(r(a)) to the Context;query(r(a)) is not made available for inferences yet. Nothing more can be derived,and hence Step 3(a) marks the fact and makes it available for making inferences.Using this fact, query:(s(a)) then gets derived, added to a new node at the endof Context, and as before, gets marked and made available for making inferences.Similarly a fact query(q(a; Y)) is derived and inserted. Using this query fact,query:(r(a)) is derived. Hence a cycle is detected and the nodes in the cycle

191(all the nodes in Context in this case) are collapsed into a single node contain-ing fquery(r(a)); query:(s(a)); query(q(a; Y)); query:(r(a)). Because the markedfacts query:(s(a)) and query:(r(a)) are collapsed back into the node it is markedas a NEGLOOP.Nothing more can be derived now, and all facts in the node are marked. Sincethe node is marked NEGLOOP there is a negative query in a cycle. Hence Step3(ii) calls Add Unde�ned which adds the facts un(:s(a)); un(:r(a)) correspondingto the negative query facts. Now facts un(q(a; a)); un(r(a)); and query(t(a)) getderived. To determine that s(a) is false we must examine the subgoal t(a), this iswhy we skip over the undetermined literals q(a; a);:r(a).The new query fact query(t(a)) is placed in a new Context node and after mark-ing provides nothing new. Step 3(ii) removes the node from the Context and adddone(t(a)). Nothing more can be derived, and we are back at Step 3(ii) with theNEGLOOP marked node as the last in the Context, so we execute Local Alternation.Line Action Facts4 Add done(s(a)))12 Delete un-facts un(q(a; a)); un(r(a))15 Fixpoint un(q(a; a)); r(a); un(r(a))6 Add done(r(a)))7 Remove un(:(r(a)))12 Delete un-facts un(q(a; a))15 Fixpoint fgSince nothing further is produced we remove the ContextNode and add the factdone(q(a; Y)). The results for the queried facts r(a);:s(a); 8Y :q(a; Y);:t(a) agreewith the well-founded model of the original program.5. CORRECTNESSThe correctness of the method relies on two key observations: �rst the query factsset up are large enough so that all the computations are correct, and secondly anumber of invariants hold throughout the computation. For simplicity we do notconsider any special treatment of EDB relations in this section, every relation isassumed to be IDB. EDB literals present no di�culties since they have a �xed two-valued model. Let W be the ground instances of the set of facts present at anystage in the computationWe use a set of invariants to describe correctness properties of the program. Theinvariants are shown formally below, but �rst we consider the intuitive meaningof the invariants. Invariant 1 ensures that (a) when a done fact is generated alltrue facts in the well-founded model that match the done fact have been generated,and (b) every true fact generated is true in the well-founded model. Invariant 2ensures that when a done fact is generated, among those facts that match the donefact, all and only those facts that are not false in the well-founded model have beengenerated as possibly unde�ned. Thus, when a done fact is generated, by Invariants1 and 2, the facts that match the done fact, and are generated as possibly unde�nedbut not generated as true are exactly those that are indeed unde�ned in the well-founded model. Hence Invariants 1 and 2 together help ensure the soundness of thecomputation with respect to the well-founded model.

192 The other two invariants are used to Invariant 3 is a technical condition ensuringthat (a) when we have generated a true fact it will have a corresponding un fact, and(b) for each fact q(�a) whose truth value has been determined (i.e. done(q(�a) 2W),the two indicators that it is possibly false q(�a) 62W and un(:(q(�a)) 2W are eitherboth present or both absent. Invariant 4 ensures that the Context maintains correctdependency information.Invariant 1. (True facts) (a) done(q(�a)) 2W ! (q(�a) 2W $ q(�a) 2 T [P]),and (b) q(�a) 2W ! q(�a) 2 T [P].Invariant 2. (False facts) done(q(�a)) 2 W ! (un(q(�a)) 62W $ q(�a) 2 F [P]).Invariant 3. At each �xpoint (i.e., step 3 ofWF-OS and step 15 of Local Alternation)(a) q(�a) 2W ! un(q(�a)) 2W ,and (b) done(q(�a)) 2W ! (q(�a) 62 W $ un(:q(�a)) 2 W).Invariant 4. When we reach Step 3(ii), if query(q(�a)) appears marked in the lastnode of Context, and depends on query(p(�b)), then either� (a) query(p(�b)) is also in the last node of Context, or� (b) query(p(�b)) was on Context earlier and was popped from Context,and a corresponding fact done(p(�b)) is present, and query(p(�b)) doesnot depend on query(q(�a)).We de�ne notation for referring to the de�nitely true, false and unde�ned factsgiven by W :� T [W] = fp(�b) j p(�b) 2Wg� F [W] = fp(�b) j done(p(�b)) 2W ^ un(p(�b)) 62 Wg� U [W] = fp(�b) j done(p(�b)) 2W ^ p(�b) 62W ^ un(p(�b)) 2WgAn outline of the proof is as follows: Lemma 5.1 is a technical lemma requiredfor Lemma 5.2. Lemma 5.2 shows that every time computation reaches the �rst lineof Local Alternation the un facts are a superset of the true and unde�ned facts ofthe well-founded model (restricted to those in the queries of interest). This meansthat if un(p(a)) is not present then it is false in the well-founded model. This isused in Lemma 5.3 to show that the invariants are maintained throughout the repeatloop of Local Alternation. Lemma 5.4 is the main lemma of the proof. It shows howLocal Alternation computes the alternating �xpoint of the subprogram of interest(all facts which have a query fact in the last ContextNode). This result is used inLemma 5.5 to show that the last lines of Local Alternation maintain the invariants.The theorem follows straightforwardly from Lemma 5.5.Lemma 5.1. Suppose the invariants hold at a point when evaluation reaches the �rstline in Local Alternation. Let W denote the set of ground instances of all factspresent at that point. Suppose query(p(�b)) is an instance of a fact in the lastContextNode, and consider any ground instance of a rule in P with head p(�b).Then, either(a) the rule instance is made false by information in W (i.e. there is a negativeliteral :s(�e) s.t. s(�e) 2 T (W), or there is a positive literal s(�e) s.t. s(�e) 2F (W)), or

