J. LOGIC PROGRAMMING (1997:32(3): 171-205)

171

WELL-FOUNDED ORDERED SEARCH: GOAL
DIRECTED BOTTOM-UP EVALUATION OF
WELL-FOUNDED MODELS

PETER J. STUCKEY* AND S. SUDARSHANT

There have been several evaluation mechanisms proposed for computing
query answers based on the well-founded semantics, for programs with neg-
ation. However, these techniques are costly; in particular, for the special
case of modularly stratified programs, Ordered Search is more efficient than
the general purpose techniques. However, Ordered Search is applicable only
to modularly stratified programs. In this paper, we extend Ordered Search
to compute the well-founded semantics for all (non-floundering) programs
with negation. Our extension behaves exactly like Ordered Search on pro-
grams that are modularly stratified, and hence pays no extra cost for such
programs. <

1. INTRODUCTION

In the recent past, much attention has been paid to the semantics and evaluation
of programs that use negation. To handle programs that combine the use of neg-
ation with recursion, three-valued semantics, which allow the truth status of some
facts to be undefined, have been proposed. If negation i1s used in conjunction with
recursion, it 1s non-trivial to provide semantics to all programs based purely on
logical implication. Early techniques to work around this problem (e.g. 1, 16, 21])
restricted the class of programs for which semantics (and correspondingly evalu-
ation mechanisms) were defined. These semantics were two-valued, in that each
fact (ground atom) is either true or it is false. For the general case of programs
with recursion and negation, two-valued semantics were found to be inadequate in
many situations. For example, with a rule p : = —p, it is not clear whether p should

* Department of Computer Science, University of Melbourne, Parkville 3052, Australia
t Computer Science and FEngineering Department, Indian Tnstitute of Technology, Bombay
400076, Tndia
THE JOURNAL OF LOGIC PROGRAMMING

© Flsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

172

be true or false. Tf it is false, it would imply that it is true. But there 1s no basis
for deducing 1t to be true. More recently, three-valued semantics were proposed
that allow the truth value of facts to be undefined. Tn the case of the rule p : = —p,
a three-valued semantics can leave p undefined (if this is the only rule defining p),
thereby solving the problem of whether to make p true or false.

The well-founded semantics [26] is the leading candidate among the three-valued
semantics that have been proposed. The well-founded semantics 1s non-trivial to
compute; in particular, it is non-trivial to make the computation ‘goal-directed’, that
18, given a query on a program, make sure that intermediate facts are generated only
if they are relevant to answering the query. Early evaluation mechanisms, such as the
alternating fixpoint technique of [25], were not goal-directed. Other techniques, such
as that of Ross [20], were goal-directed, but. (as with Prolog) can repeat computation
of subgoals multiple times and, worse, were non-effective (i.e., could loop) even for
DATALOG programs.

For situations where the cost of re-computation is high (as when computation
goes into a loop), memoing evaluations, which remember subgoals and avoid re-
computation, are important. For the simple case of programs without negation,
several memoing evaluation techniques have been proposed [2, 17, 24, 27]. Several
attempts have been made at extending some of these for computing the well-founded
semantics. These past attempts have the problem that either the computation is
not completely goal-directed [13, 11, 12, 15] since some facts that are irrelevant
to the computation may be generated, or compute only relevant facts, but may
compute some of them multiple times [9]. We present more details on related work in
Section 7. But, in particular, for the important special case of modularly stratified
programs [21], these techniques are less efficient than special purpose techniques
such as Ordered Search [18].

Although Ordered Search is more efficient than the general purpose evaluation
techniques proposed in the past, as described in [18] it applies only to modularly
stratified programs, and not to the class of all programs with recursive negation.
In this paper we extend the Ordered Search evaluation algorithm to compute the
well-founded semantics for all (non-floundering) programs with negation. We call
our technique Well-Founded Ordered Search. Our technique has the benefits of per-
forming memoization of facts, and being goal-directed.

For the case of modularly stratified programs, our technique reduces to the ori-
ginal Ordered Search algorithm, thereby reaping the cost benefits of Ordered Search.
For the general case, our technique has important advantages over evaluation tech-
niques proposed in the past. Recently Chen, Swift, and Warren [10, 8] have developed
a goal-directed technique for computing the well-founded model. Our technique was
developed independently of theirs. Their technique and ours each have advantages
and disadvantages with respect to the other; we present details in Section 7.

The rest of this paper is organized as follows. Tn Section 2 we present some back-
ground material. Tn Section 3 we present a short background on Ordered Search [18].
We then present details of the extended Ordered Search algorithm, Well-Founded
Ordered Search in Section 4. The correctness of the algorithm is shown in Section 5,
and in Section 6 we discuss extensions. Finally in Section 7 we discuss related work.

173

2. BACKGROUND

We assume familiarity with logic programming terminology (see [14]). Familiarity
with Magic Templates rewriting [17], and with semi-naive bottom-up evaluation [2]
would help in reading this paper, but we provide some background information.
For the purposes of this paper, a program is a set of normal clauses which possibly
include negative literals in the rule body. We assume that the programs we evaluate
are non-floundering, 1.e., any subgoal set up on a negative literal is ground. In the
context, of deductive databases this restriction is not severe, as most programs are
allowed, that 1s, they satisfy a syntactic condition called allowedness which ensures
that they do not flounder. A program is allowed if in each clause every variable
appearing in the clause appears in a positive body literal.

As is standard in the deductive database literature, we differentiate between the
extensional database which consists of the facts for relations that are explicitly stored
in the database, and the intensional database which consists of the predicates that
are defined using rules. Predicates in the extensional database are called FDB
predicates, and predicates in the intensional database are called 1DB predicates. We
make the standard assumption that the set of EDB predicates is disjoint from the
set of TDB predicates.

2.1. The Well-Founded Semantics

The well-founded semantics [26] is generally viewed as the desired choice of se-
mantics of programs with negation from a deductive database point of view because
it extends the iterated model semantics [1] for stratified programs to arbitrary nor-
mal programs and gives a unique model to any such program.

We extend the definition of the usual consequence operator Tp for definite pro-
grams, to infer information from normal rules using a fixed set M of information
about negative literals. Let M be a setf of atoms.

Te(M)(T) = {a | where there is a ground instance of a clause in P

a 1= g1, qn, Py, TPr
such that V1 <i<n, g €T and V1 <j<r, p, &M}

FEssentially, we do not infer new negative information using T, but we allow the use
of fixed negative information, the complement of M, in inferring positive informa-
tion.

For successor ordinals 3+ 1, Tp(M) 1 (8 + 1)(7) is defined as Tp(M)(Tp(M) 1
B(1)), and for limit ordinals 8, Tp(M) 1 S(I) is defined as Ua<ﬁ Te (M) 1 (7).

Tt is straightforward to show that Tp(M)(T) is monotonic and continuous on T
for all M, and Tp(M) + w(l) (usually written Tp(M) 1 w) is the least fixpoint of
Tp(M).

Tf A is a set of atoms then let, = - A be the set of literals {—a | a € A}. Given a
program P, its well-founded semantics, denoted W}, is defined using an alternating
fixpoint formulation as below:

Fp(T) = Tp(T) tw(0)
FA(T) = Fp(Fp

» def
Wp = Ifp(Fp

174

Where [fp and ¢fp denote the least and greatest fixpoints respectively, and H Bp
denotes the Herbrand base of program P. (The above formulation is adapted from
the alternating fixpoint formulation in [25], and is similar to that of [5]). We shall
denote the true, false and undefined atoms in the well-founded model of a program
P as T[P], F[P] and U[P] respectively.

The alternating fixpoint determines a method of computing the well-founded
model of a program P (see [25, 11]), by computing the sets Fp (), FA(0) = F2 1
1(0), Fp(F2 1t 1(0)), F2 1 2(0), The computation terminates with the two sets:
Ifp(F3) = F2 1 afl) for some a, representing all the frue atoms of the program;
and gfp(F3) = Fp(F3 1 (D)) representing all the true and unde fined atoms of
the program (the complement of the false atoms). Tn general « could be transfinite,
but so long as the program is a finite DATALOG program with finite relations, the
fixpoint terminates with a finite a. The actual set of false facts (which is typically
much larger than the number of true or undefined facts) is never directly computed.

Define an unfounded set (of P) with respect to TU— - F as a set, of atoms A such
that, for each a € A and each ground instance of a rule in P of the form

@ 17 Gy Gm, TP, -, TP

either (i) there exists ¢; € F or p; € T | or (ii) there exists ¢; € A. The ori-
ginal formulation of the well-founded semantics was in terms of unfounded sets; the
intuition is that given any unfounded set (with respect to the set of known true
and false facts) at any point, all facts in the unfounded set can be inferred to he
false in the well-founded semantics. The alternating fixpoint formulation of the well-
founded semantics is better for our purposes, although we occasionally use the idea
of unfounded sets to provide extra intuition.

2.2. Query Restricted Bottom-Up Fuvaluation

Query optimization transformations for bottom-up evaluation of programs (e.g. [17])
restrict computation to facts that are “interesting” to the query by calculating the
set of queries that the original query ‘depends on’. They were originally defined only
for positive programs, and most such transformations are incorrect when applied
to programs with negation since their notion of ‘depends on’ is not applicable if
negation is used (see [12]). We provide some background on bottom-up evaluation
using the Magic Templates transformation.

The bottom-up approach to answering queries consists of a two-part process.
First, the program-query pair is rewritten in a form so that the bottom-up fixpoint
evaluation of the program will be more efficient; next, the fixpoint of the rewrit-
ten program is computed by bottom-up iteration. Section 2.3 describes the initial
rewriting, while Section 2.4 investigates the computation of the fixpoint of the re-
written program.

2.3. The Magic Templates Rewriting Algorithm

We present below a simplified version of the Magic Templates rewriting algorithm
[17].) The idea is to compute an anxiliary predicate query that stores subgoals

" As described in [6, 17], the initial rewriting of a program and query is guided by a choice of
sideways information passing strategies, or sips. For each rule, the associated sip determines the

175

generated on predicates in the program. A fact of the form query(p(f)) denotes that
?p(1) is a subgoal generated on p. Tn the fact query(p(f)), p is formally treated as a
function symbol, rather than a predicate, since the language 1s first order. We thus
have a predicate and a function symbol of the same name they are distinguished
based on where they occur in the rule.

The rules in the program are then modified by attaching a literal to the rule body
that uses the query predicate to act as a filter that prevents the rule from generating
irrelevant facts when evaluated bottom-up. Further, the rewriting generates rules
that define how to generate a query fact for a body literal, given a query fact on the
head literal. For efficiency, query facts are only generated for intensional database
(TDB) relations, those defined by rules, and not for extensional database (EDB)
relations, defined by sets of facts.

Definition 2.1. The Magic Templates Algorithm
Tet P be a program, and 7¢(¢) a query on the program. We construct a new
program P79 Initially, P9 is empty.

1. For each rule in P, add the modified version of the rule to P™9. 1If rule r
has head, say, p(t), the modified version is obtained by adding the literal
query(p(t)) to the hody.

2. For each rule r in P with head, say, p(1), and for each occurrence of a TDB
literal ¢;(#;) in its body, add a query rule to P™9. The head is query(q;(4;)).
The body contains the literal query(p(t)), and all literals that precede ¢;(#;)
in the rule.

3. Create a seed fact query(q()) from the query on the program.

We refer to the rules defining the query predicate as query rules. We sometimes
refer to query rules as magic rules, and the query predicate as the magic predicate,
when we need to be consistent with the terminology used in [4, 6, 17].

The rewriting has the important effect of mimicking Prolog in that (modulo
optimizations such as tail recursion optimization and intelligent backtracking, and
modulo some inefficiencies when non-ground facts are generated) only goals and
facts generated by Prolog are generated.

