
Mar 16, 2018

Automatic Speech Recognition (CS753)
Lecture 17: Introduction to Neural Networks

Introduction to Machine Learning (CS419M)

Original author: Preethi Jyothi

Modified by: Sunita Sarawagi

Hidden

Layer

Feed-forward Neural Network

Input

Layer

Output

Layer

Feed-forward Neural Network
Brain Metaphor

g

(activation

function)

wi yi

yi=g(Σi wi ⋅ xi)

xi

Single neuron

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

Feed-forward Neural Network
Parameterized Model

1

2

3

4

5

w24

w13

w14
w23

w35

w45

a5

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)

= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +
w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))

If x is a 2-dimensional vector and the layer above it is a 2-dimensional vector
h, a fully-connected layer is associated with:

h = xW + b

where wij in W is the weight of the connection between ith neuron in the
input row and jth neuron in the first hidden layer and b is the bias vector

Parameters of
the network: all wij

(and biases not
shown here)

x1

x2

Feed-forward Neural Network
Parameterized Model

A 1-layer feedforward neural network has the form:

MLP(x) = g(xW1 + b1) W2 + b2

1

2

3

4

5

w24

w13

w14
w23

w35

w45

a5

x1

x2

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)

= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +
w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))

The simplest neural network is the perceptron:

Perceptron(x) = xW + b

Activation Functions (g)

• Cannot be linear: Will get back a linear classifier otherwise: Show.

• Want a function that is efficient to compute, easy to optimizer
(informative gradient), almost linear

Common Activation Functions (g)

sigmoid

Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

sigmoid
tanh

Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)

Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

sigmoid
tanh
ReLU

Rectified Linear Unit (ReLU): RELU(x) = max(0, x)

Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)

Sigmoid: σ(x) = 1/(1 + e-x)

Choosing g()

Choosing g()

Example XOR

Example: XOR

Output layers
• Depends on the output type

• Binary class labels: sigmoid function transforms
arbitrary reals to probability of Bernoulli

• Multi-class class labels: softmax provides
multinomial probabilities

• Real: output is mean of Gaussian distribution.

• Advantage of all of above: Probability distribution over
output. Maximum likelihood training loss is convex in
parameters of outer-most layer.

• Similar to conventional training.

Training a Feed-forward network

• To train a neural network, define a loss function L(y,ỹ):
a function of the true output y and the predicted output ỹ

• L(y,ỹ) assigns a non-negative numerical score to the neural
network’s output, ỹ

• The parameters of the network are set to minimise L over the
training examples (i.e. a sum of losses over different training
samples)

• L is typically minimised using a gradient-based method

Network Architecture

Choosing the number of layers and width of the network
and connection between layer

• Universal approximation theorem: A network with one
hidden layer (sigmoid type activation) can approximate any
continuous function from a closed and bounded set given
enough hidden units.

• Proof also extended to work for RELU activations.

• Not useful in practice:

• number of hidden units required may be exponentially large,

• the parameters of the network may not be easily learnable:
might overfit on a wrong function.

Stochastic Gradient Descent (SGD)

Inputs:
Function NN(x; θ), Training examples, x1 … xn and
outputs, y1 … yn and Loss function L.

do until stopping criterion
Pick a training example xi, yi

Compute the loss L(NN(xi; θ), yi)
Compute gradient of L, ∇L with respect to θ
θ ← θ - η ∇L

done

Return: θ

SGD Algorithm

Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find ∂L/∂w for every weight w, and update it as
w ← w - η ∂L/ ∂w

How do we efficiently compute ∂L/∂w for all w?

Will compute ∂L/∂u for every node u in the network!

∂L/∂w = ∂L/∂u ⋅ ∂u/∂w where u is the node which uses w

Training a Neural Network

New goal: compute ∂L/∂u for every node u in the network

Simple algorithm: Backpropagation

Key fact: Chain rule of differentiation

If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Backpropagation

If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Then, the chain rule gives

∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

u

L

Consider v1,…, vn as the layer
above u, Γ(u)

v

Backpropagation

u

L

v

∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

Backpropagation

Base case: ∂L/∂L = 1

For each u (top to
bottom):

For each v ∈ Γ(u):

Inductively, have
computed ∂L/∂v

Directly compute ∂v/∂u

Compute ∂L/∂u

Forward Pass

First, in a forward pass,
compute values of all
nodes given an input
(The values of each node
will be needed during
backprop)

Compute ∂L/∂w

where ∂L/∂w = ∂L/∂u ⋅ ∂u/∂w
Where values computed in the

forward pass are needed

