
Decision Procedures in the Theory of Bit-Vectors

Sukanya Basu
Guided by: Prof. Supratik Chakraborty

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

May 1, 2010

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 1 / 24



Bit-Vectors

Definition

A bit-vector b is a vector of bits with a given length l (or dimension)

b : {0, · · · , l − 1} → {0, 1}

The set of all 2l bitvectors of length l is denoted by bvecl . The i-th
bit of the bitvector b is denoted by bi .

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 2 / 24



Bitvector arithmetic: Syntax

Domain of bitvectors is finite

Semantics of operation over unbounded types (integers, natural
numbers) need special handling to be represented by bitvectors

Grammar for bitvector arithmetic

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term rel term | Boolean − Identifier | term [ constant ]

rel :< | =

term : term op term | identifier | ∼ term | constant |
atom ? term : term | term[ constant : constant] | ext ( term )

op : + | − | · | / | � | � | & | | | ⊕ | ◦

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 3 / 24



Bitwise operators

The binary bitwise operators take two l-bit bitvectors as arguments
and return an l-bit bitvector

Bitwise OR operator:

|[l ] : (bvecl × bvecl)→ bvecl

Example

11001000 | 01100100 = 11101100

Bitwise AND operator:

&[l ] : (bvecl × bvecl)→ bvecl

Example

11001000 & 01100100 = 01000000

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 4 / 24



Encodings

Numbers are encoded using bitvectors

Binary encoding

Two’s complement encoding

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 5 / 24



Binary Encoding

Let x denote a natural number, and bl a bit vector. b is called a binary
encoding of x iff

x = 〈b〉U
where 〈b〉U is defined as follows:

Definition

〈·〉U : bvecl → {0, · · · , 2l − 1},

〈b〉U =
l−1∑
i=0

bi · 2i ·

Example

〈11001000〉U = 200

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 6 / 24



Two’s complement encoding
Let x denote a natural number, and b ∈ bvecl a bit vector, b is called a
two’s complement encoding of x iff

x = 〈b〉S
where 〈b〉S is defined as follows:

Definition

〈·〉S : bvecl → {−2l−1, · · · , 2l−1 − 1},

〈b〉S = −2l−1· bl−1 +
l−1∑
i=0

bi · 2i ·

Example

〈11001000〉S = −128 + 64 + 8 = −56

〈01100100〉S = 100

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 7 / 24



Arithmetic operators
Bit-vector arithmetic uses modular arithmetic

Example

11001000 = 200

+01100100 = 100

= 00101100 = 44

Addition

a[l ] +U b[l ] = c[l ] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉Umod2l

a[l ] +S b[l ] = c[l ] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉Smod2l

Mixed encoding:

a[l ]U +U b[l ]S = c[l ] ⇐⇒ 〈a〉U + 〈b〉S = 〈c〉Umod2l

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 8 / 24



Decision Procedures

A decision procedure is an algorithm that terminates with a correct
yes or no answer for a decision problem.

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 9 / 24



Deciding bitvector arithmetic

Bitvector arithmetic can be decided by

Flattening or bit-blasting

Incremental flattening

Using solvers for linear arithmetic

I Integer arithmetic
I Fixed-point arithmetic

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 10 / 24



Flattening

Transforms Bit-Vector Logic to Propositional Logic

Most commonly used decision procedure

Also called ’bit-blasting’

1 Convert propositional part

2 Add a Boolean variable for each bit of each sub-expression (term)

3 Add constraint for each sub-expression

The new Boolean variable for bit i of term t is denoted by µ(t)i .

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 11 / 24



Bitvector Flattening

Example: Bitwise operator

a|[l ]b :
l−1∧
i=0

(µ(t)i = (ai ∨ bi ))

Example: Arithmetic addition a + b

a b i

O S

FA

S ≡ (a + b + i) mod 2 ≡ a⊕ b ⊕ i

O ≡ (a + b + i) div 2 ≡ a· b + a· i + b· i

(a ∨ b ∨ ¬o) ∧ (a ∨ ¬b ∨ i ∨ ¬o)∧
(a ∨ ¬b ∨ ¬i ∨ o) ∧ (¬a ∨ b ∨ i ∨ ¬o)∧
(¬a ∨ b ∨ ¬i ∨ o) ∧ (¬a ∨ ¬b ∨ o)

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 12 / 24



Incremental Bit Flattening

Start with the propositional skeleton of the formula

Add constraints for “inexpensive ”operators, omit those for
“expensive ”operators

Example

a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 13 / 24



Incremental Flattening

Is ϕf SAT? compute I

ϕf := ϕsk ,F := ∅

Pick F ′ ⊆ (I\F )

F := F ∪ F ′

ϕf := ϕf ∧ Constraint F ′

Yes

I 6= ∅

I = ∅No

UNSAT SAT

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 14 / 24



STP

A decision procedure for the satisfiability of quatifier-free first order logic
formulas with bitvectors and arrays.