FEzample 2.1. Consider the following program. (In this program sg¢ stands for
“same generation”.)

Rl1: s¢(X,Y) := flai(X,Y).
R2: s¢(X,Y) = up(X,U),sg(U, V), down(V,Y).
? — sg(john, 7)

order in which the body literals are evaluated. The version we present is tailored to the case that
sips correspond to left-to-right evaluation with all arguments considered “bound” (perhaps to a
free variable), as in Prolog.

176

The Magic Templates algorithm rewrites it as follows:

sg(X,Y) = query(sg(X,Y)), flat(X,Y). [Mod. Rule R1]
sg(X,Y) = query(sg(X,Y)), up(X,U),

sg(U, V), douwn(V, V). [Mod. Rule R2]
query(sg(U, V) = query(sg(X,Y)),up(X,U). [Query Rule]
query(sg(john, 7)). [Seed Query]

The first two rules above are the original rules, modified by adding filters. The
third rule defines how to generate queries on the body of the second rule (in the
original program), given queries on its head predicate. The last rule is a fact that
corresponds to the original query on the program, and it is called the seed query
fact.

The following theorem ensures the soundness and completeness of the transformed
program P79 with respect to the query on the original program P.

Theorem 2.1. [17] If P is a definite clause program without negation, P is equivalent
to P™9 with respect to the set of answers to the query.

Magic Templates 1s often presented along with an adornment rewriting that an-
notates predicates with a string composed of characters ‘f” and ‘b’, with one char-
acter for each argument. This step, along with a modification of Magic Templates
rewriting that projects out of query predicates those arguments that have an f ad-
ornment, is used to ensure that the rewritten program generates only ground facts
if the original program generated only ground facts. The benefit of generating only
ground facts 1s achieved at the possible cost of some redundant computation, but
18 important since it permits the use of database systems that handle only ground
facts. For simplicity, we omit this step.

2.4. Nerative Fixpoint Fvaluation

The fundamental step in iterative fixpoint evaluation is a derivation. A derivation
generates a fact f from a rule R and a substitution 8, given a set of already known
facts W where

1. the fact f generated by the derivation is the head of R[A], and

2. for each body literal p;(#;) in R, there is a fact in W that, subsumes p; (1;)[6],
and

3. # 1is the most general such substitution.

Given a set of facts W, a rule application generates all facts that can be inferred
from the W using a derivation.

A naive evaluation of the fixpoint of a program performs iterations, with each
iteration generating all facts that can be derived using the program rules, base
facts, and the facts derived in earlier iterations. Tteration proceeds until a fixpoint
is reached. Tn such a naive evaluation of the fixpoint, each iteration repeats all
derivations made in earlier iterations.

177

Semi-Naive evaluation (see e.g., [3, 2]), is an incremental version of naive fixpoint
evaluation. Semi-Naive evaluation avoids the repetition of derivations by performing
in each iteration an incremental computation using facts generated in the previous
iteration. That is, it only carries out derivations that use at least one fact generated
for the first time in the previous iteration. Any other derivations must have been
performed before and are not repeated. Semi-Naive evaluation maintains differential
relations corresponding to each relation in the program, to keep track of when each
fact in the relation was generated (before the last iteration, in the last iteration or
in the current iteration).

2.5. The Depends On Relationship

Magic Templates rewriting does not work correctly under the Well-Founded se-
mantics. The problem is its notion of relevance, which says that a subgoal is relev-
ant only if there 1s an instantiated rule prefix whose last literal is the subgoal, and
all literals before the subgoal are satisfied. With the well-founded semantics, even if
the truth of a rule body literal 1s undecided, it may be necessary to check if a later
literal in the rule body is definitely false.

The following definition gives the formal meaning of “depends on”, and 1s ap-
plicable to the well-founded semantics. Here we assume, as we do throughout the
paper, a complete left-to-right order on generation of subgoals.

Definition 2.2. (depends on) Let P be a given program. We say a query 7p(t)
directly depends on 7q;(b;) if there is a rule instance

pla) = qi(br), o qi(bi), - gn(bn).

where each ¢;(b;) is a positive or negative literal, such that p(a) is an instance
of p(t), and each literal ¢;(h;),1 < j < i — 1 is either true or undefined in the
well-founded model of P.

We define depends on as the transitive closure of ‘directly depends on’.

The definition essentially says that in order to solve the query 7p(1), answers to
the subquery 7¢;(b;) are relevant. Tn the case of two-valued models, the definition
reduces to the regular definition of ‘depends on’ [18] based on which relevance of
facts is defined [17].

Intuitively, the importance of depends on is this: to correctly compute the answers
to query 7p(t) wrt W} we only require the correct answers (wrt W7) of each of the
queries ?q;(b;) that ?p(#) depends on. (This is shown implicitly in the course of the
correctness proofs of our technique.) Hence we would like to restrict computation to
only those queries that ?p(1) depends on. This is not possible because the depends
on relationship is known only once the well-founded model is computed. Tn general
we must use a superset of the queries that ?p(t) depends on. Minimizing this set is
one of the main aims of this work.

3. ORDERED SEARCH

We now describe the Ordered Search evaluation method [18], which is applicable to
modularly stratified programs. In the next section we describe our extension to the

178

technique to handle the general case. This technique generates subgoals and answers
to subgoals asynchronously, as in bottom-up evaluation, but orders the use of gen-
erated subgoals in a manner reminiscent of top-down evaluation, and is in a sense a
hybrid between pure (tuple-oriented) top-down evaluation and pure (set-oriented)
bottom-up evaluation. The Ordered Search evaluation algorithm [18] has two phases.
The first rewrites the program at compile time. The second evaluates the rewritten
program. Unlike the case for programs without negation (Theorem 2.1), the re-
written program is not equivalent to the original program, and ordinary bottom-up
evaluation of the rewritten program does not yield the correct set of answers to the
query. Rather, it is equivalent in the sense that under a special evaluation mechan-
ism, described below, the correct set of answers to the query are generated by the
rewritten program.

3.1. Modified Magic Templates Rewriting

We describe the rewriting phase using an example rule. Suppose we have the fol-
lowing rule in a program:

p(X) = (X, V), —¢q(YV),s(YV).

the modified Magic Templates rewriting [18] of the rule generates the following rules:

p(X) = query(p(X)),r(X,V), done(q(¥)), —q(V), s(Y).
query(r(X,Y)) = query(p(X)).

query(q(Y)) = query(p(X)), r(X,Y).

query(s(Y)) = query(p(X)),r(X,Y), done(q(Y)), ~¢(Y).

The first rule 1s basically the original rule, but with two modifications. First, as in
Magic Templates, a literal query(p(X)) has been inserted, which ensures that an
‘answer’ fact for the predicate p 1s generated only if there 1s a corresponding query
fact. This is done to avoid generating irrelevant, facts. Second, a literal done(q(V))
has been added to the rule to guard the —¢(Y) literal; this is an extension to Magic
Templates, introduced by Ordered Search. A fact done(g(a)) is created when Ordered
Search decides that all answers to the query ?¢(a) have been generated.

We then use a modification of Semi-Naive evaluation where a ground negative
literal —p(@) is satisfied if p(@) is not known to be true or undefined. Without
the guard literal done(q(Y')), the rule could potentially be used in a Semi-Naive
evaluation to make an inference, assuming —¢(a) is true even if a fact ¢(a) is indeed
generated later. The guard literal ensures that such a derivation is made only when
done(q(a)) is present; by means of inserting facts done(...) at appropriate times
Ordered Search ensures the soundness of derivations.

The next three rules specify how to generate subgoals on the three body literals,
given a subgoal on the head literal. These subgoals need to be solved in order to
answer the subgoal on the head literal. For example, the second rule, read declar-
atively, says that if there is a subgoal 7p(X) then a subgoal ?r(X,Y) is generated.
The third rule says that if there is a subgoal ?p(X) and an answer r(X,Y), then a
subgoal 7¢(Y) is generated.

The modified Magic Templates rewriting of a program is the union of the modified
Magic Templates rewriting of all the rules in the program.

179

3.2. Ordered Search Fvaluation

The second phase of the Ordered Search algorithm evaluates the rewritten rules.
We present, an intuitive description of the evaluation algorithm here, but refer the
reader to [18] for details. The algorithm makes inferences from the rewritten rules,
and 1s built on top of the Semi-Naive evaluation technique. But unlike normal Semi-
Naive evaluation it orders the use of generated subgoals in a manner somewhat like
Prolog. Unlike Prolog, Ordered Search performs duplicate elimination on subgoals
and answers. Tt is, in a sense, a hybrid between pure (tuple-oriented) top-down
evaluation and pure (set-oriented) hottom-up evaluation.

The central data structure used by Ordered Search, the C'ontext, is used to pre-
serve “dependency information” between subgoals. The Context is a sequence of
Context Nodes. Each Context Node has an associated set of query facts and each
query fact 1s associated with a unique Confext Node.

The Context behaves somewhat like a stack in that for the most part nodes are
either added to its end or removed from its end. However, other operations such
as collapsing together nodes are also performed on the Contexi. Tn the rest of this
paper, when we use adjectives like “earlier”, “later”, etc. to refer to C'ontext Nodes
in Context, we mean their position in the sequence and not the time at which these
nodes were inserted in C'ontext.

The QOrdered Search evaluation algorithm is summarized below.

Algorithm Ordered Search

Input: Rewritten Program P™9-"°% (without the seed query fact), and query 7¢(7).
Output: Answers to 7¢(7).
1. Initialize C'ontext to consist of a single context-node containing the
(unmarked) seed fact query(q(7)).
2. Repeat
Repeat
Evaluate the rules of the program using Semi-Naive evaluation.
However, for each newly generated query fact, call it query(q(a)),
instead of inserting it into the query relation,
2(a) insert query(q(a)) in Context (as described later) and
2(b) perform duplicate elimination on gquery(q(@)) (as described later).
/* query(q(a)) is not made visible to the evaluation yet */
Until no new derivations can be made
3. Make facts from the context visible (as described later)
4. Until there is no change in the set of visible facts.
/* At this stage C'oniexl is empty, and there are no hidden facts. */

Newly generated facts other than query facts are inserted in the differential re-
lations, and made available as usual to the Semi-Naive evaluation. When query
facts are first inserted into C'ontext they are “hidden”, that is, they are not made
available to the evaluation. The Ordered Search algorithm makes each query fact
“visible” to the evaluation later; when a query fact that is in the C'ontexrt 18 made
available to the evaluation, the copy 1n the Context is marked. A ContexiNode 1s
said to be marked if any fact associated with the C'ontexrt Node is marked.

We now describe some of the context manipulation operations performed in Step

180

equery(p(g))* A = - 7 query(r(e))” =

—1 query(p(h))* A = = 7 query(q(@)) = query(r(c))*

FIGURE 3.1. Tnserting query(q(@)) in the Context

2 and 3 of the above algorithm in more detail:

2(a). Insertion: When a new query fact query(q(a)) is inserted in Context, it is
inserted in a new ContextNode. TLet query(q(a)) be a query fact derived
from query fact query(p(b)).

(i) Tf done(q(@)) is present do not insert query(q(a)) in Context (since it
has been fully evaluated already).

(i) Flse, query(p(h)) must be in the Context and must be marked since it is
visible and has just been used to derive query(q(a)). Tnsert query(q(a))
in a new unmarked Contexrt Node immediately before the next marked
Context Node following the marked node containing query(p(b)). (Tf
there is no such marked Coontext Node, query(q(a)) is inserted as the last
ContextNode in the Context.) Some subsection of the initial Context
18 shown at the top of Figure 3.1, where nodes marked A and 7 are
unmarked and the next marked Context Node contains query(r(z)). The
resulting subsection after the insertion is illustrated in the bottom of

Figure 3.1.