193(b) the query facts for every literal in the body are in W and un(p(�b)) 2W , or(c) there is a positive literal r(�c) in the rule such that query(r(�c)) is an instanceof a fact in the last ContextNode and un(r(�c)) 62W .Furthermore, un(p(�b)) 2 W only if there is a rule for p that is in category (b)above.The proof of the lemma is based on the Undef Magic rewriting presented earlier,Step 3 of WF-OS, and on Procedure Add Unde�ned. Details are presented in theappendix.Given a set of facts S, and a set M of query facts, de�ne S=M as followsS=M def= fpi(ai)� j pi(ai) 2 S; query(pi(bi)) 2 M; � is agrounding substitution s.t. pi(ai)� = pi(bi)�gWhenever evaluation reaches the �rst line of Local Alternation evaluation hasreached a �xpoint; let the ground instances of the set of facts present at the pointbe W . Based on Lemma 5.1 we can show that at any such point, if a fact un(p(�a))is absent, either all rule instances de�ning it have at least one literal that is falsebased on T (W) and F (W), or (based on Condition (c) of Lemma 5.1) there is aset of positive literals that forms an unfounded set. Hence we have the followinglemma.Lemma 5.2. Suppose the invariants are satis�ed before the start of Local Alternation.Every time execution reaches the �rst line in Local Alternation for every atomq(�a) 2 T [P][U [P], if query(q(�a)) is an instance of a fact in the last ContextNodethen un(q(�a)) 2 W , where W is the set of ground instances of facts present atthat time.The proof is by induction on the stage of the alternating �xpoint computationwhen the fact is derived. Details are presented in the appendix.Lemma 5.3. Suppose the invariants hold at the time of a call to Local Alternation.During the repeat loop of procedure Local Alternation, the invariants are main-tained and no new query or un facts are generated (hence the Context does notchange throughout the procedure).Details of the proof are presented in the appendix.Lemma 5.4. Suppose the invariants are satis�ed before a call to Local Alternation.Let M be the query facts in the last ContextNode, and let N be the union of Mtogether with all completed query facts, i.e. where query(q(�a)) and done(q(�a))are both present.Let Wi be the ground instances of the set of facts present at the i + 1th timeevaluation reaches the �rst line of Local Alternation during the call to Local Alternation.Let T0 = T [W0]=(N �M), U0 = (HBP � F [W0])=(N �M), and F0 = F [W0].Let T1 = TP (HBP � F0) " !(T0) and U1 = TP (T0) " !(U0), and let Ti+1 =TP (Ui) " !(T0); i > 0, and let Ui+1 = TP (Ti) " !(U0); i > 0.For n � 0, q(�a) 2 Wn=N i� q(�a) 2 Tn+1=N , and un(q(�a)) 2 Wn=N i�q(�a) 2 Un+1=N .The above lemma proves the main results that are needed to show the soundnessof our technique. The proof is by induction on the sequence of derivations (for the

194 only if direction), and by induction on the stage of alternating �xpoint at which thea fact is derived (for the if direction). Details are presented in the appendix.Corollary 5.1. Suppose the invariants are satis�ed before a call to Local Alternation.At the end of a call to Local Alternation, for every fact p(�b) such that query(p(�b))is in the ContextNode that is popped at the end of the procedure, p(�b) is presenti� p(�b) 2 T [P], and un(p(�b)) is present i� p(�b) 2 T [P][U [P]Proof. Clearly at the �xpoint n, Tn=M and Un=M are the restriction of thewell-founded model of P [T0 [: � F0 to M . By invariants 1, 2, 3 and 5, T0 � W �Pand : � F0 �W �P , and the result follows. 2The following lemma essentially follows from the above corollary, and from theearlier lemmas.Lemma 5.5. Invariants 1, 2, 3, and 4 are maintained by Local Alternation.Proof. Invariant 1 follows from Corollary 5.1 and Lemma 5.3, the second partfollows by induction. Invariant 2 similarly follows Corollary 5.1 and Lemma 5.3.Invariant 3 is a simple property of the rewritten program, and the de�nition ofLocal Alternation. Invariant 4 follows trivially since the set of query facts does notchange. 2We have not discussed the maintenance of invariants throughout the remainderof WF-OS, in particular when in Step 3 the last ContextNode is not marked NE-GLOOP. In this case we can easily see each of the above Lemmas holds (perhaps ina vacuous manner). In e�ect if Local Alternation were applied it would immediatelyterminate, hence the invariants are maintained. The operations on Context such asinsertion and duplicate elimination maintain Invariant 4, and do not a�ect Invari-ants 1 and 2. Invariant 3(a) is a simple property of the rewritten program, whileInvariant 3(b) is una�ected because no done facts are added.We show, based on the invariants, that WF-OS evaluation is sound. We also showpartial completeness | if evaluation terminates, all facts in the well-founded modelare generated, and for the case of DATALOG programs with �nite base relations,evaluation does terminate.Theorem 5.1. Given any non-oundering program P and a terminating query ?q(�t),WF-OS evaluation is sound and partially complete w.r.t. the well-founded se-mantics of P . That is1. q(�t)[�] 2 T [P] i� q(�t)[�] is a ground instance of a fact derived by WF-OS.2. q(�t)[�] 2 U [P] i� un(q(�t))[�] is a ground instance of a fact derived by WF-OS, and q(�t)[�] is not an instance of any fact that is derived.3. q(�t)[] 2 F [P] i� un(q(�t))[] does not unify with any fact derived by WF-OS.Proof. The result holds because invariants 1, 2, and 3 are maintained throughoutthe operation of WF-OS and when the procedure terminates, the Context is emptyand thus done(q(�t)) is in the set of facts. 26. EXTENSIONSWe presented a simple version of WF-OS for ease of exposition. Straightforwardimprovements include not generating un facts when it is clear that they are not

