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1 Matching in Bipartite Graphs

We now look at matchings from the primal dual perspective. Our objective is an algorithm for finding
the maximum weight matching in a bipartite graph. As has been seen earlier, the Primal-Dual algorithm
lets us design an algorithm for the weighted case, if we know an algorithm for the unweighted case.

Let us first consider the LP formulation for the unweighted case. The vertex set consists of two inde-
pendent sets U and V and edges are incident to one vertex in each set.

1.1 The Primal

Variables: One variable for each edge. Xuv represents edge {u, v}. It is one if the edge is picked and
zero otherwise. The cost is then Cost: max

∑
uv Xuv What would the constraints be? Constraints:

For every vertex, there is at most one edge incident on it.

∀u ∈ U,
∑
w

Xuw ≤ 1 (1)

∀v ∈ V,
∑

p

Xpv ≤ 1 (2)

∀u, v, 0 ≤ Xuv ≤ 1, Xuv is integral (3)

It is instructive to consider the dual, dropping the integrality constraint. We can also, as usual, drop
the Xuv ≤ 1 constraint.

1.2 The Dual

For the dual, the number of variables is equal to the number of vertices in the bipartite graph. Cost:

Figure 1: Variables in the dual represent the vertices

min
∑

u Yu +
∑

v Zv. The first term in the sum stands for vertices of set U , while the second term stands
for vertices in the set V . Constraints: For edge {p, q},

Yp + Zq ≥ 1 (4)
Yp, Zq ≥ 0 (5)

Can we interpret the dual? If this were an integral problem, it looks like we have to pick a minimum
number of vertices so that for each edge, one of the vertices must be picked. This is the familiar minimum
vertex cover problem!
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2 Minimum vertex cover from the maximum matching in bi-
partite graphs

We know how to find the maximum matching in a bipartite graph. Can we find a minimum vertex cover
in polynomial time? The answer is yes. If V is a vertex cover and M is a maximum matching for a
bipartite graph, then |V | ≥ |M |. This is because, any vertex cover has to include at least one end-point
of an edge of a maximum matching. In fact, we can say more. In any bipartite graph, the number of
edges in a maximum matching is equal to the number of vertices in a minimum vertex cover. This means
to find a vertex cover, we can find a maximum matching and then we have to figure out how to put one
end-point of each edge such that it forms a vertex cover. Which? Supposing that u is an unmatched
vertex, then by the previous discussion all of its matched neighbours have to be in the vertex cover. If
we put a vertex in the vertex cover we know that its mate in the matching is not in the vertex cover.
Which means all of its neighbours which are matched must be in the vertex cover and so on. Let us
formalise this. What if there are no unmatched vertices?

Let G(U, V,E) be a graph and M be a maximum matching for the graph. Let U ′, V ′ be the set of
those vertices in M which are at odd distance along an alternating path from some unmatched vertex
in G. Let M ′ denote the subset of matched edges neither of whose end-points is selected above. Then
U ′ ∪ V ′ ∪ (M ′ ∩ U) is a vertex cover of G. Why?

The edges in the matching can be partitioned into two parts: those in M ′ and those in M ′′ = M \M ′.
The two end-points of each edge in M ′′ can be classified into two parts: one will be at odd distance
along alternating paths from an unmatched vertex and the other at even distance. Note that a vertex
cannot be at both an odd distance and an even distance along alternating paths from unmatched vertices
since that will result in an augmenting path and the matching will not be maximum. For a matching
M let V (M) denote the set of end-points of M . We need to show that every edge in the graph has one
end-point in the vertex cover. If we consider edges which has one end-point in V (M ′) and one in V (M ′′),
the end-point in V (M ′′) will be at an odd distance from an unmatched vertex and hence in the vertex
cover. It is easy to see, and left to the reader, to prove that all the other edges will also be covered.

Figure 2: Minimum vertex cover from maximum matching