Approach

Three phases of word-level transformations

Conversion to a purely Boolean formula and Bit-blasting

Conversion to propositional CNF

Solving by a SAT solver

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 15 / 24



STP: Linear Solver and Variable Elimination

Efficiently handles linear two’s complement arithmetic

Variable eliminated by substituting in the rest of the formula

If unable to solve an entire variable, solves for some of the lower bits

Non-linear or word-level terms treated as bitvector variables

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 16 / 24



STP: Abstraction Refinement

Abstract formula obtained by omitting conjunctive constraints from
concrete formula

Checked for satisfiability

1 Unsatisfiable: Original formula definitely unsatisfiable
2 Exists satisfying assignment to abstract formula: Converts to a

purported concrete model. If original formula evaluates to true, returns
without further refinement

3 Purported model returns false: Refines abstracted formula by choosing
additional conjuncts.

Worst case: Abstracted formula made fully concrete.

Result guaranteed to be correct because of equisatisfiability

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 17 / 24



Stanford Validity Checker

An automatic verification tool developed at Stanford University

Takes as input a Boolean formula in a quantifier free subset of first
order logic

The framework of SVC is divided into two parts:
I A canonizer
I A solver

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 18 / 24



Canonizer

To make semantically equivalent terms have a unique representation
(canonical form)

This is complicated because of bitvector arithmetic

Example

(x[n] +[n+1] x[n]) ≡ (x[n] ◦ 0[1])

(x[1] +[1] 1[1]) ≡ (NOTx[1])

Converts all expressions to a common form, bitplus expressions

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 19 / 24



Bitplus expressions

A modulo 2n addition expression for some fixed bit-width n of
bitvector variables with constant coefficient

Variables are ordered with duplicates eliminated, and each coefficient
reduced to modulo 2n

A set of transformation rules are applied

Examples

(x[n] ◦ 0[1]) ≡ 21· x[n] +[n+1] 0[1]

(x[0] +[m] · · · xs)[i : 0] ≡ (x[0] +[i+1] · · · x[s])

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 20 / 24



Solver

A solver for equations involving bit-vector operations

Requires the equations to be in canonical form

A total ordering on expressions required for determining complexity

In case of bit-vectors, longer bit-vectors more complex than shorter
ones

The solver is called for the longest bit-vector in the equation

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 21 / 24



Solver (contd.)

The equations that the solver attempts to solve has the general form

a0 · x0 +[n] · · · ap · xp = b0 · y0 +[n] · · · bq · yq

The most complex variable, say z[m], with coefficient c , is isolated on
the left-hand side. The resulting equation is of the form

c · z[m] = d0 · w0[m[0]]
+[n] · · · dj · wj[m[j]]

Coefficient is odd

Coefficient is even

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 22 / 24



Integrated Canonizer and Solver

Decision procedure developed at SRI International

Quantifier free, first-order theory

Equality and disequality with both uninterpreted and interpreted
function symbols

Arithmetic, tuples, arrays, sets and bit-vectors

Core is a congruence closure procedure

Provides an API, suitable for use in applications with highly dynamic
environments

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 23 / 24



Conclusion

Notable applications of STP include the EXE project

Fully exploits the speed of modern SAT solvers

Primary application for SVC is microprocessor verification

Has been applied to the TORCH microprocessor

Is claimed to be complete and automatic

Sometimes bitplus expressions benefit the core theory of
concatenation and extraction

Currently the more evolved version of SVC is CVC and CVC-lite

ICS is however deprecated since August 2006 and is no longer
supported

It has been replaced by Yices

Sukanya Basu (IIT Bombay) Decision Procedures in Bitvector Theory May 1, 2010 24 / 24


	Introduction
	STP
	SVC
	ICS