2(b). Duplicate Elimination: Duplicate elimination is performed on query(q(@)) in
the C'ontext to ensure that there is at most one copy of it in Context. Tf
there is more than one unmarked copy of query(g(a)) in Context at this
stage, only the last copy of query(q(a@)) is retained, and the rest deleted. Tf
there is a marked copy of query(q(@)) in Context, i.e., if query(q(a)) has
already been made available to the evaluation, there are two possibilities:

(i) Tf the marked copy of query(¢q(@)) occurs after the unmarked copy, only
the marked copy of query(q(@)) is retained in Contexi.

(ii) Tf the unmarked copy of query(q(a@)) occurs after the marked copy,
query(q(a)) depends on itself. We have thus detected a cyclic depend-
ency between the set of all marked facts in Context between the two
occurrences of query(q(@)). Ordered Search deletes the unmarked copy
of query(q(a)) and collapses the above set of marked facts into the node
of the marked copy of query(q(a)) in Context.

3. Making Query Facts Visible This step makes query facts in the C'ontext visible
to the evaluation when no new facts can be computed using the set of available
facts. Intuitively, this is done as follows:

181

(i) Tf the last Coniext Node contains at least one unmarked query fact,
Ordered Search chooses one such unmarked fact, marks it and makes it
available to the evaluation by inserting it in the corresponding differential
relation. (Note that this fact still remains in the Context.)

(ii) Tf all query facts in the last Contexi Node are marked, all the facts in the
last C'ontext Node can be considered to be completely evaluated in the
case of Ordered Search. Then the node is removed from Context, and
for each subgoal query(q(@)) in the node, a fact done(q(a@)) is created
and made available to the Semi-Naive evaluation.

A major difference between Ordered Search and Well-Founded Ordered Search,
which we describe in Section 4, 1s in Step 3.

Tn the above, we consider variants of a fact (i.e., facts that are equal, up to a
renaming of the variables, to the given fact) as being the same as the fact. The
algorithm can be easily extended to perform subsumption checking, and details
are presented in [19]. The insertion step (2(a)) ensures that facts on Coniext are
stored in an ordered fashion, such that if query fact Q1 depends on the query fact
@2, then @) is stored after or along with @y in the Context. But, unlike the
stack of subgoals in Prolog evaluation, cyclic dependencies are handled gracefully
by means of collapsing nodes together. Each subgoal in a node depends on all the
other subgoals in the node, and hence we cannot in general deduce that we have
found all answers for one until we are convinced we have found all answers for the
others. Tn Step 2(b), on detecting a cyclic dependency between subgoals on the
Context, the associated Context Nodes are collapsed into one Context Node, and
all the facts associated with these C'ontext Nodes are now kept together. Thus we
have the following property:

e Tf a subgoal query(q(a@)) depends on another subgoal query(p(h)) then either
query(p(b)) is completely evaluated before query(q(a)) is made available to
evaluation (i.e., marked on Context) or at some point in the evaluation

query(p(h)) isin a node in Context above a node containing a marked version
of query(q(a)).

The above property is used to show that when a query is declared to be completely
evaluated (i.e., a corresponding done fact is created), all answers to it have indeed
been generated.

The Ordered Search algorithm also satisfies the following property.

e Fach marked subgoal in the context sequence depends directly on the follow-
ing marked subgoal in the C'ontext, and on each unmarked subgoal that lies
between 1t and the following marked subgoal in the sequence.

The above property is used to show that no false dependencies between query facts
are introduced by the algorithm. The full dependence relation known at any stage
can be computed by a transitive closure on the immediate dependencies. Tt is clear
that each marked subgoal depends (transitively) on all marked subgoals later in the
context.

Erample 3.1. We now give an example of the Ordered Search procedure in action.
Consider the following program, which determines a winning positions for games
such as checkers where each player alternately makes a move, and the winner is

182

the person who makes the last move. Sometimes a player may make extra moves.
Board positions are encoded as simple letters.

win(X) = move(X,Y), mwin(Y).
win(X) = extramove(X,Y), win(Y).
move(a, b).

move(a, d).

move(b, ¢).

extramove(a,e).

extramove(e, a).

For simplicity we will consider the move and extramouve relations to be in the EDB
and not determine query facts for them. The Magic Templates rewriting 1s

win(X) := query(win(X)), move(X, V), done(win(Y)), mwin(Y).
win(X) := query(win(X)), exiramove(X,Y), win(Y).
query(win(Y)) = query(win(X)), move(X,Y).

query(win(Y)) = query(win(X)), extramove(X,Y).

Given the query ?win(a) Ordered Search evaluation starts by adding query(win(a))
to the Context; query(win(a)) is not made available for inferences yet. Nothing
more can be derived, and hence Step 3(i) marks the fact and makes it available
for making inferences. Using this fact, facts query(win(b)), query(win(d)) and
query(win(e)) then get derived, each is added to a new node at the end of C'ontext.
First query(win(e)) is marked and made available for inferences. This derives the
fact query(win(a)) which is initially placed at the end of the Context. We have
discovered a cyclic dependency and the two marked nodes are collapsed together.
The Context now looks like {query(win(a))”, query(win(e))*} {query(win(b))}
{query(win(d))}.

Now query(win(d)) is marked and made available for inferences. No inferences
can be made hence using Step 3(ii) we add a fact done(win(d)) and the Context
node is removed. We have thus determined —win(d). Now we generate the facts
win(a) and win(e). The last Context node is now query(win(b)), this is marked
and the fact query(win(c)) is derived and placed on the end of the context and
as before, gets marked and made available for making inferences. Similarly to the
win(d) case we add done(win(e)) (inferring —win(e) since win(c) is absent) and
remove the Context node. We now derive the fact win(b), before done(win(b)) is
derived and the query(win(b)) node is deleted. Finally the last remaining Clontext
node is {query(win(a))*, query(win(e))*}. All possible facts upon which these
facts depend has been investigated. The last Context node is deleted and the facts
done(win(a)) and done(win(e)) are added. This is the end of computation.

Ordered search is correct for this program because there are no loops through
negation, but if we add the single extra fact move(d, a) Ordered Search is no longer
applicable.

4. WELL-FOUNDED ORDERED SEARCH

We now describe Well-Founded Ordered Search (WF-OS for short), our extension
to Ordered Search. A one-sentence summary (for the expert) of the idea behind WF-

183

OS is that it combines Ordered Search with the alternating fixpoint technique for
evaluating the well-founded semantics, and manages to use the (costly) alternating
fixpoint technique on subregions of the program rather than on the entire program.
As with Ordered Search, we split the description of WF-OS into two parts. The
first part describes the extended magic rewriting, and the second part describes the
actual WF-OS evaluation technique.

In the case of a cycle of subgoals, Ordered Search keeps track of the cycle, and
when no more subgoals and no more answers can be generated from subgoals in the
cycle, Ordered Search decides that all answers for subgoals in the cycle have been
obtained. Tf a cycle of subgoals containing a negative subgoal is found, Ordered
Search concludes that the program is not modularly stratified and proceeds no
further. However, to compute the well-founded semantics for all programs, one
cannot stop at a point where a negative cycle has been found.

Well-Founded Ordered Search extends Ordered Search by the actions that are taken
in Step 3 (the “Making Facts Visible” step) of the Ordered Search algorithm, in the
case that a negative cycle is present in the last node of the C'ontext. The actions are
described in more detail later in this section, but the intuition behind our extension
18 as follows. There are two parts to the extension generating more subgoals, and
performing “local” alternating fixpoints rather than performing a single “global”
alternating fixpoint.

We describe the intuition for each extension below.

Tet us consider the motivation for the first part of the extension. Consider (for
simplicity) a ground rule, with a subgoal that unifies with the head of the rule. Tn
order to answer the subgoal on the head, subgoals have to be generated on body
literals. Tn Ordered Search the left-to-right subgoal generation mechanism generates
a subgoal on a literal only if all preceding literals are true (i.e., for positive literals
p(@), it is known that p(@) is true, and for a negative literal =p(a@) it is known that
p(a) is false). Tn order to compute the well-founded semantics we may need to
know if a literal later in the rule is true or false, even if the truth value of a literal
earlier in the rule is not known [11]. Hence, to extend Ordered Search to compute
well-founded models, we may need to generate a subgoal on a later literal even in
cases where the truth value of earlier literals is not known.

In this respect, WF-OS differs from Ordered Search; in the restricted context of
modularly stratified programs, using Ordered Search one can generate only subgoals
that the original query depends on, directly or indirectly. Tn the general case handled
by WF-OS we may have to generate a superset, of these subgoals.

The first. part. of our extension to Ordered Search is to generate extra subgoals
when required. When WF-0S finds a negative cycle, it starts off the computation of
‘possibly true’ facts (rather than just true facts) by considering negative literals that
form part of the cycle as ‘possibly true’. This computation ensures that a superset
of all required subgoals are generated. Further, the computation generates a set of
‘possibly true’ facts that contains the set of true facts.

Note that new subgoals that are generated as above may be added to the end of
the C'ontext, and the node with the negative cycle may no longer be the last node.
But eventually the nodes added above it will be removed, and it will become the
last node again. More new subgoals may then be added, and the cycle repeats.
But eventually a stage is reached when no new subgoals can be added as above.
At this stage, the last node in C'ontext has a negative cycle, and all subgoals on
which subgoals in the node depend have already been generated, and have either

184

been solved or are in the node, and the ‘possible true’ facts are a superset of the
true and undefined facts for subgoals in the last C'ontext Node.

The second part of our extension of Ordered Search is applied when a stage as
above is reached. The subgoals in the last node define a subpart of the program.
Intuitively, WF-OS applies the alternating fixpoint technigue [25, 11] for comput-
ing the well-founded semantics (in a non-goal directed fashion) to this subpart of
the program. (Since all relevant subgoals are generated and have been taken into
account in defining the subpart of the program, goal-directed evaluation need not
be used for this subpart, of the program.) The alternating fixpoint technique (and
other techniques for computation of the well-founded semantics) can be quite costly,
and by applying it only to well-chosen subparts of the full program we are able to
reduce the cost of evaluation considerably.

4.1. The Undef Magic Templates Rewriting

We now give the intuition behind the Undef Magic Rewriting, our extension of
Magic Templates rewriting [17] which we use in WF-OS. Tn order to compute the
well-founded semantics we may need to know if a literal later in the rule is true
or false, even if the truth value of a literal earlier in the rule is not known [11].
For example, with a rule r := —r s, and no rule defining s, the truth value of s 1s
needed in order to determine that r is false; a subgoal 7s must be generated to find
the truth status of s, at a point when the truth status of —r is not known.

To do so, we use an extended Magic Templates rewriting, which we call Undef
Magic Templates rewriting, which can generate ‘possibly true’ facts (rather than just
true facts) when provided appropriate ‘seed facts’. Undef Magic Templates rewriting
generates facts of the form un(p(@)) and un(—q(@)).? These facts respectively
indicate that p(@) is possibly true (i.e., has not been shown to be false), and ¢(a@) is
possibly false (i.e., has not been shown to be true). Facts of the form un(...) are
used to represent information about the truth value of a fact as of some point in the
evaluation, and unlike other facts, may be present at some point of an evaluation
but absent later. However, a fact un(p(a)) is always present when p(a) is known to
be true (and similarly un(—q(a)) is always present when ¢(@) is known to be false).
We say a fact p(a@) is possibly undefined if a fact un(p(a@)) is present.

We say ‘possibly’ since the fact may not actually be undefined in the well-founded
semantics; it could be true, undefined, or even false. Such facts are needed fo
compute an overestimate of what (relevant) facts are true (resp. false).

We consider again the rule used to describe Ordered Search:

p(X) = (X, V), —¢q(YV),s(YV).