195needed (e.g. for programs without negation). A number of other improvements arediscussed below.Subsumption checking on query facts in the Context can be used instead of du-plicate elimination, as described in [18]. In the case of Ordered Search subsumptionchecking was done in \one direction" in order to maintain exact dependencies: ifa query fact in a new node in Context subsumes a marked query fact lower inContext, a collapse operation is initiated. If the subsumption is in the other direc-tion, the collapse operation is not initiated | in Ordered Search collapsing Contextnodes in such a situation can create spurious negative cycles in left-to-right modu-larly strati�ed programs, which cannot be handled by the evaluation. WithWF-OS,the spurious negative cycles do not a�ect soundness or completeness, and merelya�ect e�ciency. Hence subsumption checking can be performed in both directionswithout a�ecting correctness, only a�ecting e�ciency.Procedure Well-Founded Ordered Search is not set-oriented in making generatedsubgoals available for further use (although it is set-oriented in generating subgoalsand answers to subgoals). The procedure can be made more set-oriented by markinga whole set of subgoals at a time (in Step 3), and collapsing the corresponding nodesin Context together. Unlike in Ordered Search we can indiscriminately apply thisprocedure without a�ecting soundness or completeness, because Local Alternation isa safe method for computing the well-founded model of any (query-closed) fragmentof the program. Marking sets of facts at a time leads to more set-oriented evaluationbut can signi�cantly decrease e�ciency by creating apparent negative cycles wherenone exist, or making the query sets to which Local Alternation is applied largerthan necessary. The tradeo� between e�ciency of set-oriented evaluation versusmore Local Alternation suggests marking sets of facts at a time is only worthwhilewhen the subprogram is positive or strati�ed.Throughout the paper we have concentrated on evaluating programs with left-to-right complete sips. The results easily extend to arbitrary sips, because query factsdepend on un-facts rather than the original predicates. Ordered Search is restrictedto left-to-right sips since other sip orderings may produce negative loops not presentin the left-to-right order.We presented our algorithms based on the Undef Magic Templates rewriting.Supplementary Magic Templates rewriting [6, 17] is a variant of Magic Templatesrewriting, which essentially factors out sub-expressions that are common to a (mod-i�ed) original rule and the query rules derived from that rule. The Undef Supple-mentary Magic Templates rewriting is a straightforward modi�cation of the UndefMagic Templates Rewriting, that factors out common sub-expressions in the queryrules and un rules. The supplementary predicates created correspond to successiveincreasing pre�xes of the (modi�ed) original rule. As a result of supplementary ma-gic rewriting, we lose the direct connection we had between the subgoals on the headof the rule and the subgoals generated for the body literals. Details of how to modifySupplementary Magic rewriting to keep track of the dependencies of subgoals canbe done in a manner similar to that described in the full version of [18].To do a well-founded ordered search using Undef Supplementary Magic Tem-plates, we need to store with each supplementary fact the subgoal on the rulehead that resulted in the generation of the fact. It is an easy modi�cation tothe well-founded ordered search algorithm to insert this information for the �rstsupplementary fact, and to propagate the information along derivations of facts forsupplementary predicates further down the rule. Given the modi�cations described

196 above, Procedure Well-Founded Ordered Search can be used along with Undef Sup-plementary Magic Templates rewriting.Procedure Local Alternation is roughly equivalent to the magic sets based altern-ating �xpoint technique of [12] applied to a small part of the program. We can usethe optimization of [12] suggested by [15], which permits some query facts to bediscarded if they are found to be irrelevant due to some facts earlier (temporarily)assumed unde�ned being found to be either true or false. There is some extra workto recompute the set of query facts (the `magic sets'), but the set is decreasingwithin the alternating �xpoint, and this may save some irrelevant computation.Another possibility for optimization is illustrated by the following example.Example 6.1. WF-OS generates some un facts that are later retracted. These unfacts are used in the context of the local alternating �xpoint on the last node ofContext. In the following program query facts are generated unnecessarily usingun facts that are retracted later.r :- p; u:p :- :q; p:q :- p; s:TheWF-OS evaluation of the above program for a query ?r() generates facts query(p),which leads to the derivation of query:(q), which in turn results in the derivationof query(p). A local �xpoint is reached, with a negative loop in the last node ofContext containing query(p) and query:(q). At this stage, Add Unde�ned addsfact un(:q), which leads to the derivation of un(p), and query(p) (which is alreadypresent). The fact un(p) leads to the derivation of query(s) using a rule instancequery(s) :- query(q); un(p):but also of query(u) using a rule instancequery(u) :- query(r); un(p):Of these, query(q) is part of the cycle, and the fact query(s) is required in orderto solve query(q). But r is not part of the cycle and there is no need at this pointto generate query(u) to solve query(r). In terms of Context, the node containingquery(r) is before the node containing query:(q) and query(p), and hence query(r)can be evaluated after query:(q) and query(p) are completely evaluated. Indeed,evaluation proceeds, and q is determined to be false, and so is p. However, thesubgoal query(u) has been generated already and will be solved.We can avoid unnecessary derivations of the above kind by delaying derivationswhere the query(: : :) fact used in the body is not part of the last Context node.(Rules in the Undef Magic rewritten program have at most one query literal in thebody.) In practise, in order to co-exist with Semi-Naive evaluation, it is easier to�nd that the derivation can be made, and note it without generating the fact, andto recheck the derivation when the relevant query node becomes the last node inContext.While the well-founded model is not recursively enumerable in general, whenrestricted to DATALOG programs it has size polynomial in the size of the EDB

