Decision Procedures in the Theory of Bit-Vectors

Sukanya Basu
Guided by: Prof. Supratik Chakraborty
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

May 1, 2010

Bit-Vectors

Definition

A bit-vector b is a vector of bits with a given length / (or dimension)

$$
b:\{0, \cdots, I-1\} \rightarrow\{0,1\}
$$

- The set of all 2^{\prime} bitvectors of length I is denoted by bvec $l_{\text {. The }} i$-th bit of the bitvector b is denoted by b_{i}.

Bitvector arithmetic: Syntax

- Domain of bitvectors is finite
- Semantics of operation over unbounded types (integers, natural numbers) need special handling to be represented by bitvectors

Grammar for bitvector arithmetic

$$
\begin{aligned}
& \text { formula }: \text { formula } \wedge \text { formula } \mid \neg \text { formula } \mid(\text { formula }) \mid \text { atom } \\
& \text { atom }: \text { term rel term } \mid \text { Boolean - Identifier } \mid \text { term [constant] } \\
& \text { rel }:<\mid= \\
& \text { term }: \text { term op term } \mid \text { identifier } \mid \sim \text { term } \mid \text { constant } \mid \\
& \quad \text { atom? term }: \text { term } \mid \text { term[constant : constant] | ext (term) } \\
& \quad \text { op }:+|-|\cdot| /|\ll| \gg| \&| ||\oplus| \circ
\end{aligned}
$$

Bitwise operators

- The binary bitwise operators take two l-bit bitvectors as arguments and return an l-bit bitvector
- Bitwise OR operator:

$$
\left.\right|_{[I]}:\left(\text { bvec }_{I} \times \text { bvec }_{l}\right) \rightarrow \text { bvec }_{I}
$$

Example

$$
11001000 \mid 01100100=11101100
$$

- Bitwise AND operator:

$$
\&_{[l]}:\left(\text { bvec }_{l} \times \text { bvec }_{l}\right) \rightarrow \text { bvec }_{l}
$$

Example

$$
11001000 \& 01100100=01000000
$$

Encodings

Numbers are encoded using bitvectors

- Binary encoding
- Two's complement encoding

Binary Encoding

Let x denote a natural number, and b_{l} a bit vector. b is called a binary encoding of x iff

$$
x=\langle b\rangle_{u}
$$

where $\langle b\rangle_{U}$ is defined as follows:

Definition

$$
\begin{aligned}
\langle\cdot\rangle_{U}: \text { bvec }_{I} & \rightarrow\left\{0, \cdots, 2^{\prime}-1\right\} \\
\langle b\rangle_{U} & =\sum_{i=0}^{I-1} b_{i} \cdot 2^{i}
\end{aligned}
$$

Example

$$
\langle 11001000\rangle_{U}=200
$$

Two's complement encoding

Let x denote a natural number, and $b \in$ bvec $_{I}$ a bit vector, b is called a two's complement encoding of x iff

$$
x=\langle b\rangle_{S}
$$

where $\langle b\rangle_{S}$ is defined as follows:

Definition

$$
\begin{gathered}
\langle\cdot\rangle_{S}: b v e c_{I} \rightarrow\left\{-2^{I-1}, \cdots, 2^{I-1}-1\right\} \\
\langle b\rangle_{S}=-2^{I-1} \cdot b_{I-1}+\sum_{i=0}^{I-1} b_{i} \cdot 2^{i}
\end{gathered}
$$

Example

$$
\begin{gathered}
\langle 11001000\rangle_{S}=-128+64+8=-56 \\
\langle 01100100\rangle_{S}=100
\end{gathered}
$$

Arithmetic operators

Bit-vector arithmetic uses modular arithmetic

Example

$$
\begin{aligned}
11001000 & =200 \\
+01100100 & =100 \\
=00101100 & =44
\end{aligned}
$$

- Addition

$$
\begin{aligned}
& a_{[l]}+u b_{[l]}=c_{[l]} \Longleftrightarrow\langle a\rangle_{U}+\langle b\rangle_{U}=\langle c\rangle_{U \bmod 2^{\prime}} \\
& a_{[I]}+s b_{[/]}=c_{[l]} \Longleftrightarrow\langle a\rangle_{S}+\langle b\rangle_{S}=\langle c\rangle_{S} \bmod 2^{\prime}
\end{aligned}
$$

Mixed encoding:

$$
a_{[l]} u+u b_{[l] S}=c_{[l]} \Longleftrightarrow\langle a\rangle_{U}+\langle b\rangle_{S}=\langle c\rangle_{U \bmod 2^{\prime}}
$$

Decision Procedures

- A decision procedure is an algorithm that terminates with a correct yes or no answer for a decision problem.

Deciding bitvector arithmetic

Bitvector arithmetic can be decided by

- Flattening or bit-blasting
- Incremental flattening
- Using solvers for linear arithmetic
- Integer arithmetic
- Fixed-point arithmetic

Flattening

- Transforms Bit-Vector Logic to Propositional Logic
- Most commonly used decision procedure
- Also called 'bit-blasting'
(1) Convert propositional part
(2) Add a Boolean variable for each bit of each sub-expression (term)
(3) Add constraint for each sub-expression

The new Boolean variable for bit i of term t is denoted by $\mu(t)_{i}$.