Undef Magic rewriting of this rule generates the following rules:

query(r(X,Y)) = query(p(X)).

query” (¢(Y)) = query(p(X)),un(r(X,Y)).

query(s(Y)) = query(p(X)),un(r(X,Y)), un(—q(¥V)).

un(p(X)) = query(p(X)), un(r(X,Y)), un(—q(Y)), un(s(Y)).
p(X) = query(p(X)),r(X,Y),done(q(V)), mun(q(Y)), s(YV).

2Tn an abuse of notation we treat the negation symbol = as an uninterpreted function symbol
when it occurs inside an un fact.

185

Further, for every predicate p(?) we generate rules

un(p(YD = p(X). - -
un(—p(X)) := done(p(X)),-p(X).

The intuition behind the above rules is as follows. The first three rules generate
subgoals, but differ from the rewriting used in Ordered Search in that they can
generate a subgoal on a literal not only when earlier literals are true, but also when
they are possibly undefined (i.e., corresponding un(...) facts have been generated).
Another difference 1s illustrated in the second rule, where the generated query fact
18 tagged with a superscript 7. The tag is used in Context to recognize that the
subgoal is generated from a negative literal. We treat the predicates query™(...)
and query(...) as separate facts in the Context but as synonymous for the purposes
of semi-naive evaluation. The tag is used by the WF-OS evaluation algorithm. The
fourth rule in the rewritten program generates an un(...) fact for the head predicate
in case each literal in the body 1s possibly undefined. The last rule generated from
the original rule derives answer facts that are definitely true. The purpose of the
two other rules shown above is to make sure a literal is possibly undefined if it is
true.

The general case of the rewriting is as follows:

Definition 4.1. The Undef Magic Templates Algorithm
Tet P be a program, and 7¢(¢) a query on the program. We construct a new
program MagUnd(P). Tnitially, MagUnd(P) is empty.

1. For each rule in P, add the modified version of the rule to MagUnd(P). Tf
rule r has head, say, p(#), the modified version is obtained by adding the
literal query(p(t)) to the body. and for each negative literal —¢(s) in the
body where ¢ is an TDB relation, adding the literal done(g(s)) before the
literal =¢(s), and replacing —¢(s) by —un(g(s)).

2. For each rule in P, add the undefined version of the rule to MagUnd(P). Tf
rule r has head, say, p(1), the undefined version is obtained by adding the
literal query(p(t)) to the beginning of the body, and for each TDB relation
literal in the rule (including the head) ¢(s) or —¢(s) , wrapping it with un()

ie. un(g(s)) or un(—q(s)).

3. For each rule r in P with head, say, p(1), and for each occurrence of a TDB
literal ¢;(t;) (or —g;(1;)) in its body, add a query rule to MagUnd(P). The
head is query(q;(t;)) (resp. query™(g;(1;))). The body contains all literals
that precede un(q;(#;)) in the undefined version of r.

4. For each TDB relation p in the program add the rules

un(p(?ﬁ = p(X). - o
un(—p(X)) := done(p(X)), ~p(X).

to MagUnd(P).

5. Create a seed fact query(q(e)) from the query on the program.

186

In practice, we would use a variant of the above rewriting that generates ‘supple-
mentary rules’ to factor out common subexpressions 1n a manner similar to Sup-
plementary Magic rewriting [6]. We omit details for simplicity. The rewriting and
evaluation mechanism contain some redundancies, such as generating un facts even
when it is obvious that they are not needed (e.g. for programs without, negation).
Such inefficiencies can be removed fairly easily; but for simplicity we describe only
the unoptimized but less complicated algorithms.

4.2. Intuition Behind the Well-Founded Ordered-Search Algorithm

An inspection of the rules in MagUnd(P) indicates that a fact of the form un(p(a))
can be generated using the rules only if there is already a fact p(@). However, there
is another mechanism to generate facts of the form un(...) the WF-OS evaluation
algorithm described in the next section. Such facts are generated in order to bypass
negative literals so as to generate subgoals on later literals in a rule, in case cycles
containing negative subgoals are encountered.

WEF-0S, proceeds like Ordered Search, except for ignoring negative cycles of sub-
goals, until all subgoals in the top node of context have been made visible. At this
stage, WF-OS starts off the computation of ‘possibly true’ facts (rather than just
definitely true facts) by considering negative literals that form part of the cycle as
‘possibly true’ (these constitute the ‘seed facts’). This process eventually ensures
that a superset, of all required subgoals [12] are generated.

Fventually a stage is reached when no new subgoals can be added as above.
At this stage, the last node in C'ontext has a negative cycle, and all subgoals on
which subgoals in the node depend have already been generated, and have either
been solved or are in the node. At this stage the un(...) facts are a superset of
the true and undefined facts for subgoals in the last C'ontext Node. The subgoals in
the last node define a subpart of the program. Intuitively, WF-OS now applies the
alternating fixpoint technique [25, 11] for computing the well-founded semantics (in
a non-goal directed fashion) to this subpart of the program, rather than to the whole
program. The alternating fixpoint technique (and other techniques for computation
of the well-founded semantics) can be quite costly, and by applying it only to well-
chosen subparts of the full program we are able to reduce the cost of evaluation
considerably.

4.3. The Well-Founded Ordered Search Algorithm

We now present some details of the WF-OS algorithm. The algorithm is basically
the same as the Ordered Search algorithm presented in Section 3.2, except that (a)
the Undef Magic rewriting is used instead of Magic rewriting, and (b) Steps 2(b)
and 3 of the evaluation algorithm are modified to be as follows:

2(b). Duplicate elimination Unmarked copies of query(q(a)) and query™ (q(a)) are
treated as distinct facts, and only the latest unmarked copy of each is re-
tained. Tt is important to note that no dependency information is lost thus

a direct dependency is replaced by an indirect dependency.

If there is a marked copy and an unmarked copy of query™l(¢(@)) (with or
without tag ‘=’) in Clontext, there are two possibilities:

(i)

(ii)

187

If the marked copy of query™l(¢(@)) occurs after the unmarked copy,
only the marked copy of query™l(¢(@)) is retained in Context if they
are both tagged ‘=’ or both untagged, otherwise they are both retained.
If the unmarked copy (tagged or untagged) of query™ (¢(@)) occurs after
the (tagged or untagged) marked copy, we have detected a cyclic de-
pendency involving query™(¢(@)) and all marked facts in Context in
between the two occurrences of query™l(¢(@)). The unmarked copy of
query™1(¢(@)) and the above set of marked facts are collapsed into the
node of the marked copy of query™!(q(@)) in Context. Tf one of the facts
collapsed into this node has a negative tag then the node is marked as a
NEGLOOP. Tf guery™ (¢(a)) and query(q(a@)) are both present and one

is marked, the other 1s marked as well.

3. Making Query Facts Visible

(i)

(ii)

While the last node in Context contains at least one unmarked query
fact,

Choose an unmarked fact from the last node

Perform duplicate elimination using the fact (Step 2(b)(ii));

Tf no marked (tagged or untagged) copy of the fact was found, hreak;
If an unmarked fact was found above, mark it and make it available to
the evaluation by inserting it (without tag) in the corresponding differ-
ential relation.
Otherwise all facts in the last C'ontexi Node are marked. Tf the node is
not marked NEGLOOP the node has been completely evaluated. The
node is removed from Context, and for each (tagged or untagged) fact
queryTl(p(@)) in the node, a fact done(p(a@)) is created.
Otherwise execute Procedure Add_Undefined. Tf no new facts are added
by Add_Undefined, execute Procedure Local_Alternation.

The intuition behind the above is that if even if we find a cycle with negative

subgoals, we proceed with other subgoals that are generated from subgoals in the

cycle since they may not be recursive with those in the cycle. When we can proceed

no further, we are at a stage where we have to bypass some of the negative subgoals

in order to compute the well-founded model. This is done by means of Procedure
Add_Undefined, which lets the left-to-right subgoal generation order skip over neg-

ative literals that are in the last node in Context, by introducing facts of the form

un(—q(a)).

Procedure Add_Undefined

/* We are at a local fixpoint and there is a negative cycle. */

For every fact query™(q(a@)) in the last Context Node,

if neither done(q(a@)) nor ¢(a@) is present
Add un(—¢(a)) to the set of facts.

Tn case some new un(...) facts are added by Add_Undefined, evaluation continues

as in Ordered Search. Further subgoals may be generated. Tf they do not depend

on the goals in the negative cycle, they get solved independently. Tf there is a

dependency, they get collapsed into the node containing the negative cycle.

188

Fventually, a stage has been reached where all negative literals whose subgoals
are in the last node of Context are noted as undefined (and thus bypassed), and
no further subgoals can be generated. At this stage all relevant subgoals have been
generated. These subgoals define a subprogram that contains a cycle with a negative
subgoal. To compute the well-founded model for this subprogram, WF-OS evaluation
starts an alternating fixpoint, evaluation [25, 11] using Procedure Local_Alternation,
shown below. Alternating fixpoint computation by itself is not goal directed, and if
used on the entire program would generate a potentially large number of irrelevant
facts. However, the alternating fixpoint performed in Procedure Local_Alternation is
‘local’ in that it only involves answers for the subgoals in the last node of C'ontext.
By restricting the alternating fixpoint to a subprogram containing ‘relevant’ facts,
we can reduce the time cost of computation considerably.

Procedure Local_Alternation

1. Repeat

2. For every query fact query™ (¢(@)) in the last Context Node,

3. If un(q(@)) is not present /* q(a@) is definitely false */

4. Add done(q(a)) to the set of facts.

5. If ¢(@) is present /* q(a) is true */

6. Add done(q(a)) to the set of facts.

7. Remove un(—q(@))

8. If there is no change in the set of facts Then

9. Break; /* Last node in C'oniexl has been fully evaluated */

10. Else /* Restart to find new upper-bound */

11. For every fact un(q(@)) that matches a tuple guery(q(h)) in the last Context Node,
and does not match any fact done(q(7))

12. Remove un(q(a)) .

13. /* Note: Facts un(—q(@)) are not removed at this step. */

14. Apply all rules that define un-predicates in the last C'ontext Node.

15. Do Semi-Naive evaluation on all rules until fixpoint.

16. Forever:

17. /* Local alternating fixpoint has terminated; Clean up and pop node */
18. Pop the last node from Clontext.

19. For every fact query(q(@)) in the node,

20. Add a fact done(q(@)) to the set of facts.

Procedure Local_Alternation tightens the set of un(...) and un(—...) facts by
removing those whose truth status has been determined to be true or false, and
recomputing the set of un(...) facts while keeping the un(—...) facts fixed. The
re-computation (lines 14 15) begins by firing all the rules that can produce un(...)
facts and these are used as the differential relations for the Semi-Naive evaluation.
Our technique, like other techniques that compute the well-founded semantics in a
goal-directed fashion, generates some queries that may not actually be relevant, but
during the evaluation it is not possible to make out whether or not they are relevant.
Specifically, we generate query facts from un facts that may be retracted later.

WEF-0OS behaves nearly identically to OS on left-to-right modularly stratified pro-
grams. In particular, Procedure Add_Undefined is never invoked. The only difference

189

is that for each fact [=]p(a) generated by OS, a fact un([=]p(a)) is also generated by
WF-0S. This does not result in any change in complexity. The difference between
0OS and WF-0OS shows up on programs that are not left-to-right modularly stratified.

Erample 4.1. To exemplify the relationship between the WF-OS procedure and
Ordered Search, we now give an example of the WF-OS procedure in action on the
win program from Example 3.1, with a database of moves that makes the program
no longer modularly stratified.

win(X) = move(X,Y), mwin(Y).
win(X) = extramove(X,Y), win(Y).
move(a, b).

move(a, d).

move(b, ¢).

move(d, a).

extramove(a,e).

extramove(e, a).