197[26], since all predicates are of �xed arity, and the only elements of the Herbranduniverse are those that are explicitly in the EDB. Actually, the above argumentshows that the Herbrand base of the program itself is of size polynomial in thesize of the EDB. Further, the Magic rewritings can result in at most a polynomialincrease in size of the Herbrand base, since they increase the number of predicatesby at most a constant factor, and each new predicate has arity no more than existingones.We can use this to argue that WF-OS executes in a polynomial time in the size ofthe EDB on DATALOG programs. Between any two calls to alternating �xpoint,there are only a polynomial number of steps, since each step computes a �xpointon the rules, or makes a new fact visible. Each step can be seen to take polynomialtime. Finally, there are only a polynomial number of calls to alternating �xpointsince each call results in the addition of some done facts. And because of thepolynomial data complexity of the whole well-founded model, the execution of asingle alternating �xpoint on some subpart of the program itself takes polynomialtime.Theorem 6.1. For a �xed DATALOG program P , WF-OS runs in polynomial timein the size of the EDB. 2Note that the Undef Magic Rewriting as described translates DATALOG pro-grams to non-DATALOG programs, but this can be avoided by introducing newpredicates query p, query neg p, un p and un neg p and replacing the constructionsquery(p(�t)), query:(p(�t)), un(p(�t)) and un(:p(�t)) by query p(�t), query neg p(�t),un p(�t) and un neg p(�t) respectively.7. RELATED WORKThe most closely related work to that presented in this paper is SLG resolution(Chen and Warren [10] and Chen, Swift and Warren [8]). Our work is independent oftheirs, and in fact the two techniques approach the problem from di�erent directions;while WF-OS is based on bottom-up evaluation made query directed, SLG is basedon top-down evaluation made memoing. Their technique maintains instantiatedrules and answers that may contain \delayed" literals. Their \delaying" step for anegative literal :p(�a) corresponds to a step where we introduce a fact un(:p(�a)).The answers with delayed literals correspond roughly to our un facts, but maintaindependency information.There are three interesting di�erences between our techniques. The �rst is thatwhen they delay a negative literal, they remove the negative dependencies that areintroduced by the literal, in e�ect dynamically moving the literal back in the siporder. They are thus able to relate positive cycles in unfounded sets directly topositive cycles in their dependency information. Since we do not update depend-ency information at the time of our equivalent to delaying, we cannot make thisconnection. They also optimize some of their actions by incrementally maintainingdependency information. By combining the above optimizations, they avoid usingthe alternating �xpoint technique. We can incorporate some of these optimizationsin our technique as well, but it is not clear how we can avoid the alternating �x-point technique since we do not maintain exact dependency information within anode of Context (if the program is not modularly strati�ed). Equally interesting

198 is the question of whether their technique is always better than (local) alternating�xpoint or not.The second di�erence is that their technique does not use exact dependencyinformation even in the case of modularly strati�ed programs | a sequence ofstrongly connected components (SCCs) in the depends on relation may be mergedand viewed as if it were a single SCC. This has bad consequences in cases wherethe need to maintain the separation of SCCs is important, as may be the case if thetechnique is to be extended to aggregation (even on modularly strati�ed programs).Equally importantly, since they do not have exact SCC information they may delaya negative literal that is not really in a negative cycle, but appears to be in a negativecycle due to the merging of SCCs. We maintain the separation of SCCs, and arethus able to avoid `delaying literals' in some cases where they delay the literal. Thusthere are cases where we compute fewer facts than they do. Recent extensions totheir technique to recover exact dependency information in the case of modularlystrati�ed programs are discussed in [23].The third di�erence is that using the optimization of [12] proposed by [15] wecan recognize that some queries are irrelevant and delete them in the course of thealternating �xpoint, as we noted in Section 6. In the technique of Chen et al., oncea query is generated it is never deleted even if it is irrelevant.Our technique performs better than that of [12] and its optimization [15] sinceit is able to restrict the alternating �xpoint to a subpart of the program. In partsof the program where there are no cyclic dependencies WF-OS is able to determ-ine the status of a fact before using it, and thereby avoid unnecessary computationcaused by treating them as unde�ned. As a special case of the above, for modularlystrati�ed programs WF-OS reduces to Ordered Search, and performs no irrelevantcomputation and repeats no computation. Our technique is better than WELL! [7]and QSQR/SLS resolution [22] since both perform repeated computation even forprograms without negation. Unlike XOLDTNF [9] our technique is able to shareanswers to subgoals e�ectively; XOLDTNF repeats computation even for modularlystrati�ed programs. The technique of [13] is not goal directed, although they men-tion that they can use a restricted version of Magic sets (where no negative literalsare used in query rules).8. CONCLUSIONS AND FUTURE WORKWe extended the Ordered Search technique to handle well-founded negation. Theextension essentially uses Ordered Search to �nd dependencies, and when a circulardependency is found, it applies the alternating �xpoint technique to compute thewell-founded model for the subgoals that are involved in the cycle. Thus we areable to use the (costly) alternating �xpoint technique only if it is required. Sinceimplementations of Ordered Search and of the alternating �xpoint technique arealready available, it should be relatively straightforward to combine them.The implementation of SLG resolution described in [8] and WF-OS have advant-ages and disadvantages over each other in di�erent cases. It would be interestingto see if the bene�ts of both techniques can be combined. Another interesting ex-tension would be to see if the alternating �xpoint technique can be replaced bysome other technique that is more e�cient (possibly by exploiting information thatis generated during Ordered Search).

