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Sequence Modeling taks



More examples

● Forecasting



RNN: Recurrent Neural Network

● A model to process variable length 1-D input

● In CNN, each hidden output is a function of corresponding 

input and some immediate neighbors.

● In RNN, each output is a function of a 'state' summarizing 

all previous inputs and current input.  State summary 

computed recursively.

● RNN allows deeper, longer range interaction among 

parameters than CNNs for the same cost.



RNNs: Basic type

● Notation:

○ ht to denote state 

instead of zt

○ Input to RNN is xt, 

instead of yt



RNN: forward computation example.



RNN for text (Predict next word) – word embeddings



Training a sequence model

● Maximum Likelihood

● Mechanism of training

○ Input to RNN is the true tokens upto time t-1

○ Output is the probability distribution over tokens

○ Maximize the probability of the correct token.

● Advantages

○ Easy. Generative --- token at a time. Sound-- full dependency! 





Training RNN parameters

Backpropagation through time

● Unroll graph along time

● Compute gradient through back-propagation exactly as in 

feedforward networks

● Sum up the gradient from each layer since parameters 

are shared.



Backpropagation through time



Exploding and vanishing gradient problem

Product of non-linear interactions: gradient either small or large



Fixes for vanishing/exploding gradient problem

● No parameters for updating state: state is a "reservoir" of 

all past inputs, output is a learned function of state.  E.g. 

Echo state networks, Liquid networks

● Multiple time scales: add direct connection from far inputs 

instead of depending on state to capture all far-off inputs.

● Shortcomings of above: 

○ How far back we look at each t is same for all t and cannot be 

changed for different times or different inputs

○ Only accumulate information, cannot forget information.

● Solution: Gated RNNs e.g. LSTMs



Gated RNNs

● Gates control which part of the long past is used for 

current prediction

● Gates also allow forgetting of part of the state

● LSTM: Long Short Term Memory, one of the most 

successful gated RNNs.

● An excellent introductions here:

○ http://colah.github.io/posts/2015-08-Understanding-LSTMs/

○ http://blog.echen.me/2017/05/30/exploring-lstms/



The sequence prediction task

● Given a complex input x

○ Example: sentence(s), image, audio wave

● Predict a sequence y of discrete tokens y1,y2,..,yn

○ Typically a sequence of words.

○ A token can be any term from a huge discrete vocabulary

○ Tokens are inter-dependent

■ Not n independent scalar classification task.

Neural network

x y= y1,y2,..,yn



Motivation

● Applicable in diverse domains spanning language, image, 

and speech processing. 

● Before deep learning each community solved the task in 

their own silos → lot of domain expertise

● The promise of deep learning: as long as you have lots of 

labeled data, domain-specific representations learnable

● This has brought together  these communities like never 

before!



Translation

Context: x Predicted sequence: y

● Pre-DL translation systems were driven by transfer grammar rules painstakingly 

developed by linguists and elaborate phrase translation 

● Whereas, modern neural translation systems are scored almost 60% better 

than these domain-specific systems.



Image captioning

Image from http://idealog.co.nz/tech/2014/11/googles-latest-auto-captioning-experiment-and-its-deep-fascination-artificial-intelligence

A person riding a 

motorcycle on a dirt road

Context: x Predicted sequence: y

● Early systems: either template-driven or transferred captions from related 

images

● Modern DL systems have significantly pushed the frontier on this task.



Conversation assistance

From https://research.googleblog.com/search?updated-max=2016-06-20T05:00:00-07:00&max-results=7&start=35&by-date=false

Context: x

Predicted sequences: y



Syntactic parsing

Context: x Predicted sequence: y



Speech recognition

Context: x  (Speech spectrogram) Output: Y  (Phoneme Sequence) 

Ri    ce     Uni      ver    si    ty



Challenges

● Capture long range dependencies

○ No conditional independencies assumed

○ Example during correct anaphora resolution in output sentence:

■ How is your son? I heard he was unwell.

● Prediction space highly open-ended

○ No obvious alignment with input unlike in tasks like POS, NER

○ Sequence length not known.  Long correct response has to 

compete with short ones

■ How are you?
● “Great”   Vs    “Great, how about you?”