The Undef Magic rewriting is

win(X) := query(win(X)), move(X,Y), done(win(Y)),
—un(win(Y)).

un(win(X)) := query(win(X)), move(X, V), un(—win(Y)).

win(X) = query(win(X)), extramove(X,Y), win(Y).

un(win(X)) := query(win(X)), extramove(X,Y), un(win(Y)).

un(win(X)) - win(X).

un(—win(X)) = done(win(X)), ~win(X).
query” (win(Y)) = query(win(X)), move(X,Y).
query(win(Y)) = query(win(X)), extramove(X,Y).

The computation starts as in Example 3.1 using Ordered Search. query(win(a)) is
added to the Context, marked and the facts query™ (win(b)), query™ (win(d)) and
query(win(e)) are derived, each is added to a new node at the end of Contexi.
First query(win(e)) is marked and made available for inferences. This derives the
fact query(win(a)) and the Conteat is collapsed to become:

{query(win(a))”, query(win(e))*} {query” (win(b))} {query™ (win(d))}

Now query(win™ (d)) is marked and made available for inferences. Tt derives the
fact query™ (win(a)) which is placed on the end of the context, then this node and
the marked node {query(win™(d))*} are collapsed back into the first node which is
now marked as a NEGLOOP. The Context is now:

{query(win(a))*, query(win(e))*, query™ (win(d))*, query™ (win(a))*},
{query™ (win(b))}

Execution then proceeds (basically) as in Ordered Search (Example 3.1) marking
query” (win(b)), and adding query(win(c)), done(win(c)), win(b) and done(win(b)).
Tn addition the facts un(—win(c)) and un(win(b)) are derived.

Finally the last remaining C'ontext node is

{query(win(a))”, query(win(e))”, query™ (win(d))™, query™ (win(a))*}

190

Nothing more can be derived now, and all facts in the node are marked. Since
the node 1s marked NEGLOOP there is a negative query in a cycle. Hence Step
3(i1) calls Add_Undefined which adds the facts un(—win(d)) and un(-win(a)) to
the negative query facts. Now facts un(win(a)), un(win(e)) and un(win(d)) are
derived. (Tn general new queries may be generated and evaluated at this stage.)
Finally we enter Local Alternation. Because un(win(a) and un(win(d)) are present,
and win(a) and win(d) are not present, no change is made to the set of facts. Hence
we immediately exit the loop and pop the last Context node adding done(win(a)),
done(win(e)) and done(win(d)).

The WF-0S procedure terminates having determined that win(b) is true, win(e)
is false, and win(a), win(d) and win(e) are undefined.

Erample 4.2. The above example does not fully illustrate WF-OS. Tn this example
we see how Add_Undefined and Local_Alternation interact with the Ordered Search
part of the procedure. (Given the initial program

r(X) = —s(X).
s(X) = q(X,Y),—~r(YV),1(V).
q(X,a) = —r(X).

the Undef Magic rewriting is

r(X) = query(r(X)), done(s(X)), ~un(s(X))
s(X) — query(s(X)), (X, V), done(r(YV)), ~un(r(Y)), (V).
q(X,a) - query(q(X,a)), done(r(X)), ~un(r(X))
un(r(X)) = query(r(X)), un(—s(X))
un(s(X)) = query(s(X)),un(q(X, V), un(—r(V)), un(t(V))
un(q(X,a)) = query(q(X,a)), un(—r(X))
un(r(X)) = r(X).
un(s(X)) = s(X)
un(q(X,a)) = q(X,a).
un(—r(X)) := done(r(X)), -r(X).
un(—s(X)) - done(s(X)), ~s(X).
un(—q(X,a)) := done(q(X,a)),—q(X,a)
query”(s(X)) - query(r(X)).
query(q(X,Y)) = query(s(X)).
query™(r(Y)) = query(s(X)),un(q(X,Y)).
query(t(Y)) = query(s(X)), un(¢(X,Y)), un(—r(Y))

1

query” (r(X))

Given the query r(a) WF-OS evaluation starts by adding query(r(a)) to the Contexi;
query(r(a)) is not made available for inferences yet. Nothing more can be derived,

query(q(X, a)).

and hence Step 3(a) marks the fact and makes it available for making inferences.
Using this fact, query™(s(a)) then gets derived, added to a new node at the end
of Clontext, and as before, gets marked and made available for making inferences.
Similarly a fact query(g(a,Y)) is derived and inserted. Using this query fact,
query” (r(a)) is derived. Hence a cycle is detected and the nodes in the cycle

191

(all the nodes in Conteat in this case) are collapsed into a single node contain-
ing {query(r(a)), query™ (s(a)), query(q(a,Y)), query™ (r(a)). Because the marked
facts query™(s(a)) and query™ (r(a)) are collapsed back into the node it is marked
as a NEGLOOP.

Nothing more can be derived now, and all facts in the node are marked. Since
the node 1s marked NEGLOOP there is a negative query in a cycle. Hence Step
3(i1) calls Add_Undefined which adds the facts un(—s(a)), un(—r(a)) corresponding
to the negative query facts. Now facts un(g(a,a)), un(r(a)), and query(t(a)) get
derived. To determine that s(a) is false we must examine the subgoal #(a), this is
why we skip over the undetermined literals ¢(a, a), —r(a).

The new query fact query(t(a)) is placed in a new Context node and after mark-
ing provides nothing new. Step 3(ii) removes the node from the Context and add
done(t(a)). Nothing more can be derived, and we are back at Step 3(ii) with the
NEGTLOOP marked node as the last in the C'ontext, so we execute Local_Alternation.

Tine Action Facts

4 Add done(s(a)))

12 Delete un-facts un(q(a,a)), un(r(a))

15 Fixpoint un(q(a,a)), r(a), un(r(a))
6 Add done(r(a)))

7 Remove un(—(r(a)))

12 Delete un-facts un(qg(a,a))

15 Fixpoint {}

Since nothing further is produced we remove the C'ontext Node and add the fact
done(q(a,Y)). The results for the queried facts r(a), —s(a), ¥V —g(a, V), —t(a) agree
with the well-founded model of the original program.

5. CORRECTNESS

The correctness of the method relies on two key observations: first the query facts
set up are large enough so that all the computations are correct, and secondly a
number of invariants hold throughout the computation. For simplicity we do not
consider any special treatment of EDB relations in this section, every relation is
assumed to be TDB. EDB literals present no difficulties since they have a fixed two-
valued model. Let W be the ground instances of the set of facts present at any
stage in the computation

We use a set of invariants to describe correctness properties of the program. The
invariants are shown formally below, but first we consider the intuitive meaning
of the invariants. Tnvariant 1 ensures that (a) when a done fact is generated all
true facts in the well-founded model that match the done fact have been generated,
and (b) every true fact generated is true in the well-founded model. Tnvariant 2
ensures that when a done fact is generated, among those facts that match the done
fact, all and only those facts that are not false in the well-founded model have been
generated as possibly undefined. Thus, when a done fact is generated, by Invariants
1 and 2, the facts that match the done fact, and are generated as possibly undefined
but not generated as true are exactly those that are indeed undefined in the well-
founded model. Hence Tnvariants 1 and 2 together help ensure the soundness of the
computation with respect to the well-founded model.

192

The other two invariants are used to Invariant 3 is a technical condition ensuring
that (a) when we have generated a true fact it will have a corresponding un fact, and
(b) for each fact g(a) whose truth value has been determined (i.e. done(q(a) € W),
the two indicators that it is possibly false ¢(a) ¢ W and un(—(g(a)) € W are either
both present or both absent. Invariant 4 ensures that the C'ontext maintains correct
dependency information.

Invariant 1. (True facts) (a) done(q(a)) € W — (¢(a) e W q¢(a) € T[P]),
and (b) ¢(a) e W — gq(a) € T[P].

Invariant 2. (False facts) done(q(a)) € W — (un(q(a)) € W < q(a) € F[P]).

Invariant 3. At each fixpoint (i.e., step 3 of WF-OS and step 15 of Local_Alternation)
(a) q(a) e W — un(q(a)) € W,
and (b) done(q(a)) € W — (¢(a) ¢ W < un(—g¢(a)) € W).

Invariant 4. When we reach Step 3(ii), if query(q(a)) appears marked in the last
node of Context, and depends on query(p(b)), then either

o (a) query(p(h)) is also in the last node of Context, or

o (b) query(p(b)) was on Contexl earlier and was popped from Contexi,
and a corresponding fact done(p(b)) is present, and query(p(h)) does
not depend on query(q(a)).

We define notation for referring to the definitely true, false and undefined facts

given by W:
o TIW]=A{p(b) | p(b) € W}

p(b) | done(p(b)) € W A un(p(b)) & W}

o U[W]={p(b) | done(p(b)) € W Ap(b) & W Aun(p(h)) € W}

—
.« F[W]={

An outline of the proof is as follows: L.emma 5.1 1s a technical lemma required
for Lemma 5.2. T.emma 5.2 shows that every time computation reaches the first line
of Local_Alternation the un facts are a superset of the true and undefined facts of
the well-founded model (restricted to those in the queries of interest). This means
that if un(p(a@)) is not present then it is false in the well-founded model. This is
used in Lemma 5.3 to show that the invariants are maintained throughout the repeat
loop of Local_Alternation. LLemma 5.4 1s the main lemma of the proof. Tt shows how
Local_Alternation computes the alternating fixpoint of the subprogram of interest
(all facts which have a query fact in the last, Context Node). This result is used in
Lemma 5.5 to show that the last lines of Local_Alternation maintain the invariants.
The theorem follows straightforwardly from Lemma 5.5.

Lemma 5.1. Suppose the invariants hold at a point when evaluation reaches the first
line in Local_Alternation. Let W denote the set of ground instances of all facts
present at thal point. Suppose query(p(b)) is an instance of a fact in the last
ContextNode, and consider any ground instance of a rule in P with head p(b).
Then, either

(a) the rule instance is made false by information in W (i.e. there is a negative
literal —s(e) s.t. s(e) € T(W), or there is a positive literal s(e) s.i. s(e) €
F(W)), or

193

(b) the query facts for every literal in the body are in W and un(p(b)) € W, or

(c) there is a positive literal r(c) in the rule such that query(r(c)) is an instance
of a fact in the last ContexiNode and un(r(c)) ¢ W.

Furthermore, un(p(b)) € W only if there is a rule for p that is in category (b)
above.

The proof of the lemma is based on the Undef Magic rewriting presented earlier,
Step 3 of WF-OS, and on Procedure Add_Undefined. Details are presented in the
appendix.

Given a sef, of facts S, and a set M of query facts, define S/M as follows

S/M def {pi(@)a | pi(@) € S, query(pi(b_i)) e M, ais a

grounding substitution s.t. p; (@) = p;(b;)a’}

Whenever evaluation reaches the first line of Local_Alternation evaluation has
reached a fixpoint; let the ground instances of the set of facts present at the point
be W. Based on LLemma 5.1 we can show that at any such point, if a fact un(p(a))
18 absent, either all rule instances defining it have at least one literal that is false
based on T(W) and F(W), or (based on Condition (¢) of Lemma 5.1) there is a
set of positive literals that forms an unfounded set. Hence we have the following
lemma.

Lemma 5.2. Suppose the invariants are satisfied before the start of Local_Alternation.
Fvery time execution reaches the first line in Local_Alternation for every atom
q(a) € T[PUUIP], if query(q(a)) is an instance of a fact in the last Context Node
then un(q(a)) € W, where W is the set of ground instances of facts present at
that time.

The proof is by induction on the stage of the alternating fixpoint computation
when the fact 1s derived. Details are presented in the appendix.

Lemma 5.3. Suppose the invariants hold at the time of a call to Local_Alternation.
During the repeat loop of procedure Local_Alternation, the invariants are main-
tained and no new query or un facts are generated (hence the Context does not
change throughout the procedure).

Details of the proof are presented in the appendix.