199ACKNOWLEDGEMENTSWe would like to thank Divesh Srivastava for useful discussions on some details ofthe well-founded ordered search algorithm. We would also like to thank WeidongChen for discussions that helped us understand better the relationship betweenSLG resolution and our technique, and for pointing out an error in our originalpresentation of the WF-OS algorithm.A. PROOFS OF LEMMAS FROM SECTION 5Lemma 5.1 Suppose the invariants hold at a point when evaluation reaches the�rst line in Local Alternation. Let W denote the set of ground instances ofall facts present at that point. Suppose query(p(�b)) is an instance of a factin the last ContextNode, and consider any ground instance of a rule in Pwith head p(�b). Then, either(a) the rule instance is made false by information in W (i.e. there is anegative literal :s(�e) s.t. s(�e) 2 T (W), or there is a positive literal s(�e)s.t. s(�e) 2 F (W)), or(b) the query facts for every literal in the body are in W and un(p(�b)) 2W ,or(c) there is a positive literal r(�c) in the rule such that query(r(�c)) is aninstance of a fact in the last ContextNode and un(r(�c)) 62W .Furthermore, un(p(�b)) 2 W only if there is a rule for p that is in category(b) above.Proof. Consider a ground instance of a rule in P of the formp(�b) B; [:]r(�c); B0Case 1: For all literals [:]s(�e) in the rule, un([:]s(�e)) 2 W . Now MagUnd(P)contains a rewritten version of the rule using which (a fact that subsumes)un(p(�b)) is derived, and also has query rules such that for each literal [:]s(�e)a query fact (that subsumes) query(s(�e)) is generated. Condition (b) is thensatis�ed.Case 2: There is a literal [:]s(�e) in the rule such that un([:]s(�e)) 62 W . Let [:]r(�c)be the �rst such literal in the left-to-right order. We consider two subcases{ (a) the literal is positive and (b) the literal is negative. In subcase 2(a),MagUnd(P) contains rules de�ning query such that query(r(�c)) is generatedusing the un facts from earlier literals, and the query fact for the head ofthe rule. Now, if query(r(�c)) is in the last ContextNode, Condition (c) issatis�ed. Else, the query must have been solved already, since any query factthat query(p(�b)) depends on cannot be in an earlier ContextNode. Then theWF-OS algorithm must have inserted a done(r(�c)) fact. Since un(r(�c)) isnot present, by Invariant 2, the literal is not satis�ed, and hence Condition(a) is met. This completes subcase 2(a).In subcase 2(b), the �rst such literal is a negative literal, :r(�c). A factquery:(r(�c)) must then have been generated. If the fact is in the last

200 context node, a fact un(:r(�c)) must also have been inserted in ProcedureAdd Unde�ned. The fact cannot be present, since we are in Case 2 of thisproof. But removing the fact could only happen if done(r(�c)) is added andr(�c) is present. But by Invariant 1, the literal is not satis�ed, and Condition(a) is met. This completes subcase 2(b), and the proof of the �rst part ofthe lemma statement.We note that in case 2, un(p(�b)) could not have been derived from the in-stance of the rewritten form of the rule. This proves the last part of thestatement of the lemma, and completes the proof of the lemma. 2Lemma 5.2 Suppose the invariants are satis�ed before the start of Local Alterna-tion. Every time execution reaches the �rst line in Local Alternation for everyatom q(�a) 2 T [P][U [P], if query(q(�a)) is an instance of a fact in the lastContextNode then un(q(�a)) 2 W , where W is the set of ground instancesof facts present at that time.Proof. Let M be the set of query facts in the last ContextNode together with allcompleted query facts, i.e. query(q(�a)) 2 W such that done(q(�a)) 2 W . We showq(�a) 2 (T [P][U [P])=M = (TP (T [P]) " !)=M implies un(q(�a)) 2W by induction.The base case is trivial. Take q(�a) 2 (TP (T [P]) " h + 1)=M then there existsground instance of a rule in P of the formq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):where pi(�bi) 2 TP (T [P]) " h � T [P][U [P] and rj(�cj) 62 T [P]. By Lemma 5.1 therule instance must fall in category (a), (b) or (c). Clearly it cannot fall in category(a) since this implies either pi(�bi) 2 F [W] and hence by Invariant 2 pi(�bi) 2 F [P],or rj(�cj) 2 T [W] and by Invariant 1 rj(�cj) 2 T [P]. Suppose the rule falls incategory (c) then one of the positive literals pi(�bi) is such that query(pi(�bi)) 2 Mand un(pi(�bi)) 62 W , but by induction since pi(�bi) 2 (TP (T [P]) " h)=M it must bethat un(pi(�bi)) 2 W . Thus the rule falls in category (b) and hence un(q(�a)) 2 W .2Lemma 5.3 Suppose the invariants hold at the time of a call to Local Alternation.During the repeat loop of procedure Local Alternation, the invariants aremaintained and no new query or un facts are generated (hence the Contextdoes not change throughout the procedure).Proof. For Lines 3{4, by Lemma 5.2, since un(q(a)) 62 W it must be thatq(a) 2 F [P]. Hence adding done(q(a)) to W maintains Invariant 2. For Lines 5{7because q(�a) is generated by a ground instance of a rule where :p(�b) is replacedby done(p(�b));:un(p(�b)) then by Invariants 1 and 2, each of the literals in the ruleis true in W �P and hence q(�a) 2 T [P], maintaining Invariant 1. The maintenanceof Invariant 3 follows trivially since we are at a �xpoint, and there are rules in-troduced by Undef Magic rewriting that must have derived the necessary facts.The maintenance of Invariant 4 follows from the second part of this lemma, provedbelow.The rules for query facts and un facts are positive, and depend only on thepredicates query and un, except for the rules of the form un(p(�a)) :- p(�a) and