The Encoder Decoder model for sequence 

prediction
● Encode x into a fixed-D real vector X

● Decode y token by token using a RNN

○ Initialize a RNN state with X

○ Repeat until RNN generates a EOS token

■ Feed as input previously generated token

■ Get a distribution over output tokens, and choose best.
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The Encoder Decoder model for sequence 

prediction
● Encode x into a fixed-D real vector X

● Since Y has many parts, need a graphical 

model to express  the joint distribution 

over constituent tokens y1,...,yn.  

Specifically, we choose a special 

Bayesian network, called a RNN 
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Encoder decoder model



Encoder-decoder model 

● Models full dependency among tokens in predicted sequence

○ Chain rule

○ No conditional independencies assumed unlike in CRFs

● Training:

○ Maximize likelihood.  Statistically sound!

● Inference

○ Find y with maximum probability → intractable given above

○ Beam search: branch & bound expansion of frontier of ‘beam width’

■ Probability of predicted sequence increases with increasing beam width.    



Inference

● Finding the sequence of tokens y1,....,yn for which product 

of probabilities is maximized

● Cannot find the exact MAP efficiently since fully 

connected Bayesian network ⇒ intractable junction tree. 

The states z are high-dimensional real-vectors.

● Solution: approximate inference

○ Greedy

○ Beam-search



Encoder-decoder for sequence to sequence learning

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

Context: x

Predicted sequence: y
y2 y3 y4 y5 y6 y7 y8 y9 y10

H =  हाल,      के,               वर्षों,           में,   आर्थिक,    ववकास,     धीमा,      हुआ,    है

Embedding layer to 

convert each word to a 

fixed-D real vector

RNN e.g. LSTMs to 

summarize x token-by-

token

RNN to generate y

Choose high probability 

token and feed to next step.



Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input.

○ Fix: Attention (Bahdanau 2015, several others)

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Transformer (Self Attention(Vaswani, June 2017))

● Training loss flaws

○ Global loss functions



Single vector not powerful enough ---> revisit input

Deep learning term for this ⇒ Attention!

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

H =   हाल,      के,                   वर्षों,                में,     आर्थिक,   ववकास,       धीमा,        
हुआ,     है How to learn attention 

automatically, and in a 

domain neutral 

manner?



Single vector not powerful enough ---> revisit input

Deep learning term for this ⇒ Attention!

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

H =   हाल,      के,                   वर्षों,                में,     आर्थिक,   ववकास,       धीमा,        
हुआ,     है

End-to-end trained and 

magically  learns to align 

automatically given enough 

labeled data



Example of attention in translation

Nice animated explanations for 

attention.

https://distill.pub/2016/augmented-

rnns/#attentional-interfaces



Same attention logic applies to other domains too  

Attention over CNN-

derived features of 

different regions of 

image

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/



Attention in image captioning.  Attention over CNN 

states

A          bird                flying           over                a                    body              of               water              .

From https://arxiv.org/pdf/1502.03044v3.pdf

A bird flying over a body of water.



Attention in Speech to Text Models

Diagram from https://distill.pub/2016/augmented-rnns/

Context: x

Predicted sequence: y

We see that attention is focussed in middle part and nicely 

skips the prefix and suffix that is silence.



Google’s Neural Machine Translation (GNMT) model

8 layers

2-layer 

attention logic

Bidirectional 

LSTMs

Residual 

connections

Special wordpiece 

tokenization to 

handle rare words

Length 

normalization, 

coverage 

penalty, low-

precision 

inference

Works on many language pairs

60% better than existing phrase based system 

on human evaluation.



Results



Summary

● Deep learning based models for sequence prediction has 

revolutionized and unified many diverse domains.

● 2015-2018 has seen several improvements to the encoder-

decoder method

○ Increase capacity via input attention

○ Eschew RNN bottleneck via multi-layer self-attention

○ Fix loss function via better calibration and global conditioning

● Other interesting developments not covered

○ Memory networks for remembering rare events (Kaiser, ICLR 2017)



What next?

● Move away from black-box, batch-trained, monolithic 

models to transparent models with more control from 

humans and evolving continuously.

● Generalize to other structured learning tasks

○ No natural ordering of variables.



Thank you.



Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input

○ Fix: Attention

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Attention (Vaswani, June 2017)

● Training loss flaws

○ Systematic bias against long sequences

○ Not aligned with whole sequence error during inference

■ Generate sequences during training, score their errors and minimize 
(Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)



Attention is enough. No need for RNN

Edge weights determined by self-

attention.  Multiple of these

⊕ ⊕ ⊕⊕ ⊕⊕⊕⊕⊕

Continued..Attention weighted sum of 

previous layer

Positional embedding of 

each input word

Sum up word and position 

embedding

Compute position 

embedding, lookup word 

embedding

One-hot word, and 

position(1,2..) 