Lemma 5.4. Suppose the invariants are satisfied before a call to Local _Alternation.
Let M be the query facts in the last Context Node, and let N be the union of M
together with all completed query facts, i.e. where query(q(a)) and done(q(a))
are both present.

Let W; be the ground instances of the set of facts present af the i 4+ 1th hime
evaluation reaches the first line of Local_Alternation during the call to Local_Alternation.
Let Ty = T[Wol/(N — M), Uy = (HBp — F[Wy])/(N — M), and Fy = F[W;].
Let Ty = Tp(HBp — Fy) T w(Ty) and Uy = Tp(Ty) T w(Us), and let Tiyy =
TP(U7) TM(T())J: > 0, and let U7j+1 = Tp(/n) TW([]0)77 > ().

Forn > 0, gla) € W,/N iff g(a) € Thy1/N, and un(q(a)) € W, /N iff
q(a) € Upy1/N.

The above lemma proves the main results that are needed to show the soundness
of our technique. The proof is by induction on the sequence of derivations (for the

194

only if direction), and by induction on the stage of alternating fixpoint at which the
a fact is derived (for the if direction). Details are presented in the appendix.

Corollary 5.1. Suppose the invariants are satisfied before a call to Local _Alternation.
At the end of a call to Local _Alternation, for every fact p(b) such that query(p(b))
is in the Context Node that is popped at the end of the procedure, p(b) is present
iff p(b) € T[P], and un(p(b)) is present iff p(b) € T[P]UU[P]

Proof. Clearly at the fixpoint n, T,,/M and U, /M are the restriction of the
well-founded model of PU Ty U= - Fy to M. By invariants 1, 2, 3 and 5, T, C Wg
and = - Fy C W5, and the result follows. a

The following lemma essentially follows from the above corollary, and from the
earlier lemmas.

Lemma 5.5. Invariants 1, 2, 3, and 4 are maintained by Local_Alternation.

Proor. Invariant 1 follows from Corollary 5.1 and TL.emma 5.3, the second part
follows by induction. Tnvariant 2 similarly follows Corollary 5.1 and T.emma 5.3.
Invariant 3 1s a simple property of the rewritten program, and the definition of
Local_Alternation. Invariant 4 follows trivially since the set of query facts does not,
change. a

We have not discussed the maintenance of invariants throughout the remainder
of WF-0OS, in particular when in Step 3 the last C'ontext Node is not marked NE-
GLOOP. Tn this case we can easily see each of the above Lemmas holds (perhaps in
a vacuous manner). Tn effect if Local_Alternation were applied it would immediately
terminate, hence the invariants are maintained. The operations on Context such as
insertion and duplicate elimination maintain Invariant 4, and do not affect Tnvari-
ants 1 and 2. Tnvariant 3(a) is a simple property of the rewritten program, while
Tnvariant 3(b) is unaffected because no done facts are added.

We show, based on the invariants, that WF-OS evaluation is sound. We also show
partial completeness if evaluation terminates, all facts in the well-founded model
are generated, and for the case of DATALOG programs with finite base relations,
evaluation does terminate.

Theorem 5.1. Given any non-floundering program P and a terminating query ?q(1),
WF-OS ewvaluation is sound and partially complete w.r.t. the well-founded se-
mantics of P. That is

1. q(1)[0] € TIP] iff q(t)[F] is a ground instance of a fact derived by WF-OS.

2. q(t)[e] € U[P] iff un(q(1))[o] is a ground instance of a fact derived by WF-
0S, and ¢(t)[o] is not an instance of any fact thal is derived.

3. q(t)[v] € FIP] iff un(q(t))[y] does not unify with any fact derived by WF-OS.

ProoF. The result holds because invariants 1, 2, and 3 are maintained throughout
the operation of WF-OS and when the procedure terminates, the C'ontext is empty
and thus done(q(1)) is in the set of facts. O

6. EXTENSIONS

We presented a simple version of WF-OS for ease of exposition. Straightforward
improvements include not generating un facts when it is clear that they are not

195

needed (e.g. for programs without negation). A number of other improvements are
discussed below.

Subsumption checking on query facts in the C'ontext can be used instead of du-
plicate elimination, as described in [18]. Tn the case of Ordered Search subsumption
checking was done in “one direction” in order to maintain exact dependencies: if
a query fact in a new node in Context subsumes a marked query fact lower in
Context, a collapse operation is initiated. If the subsumption is in the other direc-
tion, the collapse operation is not initiated in Ordered Search collapsing C'ontext
nodes in such a situation can create spurious negative cycles in left-to-right modu-
larly stratified programs, which cannot be handled by the evaluation. With WF-OS,
the spurious negative cycles do not affect soundness or completeness, and merely
affect efficiency. Hence subsumption checking can be performed in both directions
without affecting correctness, only affecting efficiency.

Procedure Well-Founded Ordered Search is not set-oriented in making generated
subgoals available for further use (although it is set-oriented in generating subgoals
and answers to subgoals). The procedure can be made more set-oriented by marking
a whole set of subgoals at, a time (in Step 3), and collapsing the corresponding nodes
in C'ontext together. Unlike in Ordered Search we can indiscriminately apply this
procedure without affecting soundness or completeness, becanse Local _Alternation is
a safe method for computing the well-founded model of any (query-closed) fragment,
of the program. Marking sets of facts at a time leads to more set-oriented evaluation
but can significantly decrease efficiency by creating apparent negative cycles where
none exist, or making the query sets to which Local_Alternation is applied larger
than necessary. The tradeoff between efficiency of set-oriented evaluation versus
more Local_Alternation suggests marking sets of facts at a time 1s only worthwhile
when the subprogram is positive or stratified.

Throughout the paper we have concentrated on evaluating programs with left-to-
right complete sips. The results easily extend to arbitrary sips, because query facts
depend on un-facts rather than the original predicates. Ordered Search is restricted
to left-to-right sips since other sip orderings may produce negative loops not, present,
in the left-to-right order.

We presented our algorithms based on the Undef Magic Templates rewriting.
Supplementary Magic Templates rewriting [6, 17] is a variant of Magic Templates
rewriting, which essentially factors out, sub-expressions that are common to a (mod-
ified) original rule and the query rules derived from that rule. The Undef Supple-
mentary Magic Templates rewriting is a straightforward modification of the Undef
Magic Templates Rewriting, that factors out common sub-expressions in the query
rules and un rules. The supplementary predicates created correspond to successive
increasing prefixes of the (modified) original rule. As a result, of supplementary ma-
gic rewriting, we lose the direct connection we had between the subgoals on the head
of the rule and the subgoals generated for the body literals. Details of how to modify
Supplementary Magic rewriting to keep track of the dependencies of subgoals can
be done in a manner similar to that described in the full version of [18].

To do a well-founded ordered search using Undef Supplementary Magic Tem-
plates, we need to store with each supplementary fact the subgoal on the rule
head that resulted in the generation of the fact. Tt is an easy modification to
the well-founded ordered search algorithm to insert this information for the first
supplementary fact, and to propagate the information along derivations of facts for
supplementary predicates further down the rule. Given the modifications described

196

above, Procedure Well-Founded Ordered Search can be used along with Undef Sup-
plementary Magic Templates rewriting.

Procedure Local_Alternation is roughly equivalent to the magic sets based altern-
ating fixpoint technique of [12] applied to a small part. of the program. We can use
the optimization of [12] suggested by [15], which permits some query facts to be
discarded if they are found to be irrelevant due to some facts earlier (temporarily)
assumed undefined being found to be either true or false. There 1s some extra work
to recompute the set of query facts (the ‘magic sets’), but the set is decreasing
within the alternating fixpoint, and this may save some irrelevant computation.

Another possibility for optimization is illustrated by the following example.

Erample 6.1. WF-OS generates some un facts that are later retracted. These un
facts are used in the context of the local alternating fixpoint on the last node of
Context. Tn the following program query facts are generated unnecessarily using
un facts that are retracted later.

Toi— p,u.
T, p-
q9 = DS

The WF-0S evaluation of the above program for a query 7r() generates facts query(p),
which leads to the derivation of query™(g), which in turn results in the derivation
of query(p). A local fixpoint is reached, with a negative loop in the last node of
Contexl containing query(p) and query™(q). At this stage, Add_Undefined adds
fact un(—q), which leads to the derivation of un(p), and query(p) (which is already
present). The fact un(p) leads to the derivation of query(s) using a rule instance

query(s) = query(q),un(p).

but also of query(u) using a rule instance

query(u) = query(r), un(p).

Of these, query(q) is part of the cycle, and the fact query(s) is required in order
to solve query(q). But r is not part of the cycle and there is no need at this point
to generate query(u) to solve query(r). Tn terms of Context, the node containing
query(r) is before the node containing query™(¢) and query(p), and hence query(r)
can be evaluated after query™(q) and query(p) are completely evaluated. Tndeed,
evaluation proceeds, and ¢ 1s determined to be false, and so is p. However, the
subgoal query(u) has been generated already and will be solved.

We can avoid unnecessary derivations of the above kind by delaying derivations
where the query(...) fact used in the body is not part of the last Contexi node.
(Rules in the Undef Magic rewritten program have at most, one query literal in the
body.) Tn practise, in order to co-exist with Semi-Naive evaluation, it is easier to
find that the derivation can be made, and note it without generating the fact, and
to recheck the derivation when the relevant query node becomes the last node in
Context.

While the well-founded model is not recursively enumerable in general, when
restricted to DATATLOG programs it has size polynomial in the size of the EDB

197

[26], since all predicates are of fixed arity, and the only elements of the Herbrand
universe are those that are explicitly in the EDB. Actually, the above argument
shows that the Herbrand base of the program itself is of size polynomial in the
size of the EDB. Further, the Magic rewritings can result in at most a polynomial
increase in size of the Herbrand base, since they increase the number of predicates
by at most a constant factor, and each new predicate has arity no more than existing
ones.

We can use this to argue that WF-OS executes in a polynomial time in the size of
the EDB on DATATLOG programs. Between any two calls to alternating fixpoint,
there are only a polynomial number of steps, since each step computes a fixpoint
on the rules, or makes a new fact visible. Each step can be seen to take polynomial
time. Finally, there are only a polynomial number of calls to alternating fixpoint
since each call results in the addition of some done facts. And because of the
polynomial data complexity of the whole well-founded model, the execution of a
single alternating fixpoint on some subpart of the program itself takes polynomial
time.

Theorem 6.1. For a fired DATALOG program P, WF-OS runs in polynomial time
in the size of the FDRB. O

Note that the Undef Magic Rewriting as described translates DATALOG pro-
grams to non-DATAT.OG programs, but this can be avoided by introducing new
predicates query_p, query_neg_p, un_p and un_neg_p and replacing the constructions

query(p(t)), query™ (p(1)), un(p(t)) and un(—-p(t)) by query_p(t), query_neg_p(t),
un_p(t) and un_neg_p(t) respectively.

7. RELATED WORK

The most closely related work to that presented in this paper i1s SLG resolution
(Chen and Warren [10] and Chen, Swift and Warren [8]). Our work is independent of
theirs, and in fact the two techniques approach the problem from different directions;
while WF-QS is based on bottom-up evaluation made query directed, SI.G3 is based
on top-down evaluation made memoing. Their technique maintains instantiated
rules and answers that may contain “delayed” literals. Their “delaying” step for a
negative literal —p(a) corresponds to a step where we introduce a fact un(—p(a)).
The answers with delayed literals correspond roughly to our un facts, but maintain
dependency information.