201un(:p(�a)) :- done(p(�a));:p(�a). No un-fact not present at the call to Local Alter-nation can be created during the repeat loop unless at least one new un-fact arisesfrom a rule like these above, since the execution simply removes un(:p(�a)) facts.Suppose q(�a) enters W . Then it follows by the above that q(�a) 2 T [P] and henceby Lemma 5.2, un(q(�a)) 2 W at the call to Local Alternation. Suppose done(q(�a))enters W , then un(:q(�a)) was in W , and could not have been removed. Hence thesequence of un-facts generated is decreasing and no new query facts are computed.It follows from the structure of Ordered Search that Context does not change in thisperiod. 2Lemma 5.4 Suppose the invariants are satis�ed before a call to Local Alternation.Let M be the query facts in the last ContextNode, and let N be the unionof M together with all completed query facts, i.e. where query(q(�a)) anddone(q(�a)) are both present.Let Wi be the ground instances of the set of facts present at the i + 1thtime evaluation reaches the �rst line of Local Alternation during the call toLocal Alternation. Let T0 = T [W0]=(N�M), U0 = (HBP�F [W0])=(N�M),and F0 = F [W0]. Let T1 = TP (HBP � F0) " !(T0) and U1 = TP (T0) "!(U0), and let Ti+1 = TP (Ui) " !(T0); i > 0, and let Ui+1 = TP (Ti) "!(U0); i > 0.For n � 0, q(�a) 2 Wn=N i� q(�a) 2 Tn+1=N , and un(q(�a)) 2 Wn=N i�q(�a) 2 Un+1=N .Proof. Throughout the proof we restrict attention to facts that match the queryfacts M , the results easily follow for the remaining facts matching (N �M) whichare unchanged throughout Local Alternation. Clearly for each n, q(�a) 2 T0 $ q(�a) 2Wn=(N �M) and q(�a) 2 U0 $ un(q(�a) 2Wn=(N �M)We examine the base case, i.e., the conditions for T1 and U1, �rst.We show q(�a) 2 W0=N implies q(�a) 2 T1 by induction on the order of factsgenerated in W0. Now, q(�a) 2 W0=N means there exists ground instance of a rulein MagUnd(P) of the formq(�a) :- query(q(�a)); p1(�b1); : : : ; pm(�bm);done(r1(�c1));:un(r1(�c1)); : : : ; done(rk(�ck));:un(rk(�ck)):Each pi(�bi) entered W0 earlier, and by induction pi(�bi) 2 T1. Now done(rj(�cj)) 2W0 and un(rj(�cj)) 62W0 hence, rj(�cj) 2 F [W0]. Consider the ground instance of arule in P of the formq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):Then clearly q(�a) 2 T1 because pi(�bi) 2 T1 and rj(�cj) 62 HBP � F0.We show q(�a) 2 (TP (HBP � F0) " h(T0))=N implies q(�a) 2W0 by induction onh. The base case is trivial. Suppose q(�a) 2 (TP (HBP � F0) " h + 1(T0))=N thenthere exists ground instance of a rule in Pq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):such that pi(�bi) 2 TP (HBP�F0) " h(T0)), and rj(�cj) 62 HBP�F0. Thus rj(�cj) 2 F0and done(rj(�cj)) 2W0 and un(rj(�cj)) 62W0. By the de�nition of N (and Invariant4), pi(�bi) 2 (TP (HBP � F0) " h(T0))=N , and by inductive assumption pi(�bi) 2W0.

