Neural Models for Sequence Prediction ---Recurrent Neural Networks

Sunita Sarawagi IIT Bombay sunita@iitb.ac.in

Sequence Modeling taks

- Classify sequences $x_1, \ldots, x_n \rightarrow y$. E.g. sentiment classification, normal versus abnormal traffic
- Next word in a sequence $x_1, \ldots, x_n \rightarrow x_{n+1}$. E.g. language modeling
- Label per token in sequence $x_1, \ldots, x_n \rightarrow y_1, \ldots, y_n$. E.g. POS, speech recognition.
- Sequence prediction tasks $\mathbf{x} \rightarrow y_1, \ldots, y_m$ E.g. Translation, conversation assistant.

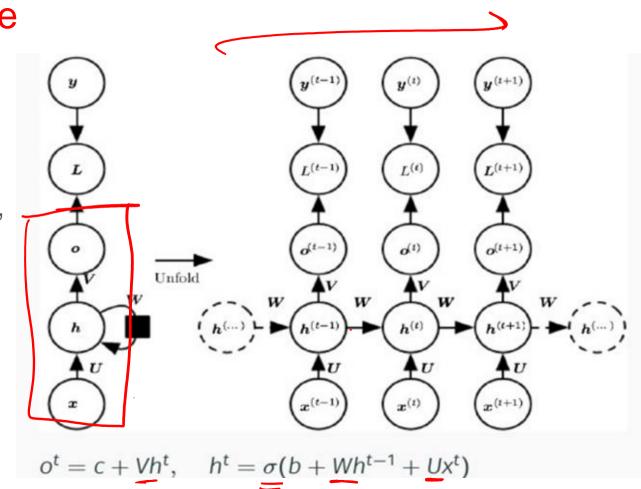
More examples

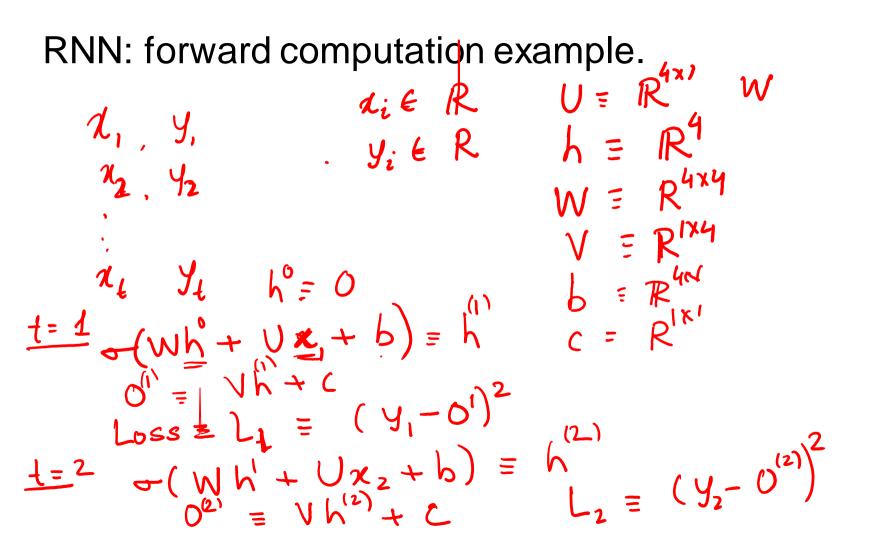
RNN: Recurrent Neural Network

- A model to process variable length 1-D input
- In CNN, each hidden output is a function of corresponding input and some immediate neighbors.
- In RNN, each output is a function of a 'state' summarizing all previous inputs and current input. State summary computed recursively.
- RNN allows deeper, longer range interaction among parameters than CNNs for the same cost.

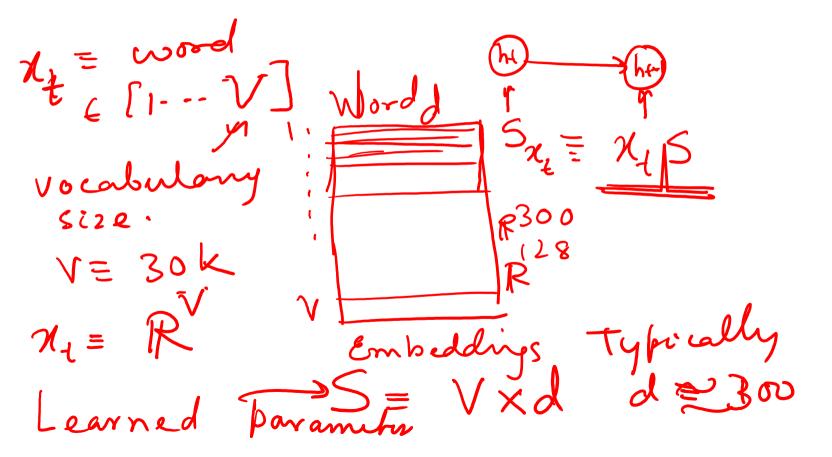
RNNs: Basic type

- Notation:
 - ht to denote state
 instead of zt
 - Input to RNN is xt, instead of yt