There are three interesting differences between our techniques. The first 1s that
when they delay a negative literal, they remove the negative dependencies that are
introduced by the literal, in effect dynamically moving the literal back in the sip
order. They are thus able to relate positive cycles in unfounded sets directly to
positive cycles in their dependency information. Since we do not update depend-
ency information at the time of our equivalent to delaying, we cannot make this
connection. They also optimize some of their actions by incrementally maintaining
dependency information. By combining the above optimizations, they avoid using
the alternating fixpoint technique. We can incorporate some of these optimizations
in our technique as well, but 1t is not clear how we can avoid the alternating fix-
point. technique since we do not maintain exact dependency information within a
node of Context (if the program is not. modularly stratified). Equally interesting

198

is the question of whether their technique is always better than (local) alternating
fixpoint or not.

The second difference is that their technique does not use exact dependency
information even in the case of modularly stratified programs a sequence of
strongly connected components (SCCs) in the depends on relation may be merged
and viewed as if it were a single SCC. This has bad consequences in cases where
the need to maintain the separation of SCCs is important, as may be the case if the
technique is to be extended to aggregation (even on modularly stratified programs).
Equally importantly, since they do not have exact SCC information they may delay
a negative literal that s not really in a negative cycle, but appears to be in a negative
cycle due to the merging of SCCs. We maintain the separation of SCCs, and are
thus able to avoid ‘delaying literals’ in some cases where they delay the literal. Thus
there are cases where we compute fewer facts than they do. Recent extensions to
their technique to recover exact dependency information in the case of modularly
stratified programs are discussed in [23].

The third difference is that using the optimization of [12] proposed by [15] we
can recognize that some queries are irrelevant and delete them 1n the course of the
alternating fixpoint, as we noted in Section 6. In the technique of Chen et al., once
a query is generated it 1s never deleted even if it is irrelevant.

Our technique performs better than that of [12] and its optimization [15] since
it 18 able to restrict the alternating fixpoint to a subpart of the program. In parts
of the program where there are no cyclic dependencies WF-QOS is able to determ-
ine the status of a fact before using it, and thereby avoid unnecessary computation
caused by treating them as undefined. As a special case of the above, for modularly
stratified programs WF-OS reduces to Ordered Search, and performs no irrelevant
computation and repeats no computation. Our technique is better than WELT.! [7]
and QSQR/SLS resolution [22] since both perform repeated computation even for
programs without negation. Unlike XOLDTNF [9] our technique is able to share
answers to subgoals effectively; XOLDTNF repeats computation even for modularly
stratified programs. The technigue of [13] is not, goal directed, although they men-
tion that they can use a restricted version of Magic sets (where no negative literals
are used in query rules).

8. CONCLUSIONS AND FUTURE WORK

We extended the Ordered Search technique to handle well-founded negation. The
extension essentially uses Ordered Search to find dependencies, and when a circular
dependency 1s found, it applies the alternating fixpoint fechnique to compute the
well-founded model for the subgoals that are involved in the cycle. Thus we are
able to use the (costly) alternating fixpoint technique only if it is required. Since
implementations of Ordered Search and of the alternating fixpoint technique are
already available, it should be relatively straightforward to combine them.

The implementation of SLG resolution described in [8] and WF-OS have advant-
ages and disadvantages over each other in different cases. Tt would be interesting
to see if the benefits of both techniques can be combined. Another interesting ex-
tension would be to see if the alternating fixpoint technique can be replaced by
some other technique that is more efficient (possibly by exploiting information that
is generated during Ordered Search).

199

ACKNOWLEDGEMENTS

We would like to thank Divesh Srivastava for useful discussions on some details of
the well-founded ordered search algorithm. We would also like to thank Weidong
Chen for discussions that helped us understand better the relationship between
SLG resolution and our technique, and for pointing out an error in our original
presentation of the WF-OS algorithm.

A. PROOFS OF LEMMAS FROM SECTION 5

Lemma 5.1 Suppose the invariants hold at a point when evaluation reaches the
first line in Local_Alternation. Let W denote the set of ground instances of
all facts present at that point. Suppose query(p(b)) is an instance of a fact
mn the last C'ontext Node, and consider any ground instance of a rule in P
with head p(b). Then, either

(a) the rule instance is made false by information in W (i.e. there is a
negative literal —s(e) s.t. s(e) € T(W), or there is a positive literal s(e)
s.t. s(e) € F(W)), or

(b) the query facts for every literal in the body are in W and un(p(b)) € W,
or

(c) there is a positive literal v(¢) in the rule such that query(r(c)) is an
instance of a fact in the last Context Node and un(r(c)) & W.

Furthermore, un(p(b)) € W only if there is a rule for p that is in category
(b) above.

Proor. Consider a ground instance of a rule in P of the form
p(b) < B, [=]r(e), B’

Case 1: For all literals [=]s(e) in the rule; un([=]s(e)) € W. Now MagUnd(P)
contains a rewritten version of the rule using which (a fact that subsumes)
un(p(b)) is derived, and also has query rules such that for each literal [—]s(e)
a query fact (that subsumes) query(s(e)) is generated. Condition (b) is then
satisfied.

Case 2: There is a literal []s(e) in the rule such that un([—]s(e)) € W. Let [=]r(e)
be the first such literal in the left-to-right order. We consider two subcases
(a) the literal is positive and (b) the literal is negative. Tn subcase 2(a),
MagUnd(P) contains rules defining query such that query(r(c)) is generated
using the un facts from earlier literals, and the query fact for the head of
the rule. Now, if query(r(c)) is in the last ContexiNode, Condition (c) is
satisfied. Else, the query must have been solved already, since any query fact
that query(p(bh)) depends on cannot be in an earlier C'ontext Node. Then the
WEF-OS algorithm must have inserted a done(r(c)) fact. Since un(r(c)) is
not present, by Invariant 2, the literal is not satisfied, and hence Condition
(a) is met. This completes subcase 2(a).

Tn subcase 2(b), the first such literal is a negative literal, —r(c). A fact
query”(r(c)) must then have been generated. Tf the fact is in the last

200

context node, a fact un(—r(c)) must also have been inserted in Procedure
Add_Undefined. The fact cannot be present, since we are in Case 2 of this
proof. But removing the fact could only happen if done(r(c¢)) is added and
r(¢) is present. But by Tnvariant 1, the literal is not satisfied, and Condition
(a) is met. This completes subcase 2(b), and the proof of the first part of
the lemma statement.

We note that in case 2, un(p(bh)) could not have been derived from the in-
stance of the rewritten form of the rule. This proves the last part of the
statement of the lemma, and completes the proof of the lemma. O

Lemma 5.2 Suppose the invariants are satisfied before the start of Local _Alterna-
tion. Fvery time execution reaches the first line in Local_Alternation for every
atom q(a) € T[PIUU[P], if query(q(a)) is an instance of a fact in the last
ContextNode then un(q(a)) € W, where W is the set of ground instances
of facts present at that time.

Proor. Tet M be the set of query facts in the last C'ontexi Node together with all
completed query facts, i.e. query(g(a)) € W such that done(q(a)) € W. We show
q(a) € (T[PYUU[P])/M = (Tp(T[P]) t w)/M implies un(q(a)) € W by induction.

The base case is trivial. Take g(a) € (Tp(T[P]) + h+ 1)/M then there exists
ground instance of a rule in P of the form

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

where p;(b;) € Tp(T[P]) + h C T[P]UU[P] and r;(e;) ¢ T[P]. By Lemma 5.1 the
rule instance must fall in category (a), (b) or (¢). Clearly it cannot fall in category
(a) since this implies either p;(b;) € F[W] and hence by Tnvariant 2 p;(b;) € F[P],
or ri(c;) € T[W] and by Tnvariant 1 r;(c¢;) € T[P]. Suppose the rule falls in
category (c) then one of the positive literals p;(b;) is such that query(p;(b;)) € M
and un(p;(b;)) & W, but by induction since p;(b;) € (Tp(T[P]) 1 h)/M it must he
that un(p;(b;)) € W. Thus the rule falls in category (b) and hence un(g(a)) € W.
O

Lemma 5.3 Suppose the invariants hold at the time of a call to Local _Alternation.
During the vepeat loop of procedure Local_Alternation, the invariants are
maintained and no new query or un facts are generated (hence the Contexl
does not change throughout the procedure).

Proor. For Lines 3 4, by Lemma 5.2, since un(g(a)) ¢ W it must be that
q(a) € F[P]. Hence adding done(g(a)) to W maintains Tnvariant 2. For Lines 5 7
because ¢(a) is generated by a ground instance of a rule where —p(b) is replaced
by done(p(b)), mun(p(b)) then by Tnvariants 1 and 2, each of the literals in the rule
is true in W} and hence ¢(a) € T[P], maintaining Tnvariant 1. The maintenance
of Tnvariant 3 follows trivially since we are at a fixpoint, and there are rules in-
troduced by Undef Magic rewriting that must have derived the necessary facts.
The maintenance of ITnvariant 4 follows from the second part of this lemma, proved
below.

The rules for query facts and wun facts are positive, and depend only on the
predicates query and un, except for the rules of the form un(p(a)) :- p(a) and

201

un(—p(a)) := done(p(a)), —p(a). No un-fact not, present at the call to Local_Alter-
nation can be created during the repeat loop unless at least one new un-fact arises
from a rule like these above, since the execution simply removes un(—p(a)) facts.
Suppose ¢(a) enters W. Then it follows by the above that ¢(a) € T[P] and hence
by Lemma 5.2, un(q(a)) € W at the call to Local_Alternation. Suppose done(q(a))
enters W, then un(—¢(a)) was in W, and could not have been removed. Hence the
sequence of un-facts generated is decreasing and no new query facts are computed.
It follows from the structure of Ordered Search that. C'ontext does not change in this
period. a

Lemma 5.4 Suppose the invariants are satisfied before a call to Local _Alternation.
Let M be the query facts in the last Context Node, and let N be the union
of M together with all completed query facts, i.e. where query(q(a)) and
done(q(a)) are both present.

Let W; be the ground instances of the set of facts present at the i + 1th
time evaluation reaches the first line of Local_Alternation during the call to
Local_Alternation. Let Ty = T[Wo]/(N—M), Uy = (HBp—F[Wo]) /(N —M),
and F() = F[W()] Let T1 = TP(HBP — F()) T W(T()) and []] = TP(T()) T
w(Uy), and let Tixn = Tp(U;) T w(Ty),i > 0, and let Uiy = Tp(T;) T
w(Ug),i > 0.

Forn > 0, q(a) € W, /N iff q(a) € T,41/N, and un(q(a)) € W, /N iff
q(a) € Upy1/N.

Proor. Throughout the proof we restrict attention to facts that match the query
facts M, the results easily follow for the remaining facts matching (N — M) which
are unchanged throughout. Local_Alternation. Clearly for each n, ¢(a) € Ty <> g(a) €
W, /(N — M) and ¢(a) € Uy <> un(q(a) € W,, /(N — M)

We examine the base case, i.e., the conditions for T} and Uy, first.

We show ¢(a) € Wy/N implies ¢(a) € Ty by induction on the order of facts
generated in Wy. Now, g(a) € Wy/N means there exists ground instance of a rule
in MagUnd(P) of the form

q(a) = query(q(a)),pi(br), -, pm(bm),
done(ri(e1)), ~un(ri(er)), ..., done(rg(eg)), ~un(rg(ex)).
Fach p;(b;) entered Wy earlier, and by induction p;(h;) € Th. Now done(r;(c;)) €
Wy and un(r;(c;)) € Wy hence, ri(c;) € F[Wy]. Consider the ground instance of a

rule in P of the form

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

Then clearly ¢(a) € Ty because p;(b;) € Ty and r;(¢;) € HBp — Fi.

We show ¢(a) € (Tp(HBp — Fy) T h(Ty))/N implies ¢(a) € Wy by induction on
h. The base case is trivial. Suppose g(a) € (Tp(HBp — Fy) T h+ 1(Ty))/N then
there exists ground instance of a rule in P

q(a) == pi(b1), s Pm(bm), =ri(er), .o —re(er).

such that p;(b;) € Tp(H Bp—Fy) 1+ h(Ty)), and v;(¢;) € HBp—Fy. Thusr;(c;) € Fy
and done(r;(c;)) € Wy and un(r;(c;)) & Wa. Ry the definition of N (and Tnvariant,
4), pi(b;) € (Tp(HBp — Fy) 1 h(Ty))/N, and by inductive assumption p;(b;) € W.