202 Consider the ground instance of a rule in MagUnd(P) of the formq(�a) :- query(q(�a)); p1(�b1); : : : ; pm(�bm);done(r1(�c1));:un(r1(�c1)); : : : ; done(rk(�ck));:un(rk(�ck)):Clearly q(�a) 2W0 since it would be derived by this rule instance.We now show un(q(�a)) 2 W0=N implies q(�a) 2 U1 by induction on the order inwhich the un-facts are generated in W0. un(q(�a)) 2W0=N means that either thereexists a ground instance of a rule in MagUnd(P) of the formun(q(�a)) :- q(�a)where q(�a) 2W0=N , from which we have q(�a) 2 T1 � U1, or there is a rule instanceof the form un(q(�a)) :- query(q(�a)); un(p1(�b1)); : : : ; un(pm(�bm));un(:r1(�c1)); : : : ; un(:rk(�ck)):where un(pi(�bi)) 2 W0=N , hence un(pi(�bi)) 2 U1 by induction, and un(:rj(�cj)) 2W0. Either done(rj(�cj)) 2 W0 and rj(�cj) 62 W0 by Invariant 3, or query(rj(�cj)) isan instance of a query inM and hence in either case rj(�cj) 62 T0 = T [W0]=(N�M).Consider the ground instance of a rule in P of the formq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):Then q(�a) 2 U1 since pi(�bi) 2 U1 by inductive assumption, and rj(�cj)) 62 T0.We show q(�a) 2 (TP (T0) " h(U0))=N implies un(q(�a)) 2 W0 by induction onh. The base case is trivial. Suppose q(�a) 2 TP (T0) " h + 1(U0) then there existsground instance of a rule in Pq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):such that pi(�bi) 2 TP (T0) " h(U0) and rj(�cj) 62 T0. Now we can show pi(�bi) 2(TP (T0) " h(U0))=N , since query(q(�a)) 2 N , and we can show (by an inner level ofinduction) that each of query(pi(�bi)) would be generated from query(q(�a)). Hence,by inductive assumption, un(pi(�bi)) 2 W0. Similarly, each of query:(rj(�cj)) isgenerated from query(q(�a)).If query:(rj(�cj)) 62M , then by Invariants 4 and 2, done(rj(�cj)) 2 W0, rj(�cj) 62W0, and un(:rj(�cj)) 2 W0. If query:(rj(�cj)) 2 M then un(:rj(�cj)) 2 W0 be-cause it was added by Add Unde�ned. Consider the ground instance of a rule inMagUnd(P) of the formun(q(�a)) :- query(q(�a)); un(p1(�b1)); : : : ; un(pm(�bm));un(:r1(�c1)); : : : ; un(:rk(�ck)):Clearly un(q(�a)) 2W0 since it is derived by such a rule.We have now completed the base case, and now examine the conditions for Tn+1and Un+1.We show q(�a) 2 Wn=N implies q(�a) 2 Tn+1 by induction on the order of factsgenerated in Wn. q(�a) 2 Wn means there exists ground instance of a rule inMagUnd(P) of the formq(�a) :- query(q(�a)); p1(�b1); : : : ; pm(�bm);done(r1(�c1));:un(r1(�c1)); : : : ; done(rk(�ck));:un(rk(�ck)):

203and pi(�bi) enter Wn earlier, hence by induction pi(�bi) 2 Tn+1. Now done(rj(�cj)) 2Wn and un(rj(�cj)) 62 Wn. If query(rj(�cj)) 62 M then rj(�cj) 2 U0 and also inUn because these facts were never removed during Local Alternation. Otherwise atsome Wl; l � n we derived the fact done(rj(�cj)) either because (a) un(rj(�cj)) 62Wl thus un(rj(�cj)) 62 Wn (since by Lemma 5.3 the un-facts are decreasing) andhence rj(�cj) 62 Un, or (b) rj(�cj) 2 Wl hence rj(�cj) 2 Wn and un(rj(�cj)) 2 Wn,contradiction. Hence rj(�cj) 62 Un Consider the ground instance of a rule in P of theform q(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):Then clearly q(�a) 2 Tn+1 because pi(�bi) 2 Tn+1 and rj(�cj) 62 Un.We show q(�a) 2 (TP (Un) " h(T0))=N implies q(�a) 2 Wn by induction on h.The base case is trivial. Suppose q(�a) 2 (TP (Un) " h+ 1(T0))=N then there existsground instance of a rule in Pq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):such that pi(�bi) 2 TP (Un) " h(T0). By the de�nition of N , pi(�bi) 2 (TP (Un) "h(T0))=N , and hence by inner inductive assumption pi(�bi) 2Wn. Further, rj(�cj) 62Un and thus by the outer inductive assumption un(rj(�cj)) 62Wn�1. Hence we musthave done(rj(�cj)) 2Wn and un(rj(�cj)) 62Wn.Consider the ground instance of a rule in MagUnd(P) of the formq(�a) :- query(q(�a)); p1(�b1); : : : ; pm(�bm);done(r1(�c1));:un(r1(�c1)); : : : ; done(rk(�ck));:un(rk(�ck)):Clearly q(�a) 2Wn.We now show if un(q(�a)) 2Wn=N implies q(�a) 2 Un+1 by induction on the orderin which the un-facts are generated in Wn. un(q(�a)) 2 Wn=N means there eitherthere exists ground instance of a rule in MagUnd(P) of the formun(q(�a)) :- q(�a)where q(�a) 2 Wn=N , from which we have q(�a) 2 Tn+1 � Un+1, or there is a ruleinstance of the formun(q(�a)) :- query(q(�a)); un(p1(�b1)); : : : ; un(pm(�bm));un(:r1(�c1)); : : : ; un(:rk(�ck)):where un(pi(�bi)) 2 Wn and thus pi(�bi) 2 Un+1 by induction and un(:rj(�cj)) 2 Wn.If rj(�cj) does not match a query inM then done(rj(�cj)) 2W0 and un(:rj(�cj)) 2W0and hence rj(�cj) 62 T0 and rj(�cj) 62 Tn. Otherwise un(:rj(�cj)) 2 Wn impliesrj(�cj) 62Wn�1 and by outer induction rj(�cj) 62 Tn. Consider the ground instance ofa rule in P of the formq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):Then q(�a) 2 Un+1 since pi(�bi) 2 Un+1 and rj(�cj) 62 Tn.We show q(�a) 2 (TP (Tn) " h(U0))=N implies un(q(�a)) 2 Wn by induction on h.The base case is trivial. Suppose q(�a) 2 (TP (Tn) " h+ 1(U0))=N then there existsground instance of a rule in Pq(�a) :- p1(�b1); : : : ; pm(�bm);:r1(�c1); : : : ;:rk(�ck):

