Introduction to Machine Learning (CS419M)

Lecture 17: Introduction to Neural Networks

Original author: Preethi Jyothi
Modified by: Sunita Sarawagi

Mar 16, 2018

Feed-forward Neural Network

®

Input Hidden

Layer Layer) j><if ;
(# $>

Feed-forward Neural Network
Brain Metaphor

SN
/

Single neuron

Telodeﬁ’] » ~
\A% Xi L. (activation L

Y P ason hillock) Synaptic terminals)
: ,/L\“ = / function)
' Golgi apparatus
Endoplasmic o
Mitochondrion \ Dendrite yI:g(z I WI XI)

Cell body

Nucleus \

reticulum

\
/ p
/ % Dendritic branches

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

Feed-forward Neural Network
Parameterized Model .sf\o
0% (/0 \%7(' N w

W23

—
R -

— 5 05=8(wss - a3+ was - 04)

ZL‘ Parameters of
the network: all wij

= g(wss - (g(wisz - a1+ w2z -az)) + (and biases not
Wus - (g(W14 -1+ W24 - 02))) shown here)

If X is a 2-dimensional vector and the layer above it is a 2-dimensional vector
h, a fully-connected layer is associated with:

h=xW+Db

where wij in W is the weight of the connection between it" neuron in the
input row and j*" neuron in the first hidden layer and b is the bias vector

Feed-forward Neural Network
Parameterized Model

Wi3
. O °\W35

W14

/;5
X2 W24

as = g(wss - a3+ was - 04)

= g(wss - (g(wiz - a1+ w2z -a2)) +
Was - (g(Wis - a1+ w24 - 02)))

The simplest neural network is the perceptron:

Perceptron(x) =xW + b

A 1-layer feedforward neural network has the form:
MLP(x) = g(xW1 + b1) W2 + b=—

Activation Functions (g)

« Cannotbe Znear: Will get back a linear classifier otherwise: Show.

xj.(¥w\k \3\\ \/\]‘;-&’Az 3)&23 = EE(ZT— b\ - [%1

(701\1 Jv&)\>\/\]2/*‘< - —,= 0
W, X \/\)2\ WL'L/l
WA+ M W
‘ I N, (= Wi W,
w, X, \A)“:iz 22 Wi \’\)(c\
A+ W \/\)2/}(2_. AY
(| — —
= —
« Wan ction that is efficient to compute, easy to optimizer

(informative gradient), almostlinear

Common Activation Functions (g)

Sigmoid: o(X) = 1/(1 + ™)

nonlinear activation functions

1.0

2

0.8

B sigmoid

output
0.6

0.4

0.2

0.0

Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + e™)

Hyperbolic tangent (tanh): tanh(x) = (e?* - 1)/(e?* + 1)

nonlinear activation functions

q /*Q -
tanh
o . :
9 B sigmoid
3o
5 ©
o

N~
/

Common Activation Functions (g)

Sigmoid: o(X) = 1/(1 + ™)

Hyperbolic tangent (tanh): tanh(x) = (e?* - 1)/(e?* + 1)
Rectified Linear Unit (ReLU): RELU(X) = max(0, X)

nonlinear activation functions

output

o
—

m_

m_

10

B RelU
tanh

B sigmoid

Choosing g()

Considerations: want some non-linearity, informative gradient (e.g

when convex), fast computation, close to linear

Role of the gradgnt of g during tra/i;ing éj ¢ 57}/2
Training objective of DNN with one hidden unit h = g(w;x) "
1(w1/, Wz, X,y) = L(- L(hway) = % (wix)way) ﬁ(g7

Gradient of above w. rt@s@:}fﬂxxg‘ /)LW,

If g’ = 0, the gradient becomes zero and we do not know in what

direction to move@

Choosing g()

o
- RELU: not differential but okay since gradient is informative.

second-derivative zero in most places (useful for optimization)
§Caution: watch out for&wactive Relujinitialize affine input Gias>)

parameter to small positives. Gradient zero ==> information flow
to lower layers is blocked.

- Sigmoid/Tanh: tanh(z) = 2 sigmoid(2z). Non-convex.
Well-behaved (linear) only for small values of z, Wry
small for small or @problem for multi-layer network.

Example XOR

Neural networks can model decisions that conventional linear
classifiers cannot.

V=FM)=xox%

Training data = all four combinations.