202

Consider the ground instance of a rule in MagUnd(P) of the form

g(a) = query(q(a)),p1(br), ... pm(bm),
done(ri(e1)), ~un(ri(er)), ..., done(rg(eg)), ~un(rg(ex)).
Clearly ¢(a) € Wy since it would be derived by this rule instance.
We now show un(g(a)) € Wy /N implies ¢(a) € Uy by induction on the order in

which the un-facts are generated in Wy. un(q(a)) € Wo/N means that either there
exists a ground instance of a rule in MagUnd(P) of the form

un(g(a)) = q(a)

where g(a) € Wy /N, from which we have g(a) € Ty C Uy, or there is a rule instance
of the form

cun(pi(b1)), - un (pm(bm),

veeun(—rg(eg)).

un(q(a)) = query(q(a))
un(—ry(er)), -

where un(pi(h;)) € Wo/N, hence un(p;(b;)) € Uy by induction, and un(—r;(¢;)) €
Wa. Either done(r;(c;)) € Wy and r;(e;) € Wo by Tnvariant 3, or query(r;(e;)) is
an instance of a query in M and hence in either case ri(c;) & To = T[Wal/(N—M).
Consider the ground instance of a rule in P of the form

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

Then ¢(a) € Uy since p;(b;) € U1 by inductive assumption, and r;(e;)) & To.

We show ¢(a) € (Tp(Ty) 1t h(Up))/N implies un(q(a)) € Wo by induction on
h. The base case is trivial. Suppose g(a) € Tp(Ty) T h+ 1(Uy) then there exists
ground instance of a rule in P

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

such that p;(b;) € Tp(Ty) T h(Us) and r;(e;) € To. Now we can show p;(bh;) €
(Tp(Ty) T h(Uy))/N, since query(q(a)) € N and we can show (by an inner level of
induction) that each of query(p;(b;)) would be generated from query(q(a)). Hence,
by inductive assumption, un(p;(h;)) € Wy. Similarly, each of query™(r;(c;)) is
generated from query(q(a)).

Tf query™ (rj(c;)) & M, then by Tnvariants 4 and 2, done(r;(c;)) € Wa, r;(c;) ¢
Wa, and un(-r;(c;)) € Wa. T query™ (ri(c;)) € M then un(=r;(c;)) € Wy be-
cause it was added by Add_Undefined. Consider the ground instance of a rule in
MagUnd(P) of the form

un(q(a)) = query(g(a)),un(pi(b1)), ..., un(pm(bm)),
un(—ri(er)), - .., un(—rg(eg)).
Clearly un(q(a)) € Wy since it is derived by such a rule.
We have now completed the base case, and now examine the conditions for T}, 14
and Uy, 41.
We show ¢(a) € W, /N implies ¢(a) € T, 11 by induction on the order of facts

generated in W,. g¢(a) € W, means there exists ground instance of a rule in

MagUnd(P) of the form

q(a) = query(q(a)),pi(br), -, Pm(bm),
done(ri(e1)), ~un(ri(er)), ..., done(rg(eg)), ~un(rg(ex)).

203

and p;(b;) enter W, earlier, hence by induction p;(b;) € T, 1. Now done(r;(c;)) €
W, and un(r;(c;)) & W,. Tf query(ri(c;)) € M then r;(c;) € Uy and also in
U, because the%e facts were never removed during Local_Alternatlon. Otherwise at
some Wi, I < n we derived the fact done(r;(c;)) either because (a) un(r;(c;)) ¢
Wi thus un(r;(e;)) € W, (since by Lemma 5.3 the un-facts are decreasing) and
hence r;(e;) ¢ U,, or (b) ri(c;) € Wi hence vj(c;) € W, and un(ri(c;)) € W,,
(’ontradl(’hon Hence r;(e;) ¢ U, Consider the ground instance of a ru]e in P of the
form

qg(a) = pr(b1), - pm(bm), —ri(en), . —re(en).

Then clearly q(a) € Thq1 because p;(bi) € Thyr and r;(c;) € U,

We show g(a) € (Tp(U,) 1t h(Ty))/N implies ¢(a) € W, by induction on h.
The base case is trivial. Suppose g(a) € (Tp(U,) T h+ 1(Ty))/N then there exists
ground instance of a rule in P

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

such that p;(b;) € Tp(U,) 1t h(Ty). By the definition of N, p;(b;) € (Tp(U,) 1t
h(Ty))/N, and hence by inner inductive assumption p;(b;) € W,,. Further, r;(e;) ¢
U, and thus by the outer inductive assumption un(r;(c;)) € W,,_1. Hence we must
have done(ri(c;)) € Wy, and un(ri(c;)) & W,.

Consider the ground instance of a rule in /\/[agUnd(P) of the form

q(a) = query(q(a)),pi(br), -, Pm(bm),
done(ri(e1)), ~un(ri(er)), ..., done(rg(eg)), ~un(rg(ex)).

Clearly ¢(a) € W,.

We now show if un(g(a)) € W,, /N implies ¢(a) € U, 41 by induction on the order
in which the un-facts are generated in W,,. un(q(a)) € W, /N means there either
there exists ground instance of a rule in /\/[r]qUnd(P) of the form

un(g(a)) = q(a)

where ¢(a) € W, /N, from which we have ¢(a) € T,41 C U,41, or there is a rule
instance of the form

un(q(a)) = query(g(a)),un(pi(b1)), ..., un(pm(bm)),

un(—ri(er)), - .., un(—rg(eg)).

where un(p;(b;)) € W, and thus p;(b;) € Un41 by induction and un(-r;(e;)) € W,.
Tf rj(c;) does not match a query in M then done(r;(ec;)) € Wo and un(—r;(c;)) € Wo
and hence ri(c;) & To and r;i(e;) & T,. Otherwise un(—r;(c;)) € W, implies

ri(c;) & Wi_q and by outer mduchon r7(;) € T,. Consider the ground instance of
a rule in P of the form

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

Then ¢(a) € Upq1 since p;(b;) € Upyr and r;(c;) € T

We show g(a) € (Tp(T,) T h(Us))/N implies un(q(1)) € W, by induction on h.
The base case is trivial. Suppose g(a) € (Tp(T,) t h+ 1(Uy))/N then there exists
ground instance of a rule in P

(](fl) T (b1)7 : ..,pm(})m),—'ﬁ(m), : "7_'rk(clf)'

204

such that p;(b;) € Tp(T,) T h(Uy). We can again show by induction that each of
query(p;(b;)) € N, and by inductive assumption each p;(b;) € W,,, and hence also
un(p;(b;)) € W,. F’urther ri(e;) & Tn. T query(r;(c;)) € M then by Tnvariants 4
and 2, done(r 7(7)) e Wy, r"(;) € Wy, and un(—m,(;) € Wy and hence also in
W

Tf 7;(¢;) corresponds to a query fact in M then un(—r;(c;)) € Wy because it was
added by Add_Undefined and it is only removed if r;(¢;) € W, but that would imply

r;(c;) € T,. Consider the ground instance of a ru]e in /\/[r]qUnd() of the form

un(q(a)) = query(g(a)),un(pi(b1)), ..., un(pm(bm)),

un(—ri(er)), - .., un(—rg(eg)).

Clearly un(q(a)) € W,.
This completes the proof. a

REFERENCES

1. Apt, K. R, Blair, H. A. and Walker, A. Towards a theory of declarative know-
ledge. In Minker (ed) Foundations of Deductive Databases and Logic Programming,
(1988), 89 148.

2. 1. Balbin and K. Ramamohanarao. A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming, 4(3), September 1987.

3. Bancilhon, F. Naive evaluation of recursively defined relations. In Brodie and Mylo-
poulos, editors, On Knowledge Base Management Systems Integrating Database
and AT Systems. Springer-Verlag (1985).

4. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the ACM Symposium on
Principles of Database Systems, pages 1 15, Cambridge, Massachusetts, March
1986.

5. Baral, C. and Subrahmanian, V.S. Dualities between alternate semantics for lo-
gic programming and nonmonotonic reasoning. In Procs. of the 1st International
Workshop on Logic Programming and Non-monotonic Reasoning, 1991, MIT Press,
69 86.

6. Catriel Beeri and Raghu Ramakrishnan. On the power of Magic. Tn Procs. of the
ACM Symp. on Principles of Database Systems, pages 269 283, Mar. 1987.

7. N. Bidoit and P. T.egay. WELIL! An evaluation procedure for all logic programs. In
Procs. of the International Conf. on Database Theory, pages 335 348, Dec. 1990.

8. Weidong Chen, Terrance Swift and David S. Warren. Efficient Top-Down Com-
putation of Queries under the Well-Founded Semantics Tech. Report 93-CSE-33,
Southern Methodist University, Aug. 1993.

9. Weidong Chen and Davis S. Warren. A goal-oriented approach to computing the
well founded semantics. In Procs. of the Joint Int’l Conf. and Symp. on Logic
Programming, 589 606, 1992.

10. Weidong Chen and Davis S. Warren. Query Evaluation under the Well-Founded
Semantics. In Procs. of the ACM Symp. on Principles of Database Systems 1993.

11. David Kemp, Divesh Srivastava, and Peter Stuckey. Magic sets and bottom-up eval-
uation of well-founded models. In Procs. of the International Logic Programming
Symposium, 337 351, 1991.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

205

David Kemp, Divesh Srivastava, and Peter Stuckey. Query restricted bottom-up
evaluation of normal logic programs. In Procs. of the Joint Int’l Conf. and Symp.
on Logic Programming, 2838 302, 1992.

T.eone, N. and Rullo, P. Safe computation of the well-founded semantics of DATA-
1.OG queries. Information Systems 17(1) (1992), 17 31.

J. W. Tloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ed., 1987.

Morishita, S. An alternating fixpoint tailored to magic programs. In Procs. of the
1993 ACM Symp. on Principles of Database Systems, 1993.
Przymusinski, T.C. On the declarative semantics of stratified deductive data-

bases. Tn Minker (ed) Foundations of Deductive Databases and Logic Programming,
(1988), 193 216.

Raghu Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-
grams. In Procs. of the International Conf. on Logic Programmang, 140 159, 1988.

Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the search

in bottom-up evaluation. In Joint Int’l Conf. and Symp. on Logic Programming
1992, 273 287, 1992.

Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the search
n bottom-up evaluation. Full version of [18], in preparation, 1993.

Kenneth A. Ross A procedural semantics for well-founded negation in logic pro-
grams. In Procs. of the ACM Symp. on Principles of Database Systems (1989).

Kenneth A. Ross. Modular Stratification and Magic Sets for DATAT.OG programs
with negation. In Procs. of the ACM Symp. on Principles of Database Systems,
161 171, 1990.

Kenneth A. Ross. The Semantics of Deductive Databases. Ph.1). thesis, Department
of Computer Science, Stanford University, Aug. 1991.

T. Swift. Ffficient Fvaluation of General Logic Programs. PhD) thesis, State Uni-
versity of New York at Stony Brook, Dec. 1994.

H. Tamaki and T. Sato. OL.D resolution with tabulation. In Procs. of the Third
International Conference on Logic Programming (I.NCS 225), 84 98, 1986.

A. Van Gelder. The alternating fixpoint of logic programs with negation. In Procs.
of the ACM Symp. on Principles of Database Systems, 1 10, 1989.

A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620 650, 1991.

1.. Vieille. Recursive query processing: The power of logic. Theoretical Computer
Science, pages 1 53, 1989.