204 such that pi(�bi) 2 TP (Tn) " h(U0). We can again show by induction that each ofquery(pi(�bi)) 2 N , and by inductive assumption each pi(�bi) 2 Wn, and hence alsoun(pi(�bi)) 2 Wn. Further, rj(�cj) 62 Tn. If query(rj(�cj)) 62 M then by Invariants 4and 2, done(rj(�cj)) 2 W0, rj(�cj) 62 W0, and un(:rj(�cj)) 2 W0 and hence also inWn.If rj(�cj) corresponds to a query fact in M then un(:rj(�cj)) 2W0 because it wasadded by Add Unde�ned and it is only removed if rj(�cj) 2 Wn but that would implyrj(�cj) 2 Tn. Consider the ground instance of a rule in MagUnd(P) of the formun(q(�a)) :- query(q(�a)); un(p1(�b1)); : : : ; un(pm(�bm));un(:r1(�c1)); : : : ; un(:rk(�ck)):Clearly un(q(�a)) 2Wn.This completes the proof. 2REFERENCES1. Apt, K. R., Blair, H. A. and Walker, A. Towards a theory of declarative know-ledge. In Minker (ed) Foundations of Deductive Databases and Logic Programming,(1988), 89{148.2. I. Balbin and K. Ramamohanarao. A generalization of the di�erential approach torecursive query evaluation. Journal of Logic Programming, 4(3), September 1987.3. Bancilhon, F. Naive evaluation of recursively de�ned relations. In Brodie and Mylo-poulos, editors, On Knowledge Base Management Systems | Integrating Databaseand AI Systems. Springer-Verlag (1985).4. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strangeways to implement logic programs. In Proceedings of the ACM Symposium onPrinciples of Database Systems, pages 1{15, Cambridge, Massachusetts, March1986.5. Baral, C. and Subrahmanian, V.S. Dualities between alternate semantics for lo-gic programming and nonmonotonic reasoning. In Procs. of the 1st InternationalWorkshop on Logic Programming and Non-monotonic Reasoning, 1991, MIT Press,69{86.6. Catriel Beeri and Raghu Ramakrishnan. On the power of Magic. In Procs. of theACM Symp. on Principles of Database Systems, pages 269{283, Mar. 1987.7. N. Bidoit and P. Legay. WELL! An evaluation procedure for all logic programs. InProcs. of the International Conf. on Database Theory, pages 335{348, Dec. 1990.8. Weidong Chen, Terrance Swift and David S. Warren. E�cient Top-Down Com-putation of Queries under the Well-Founded Semantics Tech. Report 93-CSE-33,Southern Methodist University, Aug. 1993.9. Weidong Chen and Davis S. Warren. A goal-oriented approach to computing thewell founded semantics. In Procs. of the Joint Int'l Conf. and Symp. on LogicProgramming, 589{606, 1992.10. Weidong Chen and Davis S. Warren. Query Evaluation under the Well-FoundedSemantics. In Procs. of the ACM Symp. on Principles of Database Systems 1993.11. David Kemp, Divesh Srivastava, and Peter Stuckey. Magic sets and bottom-up eval-uation of well-founded models. In Procs. of the International Logic ProgrammingSymposium, 337{351, 1991.

20512. David Kemp, Divesh Srivastava, and Peter Stuckey. Query restricted bottom-upevaluation of normal logic programs. In Procs. of the Joint Int'l Conf. and Symp.on Logic Programming, 288{302, 1992.13. Leone, N. and Rullo, P. Safe computation of the well-founded semantics of DATA-LOG queries. Information Systems 17(1) (1992), 17{31.14. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ed., 1987.15. Morishita, S. An alternating �xpoint tailored to magic programs. In Procs. of the1993 ACM Symp. on Principles of Database Systems, 1993.16. Przymusinski, T.C. On the declarative semantics of strati�ed deductive data-bases. In Minker (ed) Foundations of Deductive Databases and Logic Programming,(1988), 193{216.17. Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-grams. In Procs. of the International Conf. on Logic Programming, 140{159, 1988.18. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the searchin bottom-up evaluation. In Joint Int'l Conf. and Symp. on Logic Programming1992, 273{287, 1992.19. Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the searchin bottom-up evaluation. Full version of [18], in preparation, 1993.20. Kenneth A. Ross A procedural semantics for well-founded negation in logic pro-grams. In Procs. of the ACM Symp. on Principles of Database Systems (1989).21. Kenneth A. Ross. Modular Strati�cation and Magic Sets for DATALOG programswith negation. In Procs. of the ACM Symp. on Principles of Database Systems,161{171, 1990.22. Kenneth A. Ross. The Semantics of Deductive Databases. Ph.D. thesis, Departmentof Computer Science, Stanford University, Aug. 1991.23. T. Swift. E�cient Evaluation of General Logic Programs. PhD thesis, State Uni-versity of New York at Stony Brook, Dec. 1994.24. H. Tamaki and T. Sato. OLD resolution with tabulation. In Procs. of the ThirdInternational Conference on Logic Programming (LNCS 225), 84{98, 1986.25. A. Van Gelder. The alternating �xpoint of logic programs with negation. In Procs.of the ACM Symp. on Principles of Database Systems, 1{10, 1989.26. A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-mantics for general logic programs. Journal of the ACM, 38(3):620{650, 1991.27. L. Vieille. Recursive query processing: The power of logic. Theoretical ComputerScience, pages 1{53, 1989.