Continued..

FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF

6 of these to capture different granularity of 

bindings among input tokens.

Repeat similar 6-layers to replace RNN 

for decoder too and between decoder 

and encoder

Tokens at all positions processed in 

parallel --- only sequentiality among the 

6 layers which are fixed.

Author’s slides https://www.slideshare.net/ilblackdragon/attention-is-all-you-need



Example: how attention replaces RNN state

Attention around 

“making” converts 

it to phrase 

“making more 

difficult”



Performance

RNNs/CNNs no longer indispensable for sequence prediction

Attention captures relevant bindings at much lower cost



Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input.

○ Fix: Attention

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Attention (Vaswani, June 2017)

● Training loss flaws

○ Poor calibration

○ Not aligned with whole sequence error during inference

■ Generate sequences during training, score their errors and minimize 
(Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)



Bias against longer sequences

26% ED predictions 

of zero length. None 

in data.

Severely under-predicts large sequences

ED over-predicts short sequences



Surprising drop in accuracy with better inference

For long sequences, accuracy drops when inference predicts a higher scoring 

sequence ---- why?



Two Causes
1. Lack of calibration

2. Local conditioning



Lack of calibration

● Next token probabilities not well-calibrated.

○ A 0.9 probability of yt = “EOS”, does not  imply 90% 

chance of correctness.

● Bane of several modern neural architectures e.g. 

Resnets, not just sequence models

○ High in accuracy but low in reliability!
■ Mostly  over-confident.

○ See: On Calibration of Modern Neural Networks, ICML 2017



Calibration plots



Investigating reasons for poor calibration

EOS



Reasons for poor calibration

● Observations

a. End of sequence token is seriously over-confident

b. Calibration is worse when encoder attention is diffused.

c. Other unexplained reasons.



Kernel embedding based trainable calibration 

measure
● Train models to minimize weighted combination of 0/1 

error and calibration of confidence scores.



Corrected calibrations



Fixing calibration leads to higher accuracy

1. Beam search for predicting highest probability sequence

a. Grows token-by-token a beam of highest scoring prefixes

b. Poor calibration misleads beam-search



Two Causes
1. Lack of calibration

2. Local conditioning



Problems of local conditioning

Local conditioning causes the log-probability of each correct 

token to saturate (get very close to zero) even when the 

correct sequence does not have the highest probability.  



Local conditioning for sequence prediction
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optimized by ED local loss is 
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Log-probability of positive sequence = -1.9
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Margin between positive and negative sequence =  -1.5!
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Positive sequence: “S,1,1,1,1,1,1,E”,  Negative sequence: “S,0,E”.



ED objective is zero even when prediction is wrong

More training data will 

not help if your training 

loss is broken!
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How to fix the ED training loss?

Avoid local conditioning, use global conditioning     

Use for

● Applications, like conversation where response restricted 

to be from a whitelist of responses

● Else, sample responses adaptively during training

More details in Length bias in Encoder Decoder Models and a Case for Global Conditioning by Siege 

and Sarawagi. EMNLP’16



Results

Global conditioning   

predicts long sequences 

whereas ED predicts 

none

Global conditioning  is 

more accurate

A method using global 

conditioning

Length normalized 

encoder-decoder models



Thank you!



Properties of a good loss function for training

● Scoring models

(X, Y) → Model (𝚹) → S(Y|X,𝚹)  ∈ R

● Inference:  find Y with highest score  

● Training: minimize loss per labeled instance {(Xi, Yi)}

○ If loss  ~ 0, then correct output Yi has the highest score.  

○ Not true for encoder decoder models!



Peculiar biases of predictions from  ED model

● ED over-predicting short sequences

○ Even after accounting for the fact that short messages are more 

common given any particular context.

● Increasing the beam width sometimes decreased quality!

These observations are on models trained with billions of 

examples for a conversation task.



Datasets

● Reddit – comments on user posts

○ 41M posts, 501M comments

● Open Subtitles – subtitles on non-English movies

○ 319M lines of text

For each data set:

● 100K top messages = predicted set.

● 20K top tokens used to encode tokens into ids.