Linear classifier § = wix, + wyXx; + b trained with least square loss
yields wy =w, =0,b =1/2

Cannot discriminate

Non-linear classifier such as one with x;x, as feature

KZ=/W1X1 + WaXa + w@+ b)[can discriminate but the burden is on
us to create the useful non-linear features.

sro Example: XOR

A generic tys layer neural network with RelU:

y = f(x) = W2 max(0, W'x + b') + b><¢—
— \W\\

Role of non-linear t n%ﬁform.

e 1 1
Bk 3((% A0] fo
= R
B ((jﬁ_ N (Xt‘H{Z_:L_S (0/0
Co o™\
Lo, 0}
whyy = O
Ln, %) = U /“3
7 — 2 = (O

Output layers

« Depends on the output type)
L) € R
» Binary class labels: sigmoid function transforms 3 D
arbitrary reals to probability of Bernoulli W

/W

o .- b°
« Multi-class class labels: softmax provides b box o
multinomial proba? L|)§|es Sofmax - thoe R

Pyl = €57/ g [t

« Real: output is mean of Gaussian distribution. A

« Advantage of all of above: Probability distribution over
output. Maximum likelihood training loss is convex in
parameters of outer-most layer.

« Similar to conventional training.

Training a Feed-forward network

« To train a neural network, define a loss function L(y,V):
a function of the true outputy and the predicted output y

" «=L(y,¥) assigns a non-negative numerical score to the neural
network’s output, y

« The parameters of the network are set to minimise L over the

training examples (i.e. a sum of losses over different training
samples)

« L istypically minimised using a gradient-based method

Network Architecture

Choosing the number of layers and width of the network
and connection between layer

 Universal approximation theorem: A network with one
hidden layer (sigmoid type activation) can approximate any
continuous function from a closed and bounded set given

| enough hidden units.

| Proof also extended to work for RELU activations.

|

« Not useful in practice:

« number of hidden units required may be exponentially large,

« the parameters of the network may not be easily learnable:
might overfit on a wrong function.

Effect of depth

- Many functions can be efficiently represented with multiple

W\

° \ 3 — =] ’ . "
hidden layers but require exponential width with single hidden

layer

- The number of linear regionsgrved out via d inputs, [+1 depth,
: -

c,d)¥c)—

c units per hidden layer is O (

- Empirically too, larger depth leads to better generalization and

U7

Test accuracy (%)

lower error.

Effect of Number of Parameters

!)T | I | | |
96 o—e 3 convolutional | —
=+ 3, fully connected
95 , : u
’ V¥ 11. convolutional
91 -+
. - ..
93 ' E— — ‘ -
92 —
91 | A Il 1 1
0.0 0.2 0.4 0.6 0.8 1.0

v 108
Number of parameters x 10

Stochastic Gradient Descent (SGD)

SGD Algorithm

Inputs: /"7 N
Function NN(x; 0), Training examples, x1... Xxn and
outputs, y1... yn and Loss function L.

do until stopping criterion o L?WLJA 0\4 b & (

Pick a training example xi, yi— P

ompute gradient of L, VL with respect to 6

v Jd-NYV

Return: 6

Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find 0L/Ow for every weight W, and update it as /\/
W <«—w-n 0L/ ow =

How do we efficiently compute 0L/ow for all w?

Will compute 0L/Ou for every node U in the network!

OL/Ow =LL@L/8u |Ou/0w where U'is the node which uses w

Training a Neural Network

New goal: compute 0L/0Ou for every node u in the network

Simple algorithm: Backpropagation

/

Key fact: Chain rule of differentiation

If L can be written as a function of variables vi,..., va, Which in turn
depend (partially) on another variable u, then

-

OL/Ou =X; OL/0vi - Ovi/Ou

Backpropagation

If L can be written as a function of variables vy, ..., Vo, which in turn
depend (partially) on another variable u, then

OL/ou = i OL/0vi - Ovi/Ou

ConsiderVvs,..., Vn as the layer |
above u, I'(u) \/'/’\ V

Then, the chain rule gives

OL/Ou =2y eru) OL/Ov - Ov/Ou

Backpropagation

OL/Ou = Xv er@) OL/Ov - Ov/Ou

Backpropagation t

Base case: OL/OL =1 Forward Pass

For each u (top to /‘\ First, in a forward pass,

bottom): \q compute values of all

For each v €1'(u): nodes given an input
Inductively, have (The values of each node

computed 8L/8v / \ \ will be needed during

backprop)

Directly comput 8v/@u
Compute OL/Ou..

Compute OL/Ow. Lo T ¢(

Where values computed in the
where 8L/8w = OL/du - Ou/dw —. i) SREs A esdles