RNN for text (Predict next word) – word embeddings



Training a sequence model

• Maximum Likelihood $P(\mathbf{y}|\mathbf{x},\theta) = \prod_{t=1}^{n} P(y_t|y_1,\ldots,y_{t-1},\mathbf{x},\theta)$ $p(\text{the}) \quad p(\text{cat}|\ldots) \quad p(\text{is}|\ldots) \quad p(\text{eating}|\ldots)$

p(the, cat, is, eating)

the

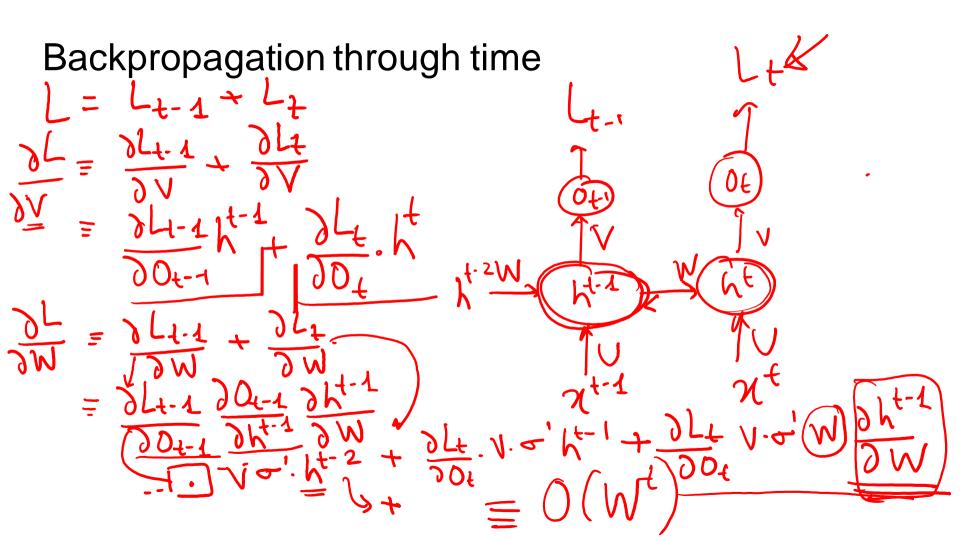
- Mechanism of training
 - Input to RNN is the true tokens upto time t-1
 - Output is the probability distribution over tokens
 - Maximize the probability of the correct token.
- Advantages
 - Easy. Generative --- token at a time. Sound-- full dependency!

Training date $D = \{(x', y')\}_{1} \cdots (x', y')_{2}^{2}$ LM: Y' = x' shifted by one to the left Enample x': The cat is sleeping $X'_{1} \times X'_{2} \times X'_{3} \times Y'_{4}$ Y'_{1} calt is -1 cat is sleeping EOS Ji Ji - Ji yi

Training RNN parameters

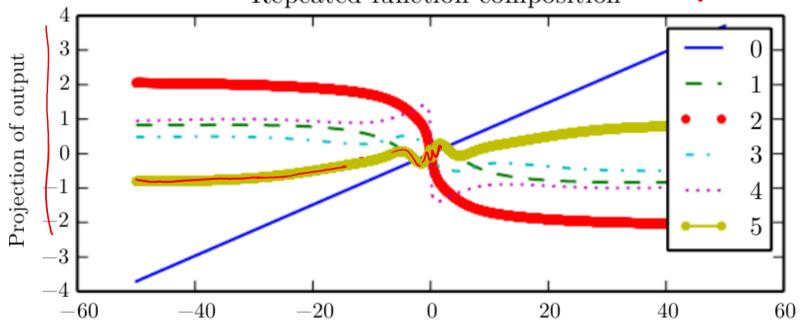
Backpropagation through time

- Unroll graph along time
- Compute gradient through back-propagation exactly as in feedforward networks
- Sum up the gradient from each layer since parameters are shared.