Bitvector Flattening

Example: Bitwise operator

$$
\left.a\right|_{[/]} b: \bigwedge_{i=0}^{I-1}\left(\mu(t)_{i}=\left(a_{i} \vee b_{i}\right)\right)
$$

Example: Arithmetic addition $a+b$

$$
\begin{array}{ll}
a b i & S \equiv(a+b+i) \bmod 2 \equiv a \oplus b \oplus i \\
\square & O \equiv(a+b+i) \operatorname{div} 2 \equiv a \cdot b+a \cdot i+b \cdot i \\
\mathrm{FA} & \\
O S & \\
& (a \vee b \vee \neg 0) \wedge(a \vee \neg b \vee i \vee \neg 0) \wedge \\
& (a \vee \neg b \vee \neg i \vee o) \wedge(\neg a \vee b \vee i \vee \neg 0) \wedge \\
& (\neg a \vee b \vee \neg i \vee o) \wedge(\neg a \vee \neg b \vee o)
\end{array}
$$

Incremental Bit Flattening

- Start with the propositional skeleton of the formula
- Add constraints for "inexpensive "operators, omit those for "expensive " operators

Example

$$
a \cdot b=c \wedge b \cdot a \neq c \wedge x<y \wedge x>y
$$

Incremental Flattening

STP

A decision procedure for the satisfiability of quatifier-free first order logic formulas with bitvectors and arrays.

Approach

- Three phases of word-level transformations
- Conversion to a purely Boolean formula and Bit-blasting
- Conversion to propositional CNF
- Solving by a SAT solver

STP: Linear Solver and Variable Elimination

- Efficiently handles linear two's complement arithmetic
- Variable eliminated by substituting in the rest of the formula
- If unable to solve an entire variable, solves for some of the lower bits
- Non-linear or word-level terms treated as bitvector variables

STP: Abstraction Refinement

- Abstract formula obtained by omitting conjunctive constraints from concrete formula
- Checked for satisfiability
(1) Unsatisfiable: Original formula definitely unsatisfiable
(2) Exists satisfying assignment to abstract formula: Converts to a purported concrete model. If original formula evaluates to true, returns without further refinement
(3) Purported model returns false: Refines abstracted formula by choosing additional conjuncts.
- Worst case: Abstracted formula made fully concrete.
- Result guaranteed to be correct because of equisatisfiability

Stanford Validity Checker

- An automatic verification tool developed at Stanford University
- Takes as input a Boolean formula in a quantifier free subset of first order logic
- The framework of SVC is divided into two parts:
- A canonizer
- A solver

Canonizer

- To make semantically equivalent terms have a unique representation (canonical form)
- This is complicated because of bitvector arithmetic

Example

$$
\begin{gathered}
\left(x_{[n]}+{ }_{[n+1]} x_{[n]}\right) \equiv\left(x_{[n]} \circ 0_{[1]}\right) \\
\left(x_{[1]}+{ }_{[1]} 1_{[1]}\right) \equiv\left(\text { NOTX }_{[1]}\right)
\end{gathered}
$$

- Converts all expressions to a common form, bitplus expressions

Bitplus expressions

- A modulo 2^{n} addition expression for some fixed bit-width n of bitvector variables with constant coefficient
- Variables are ordered with duplicates eliminated, and each coefficient reduced to modulo 2^{n}
- A set of transformation rules are applied

Examples

$$
\begin{gathered}
\left(x_{[n]} \circ 0_{[1]}\right) \equiv 2^{1} \cdot x_{[n]}+{ }_{[n+1]} 0_{[1]} \\
\left(x_{[0]}+{ }_{[m]} \cdots x_{s}\right)[i: 0] \equiv\left(x_{[0]}+[i+1] \cdots x_{[s]}\right)
\end{gathered}
$$

Solver

- A solver for equations involving bit-vector operations
- Requires the equations to be in canonical form
- A total ordering on expressions required for determining complexity
- In case of bit-vectors, longer bit-vectors more complex than shorter ones
- The solver is called for the longest bit-vector in the equation

Solver (contd.)

- The equations that the solver attempts to solve has the general form

$$
a_{0} \cdot x_{0}+{ }_{[n]} \cdots a_{p} \cdot x_{p}=b_{0} \cdot y_{0}+{ }_{[n]} \cdots b_{q} \cdot y_{q}
$$

- The most complex variable, say $z_{[m]}$, with coefficient c, is isolated on the left-hand side. The resulting equation is of the form

$$
c \cdot z_{[m]}=d_{0} \cdot w_{0_{[m[0]]}}+{ }_{[n]} \cdots d_{j} \cdot w_{j_{[m[j]]}}
$$

- Coefficient is odd
- Coefficient is even

Integrated Canonizer and Solver

- Decision procedure developed at SRI International
- Quantifier free, first-order theory
- Equality and disequality with both uninterpreted and interpreted function symbols
- Arithmetic, tuples, arrays, sets and bit-vectors
- Core is a congruence closure procedure
- Provides an API, suitable for use in applications with highly dynamic environments

Conclusion

- Notable applications of STP include the EXE project
- Fully exploits the speed of modern SAT solvers
- Primary application for SVC is microprocessor verification
- Has been applied to the TORCH microprocessor
- Is claimed to be complete and automatic
- Sometimes bitplus expressions benefit the core theory of concatenation and extraction
- Currently the more evolved version of SVC is CVC and CVC-lite
- ICS is however deprecated since August 2006 and is no longer supported
- It has been replaced by Yices