Exploding and vanishing gradient problem

Product of non-linear interactions: gradient either small or large Repeated function composition W¹



Fixes for vanishing/exploding gradient problem

- No parameters for updating state: state is a "reservoir" of all past inputs, output is a learned function of state. E.g. Echo state networks, Liquid networks
- Multiple time scales: add direct connection from far inputs instead of depending on state to capture all far-off inputs.
- Shortcomings of above:
 - How far back we look at each t is same for all t and cannot be changed for different times or different inputs
 - Only accumulate information, cannot forget information.
- Solution: Gated RNNs e.g. LSTMs

Gated RNNs

- Gates control which part of the long past is used for current prediction
- Gates also allow forgetting of part of the state
- LSTM: Long Short Term Memory, one of the most successful gated RNNs.
- An excellent introductions here:
 - <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>
 - <u>http://blog.echen.me/2017/05/30/exploring-lstms/</u>

The sequence prediction task

- Given a complex input **x**
 - Example: sentence(s), image, audio wave
- Predict a sequence **y** of discrete tokens $y_1, y_2, ..., y_n$
 - Typically a sequence of words.
 - A token can be any term from a huge discrete vocabulary
 - Tokens are inter-dependent
 - Not n independent scalar classification task.

x
Neural network
$$\mathbf{y} = y_1, y_2, \dots, y_n$$

Motivation

- Applicable in diverse domains spanning language, image, and speech processing.
- Before deep learning each community solved the task in their own silos → lot of domain expertise
- The promise of deep learning: as long as you have lots of labeled data, domain-specific representations learnable
- This has brought together these communities like never before!

Translation

Context: x

Predicted sequence: y

Where can I find healthy and traditional Indian food?

स्वस्थ और पारंपरिक भारतीय भोजन कहां मिल सकता है?

- Pre-DL translation systems were driven by transfer grammar rules painstakingly developed by linguists and elaborate phrase translation
- Whereas, modern neural translation systems are scored almost 60% better than these domain-specific systems.

Image captioning

Context: x

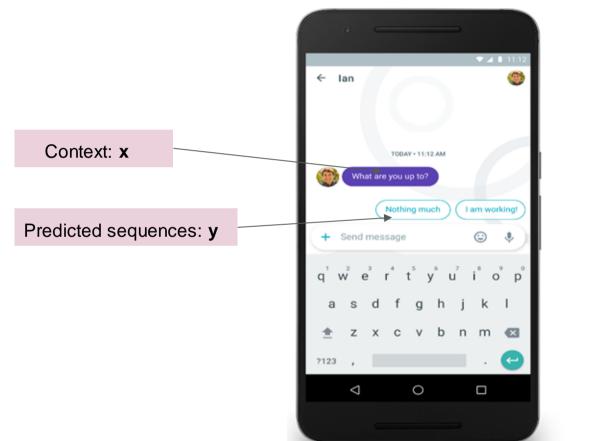
Predicted sequence: y

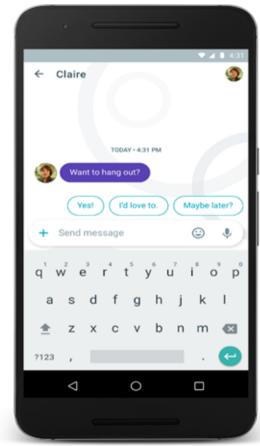
A person riding a motorcycle on a dirt road

- Early systems: either template-driven or transferred captions from related images
- Modern DL systems have significantly pushed the frontier on this task.

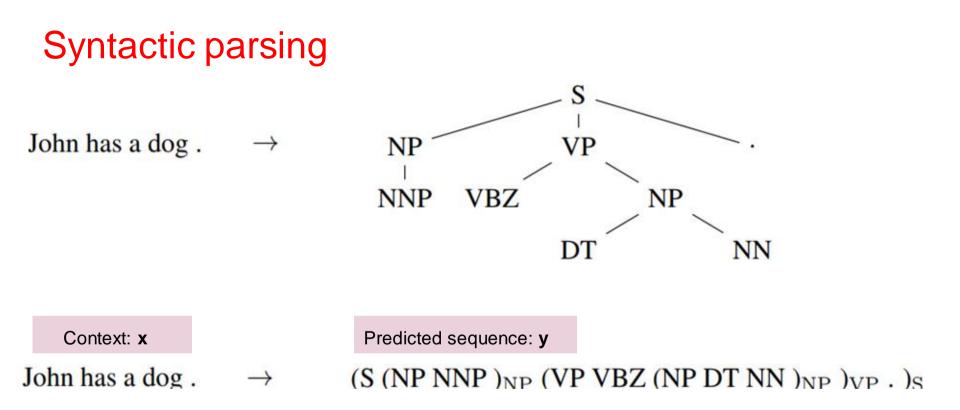
Image from http://idealog.co.nz/tech/2014/11/googles-latest-auto-captioning-experiment-and-its-deep-fascination-artificial-intelligence

Conversation assistance



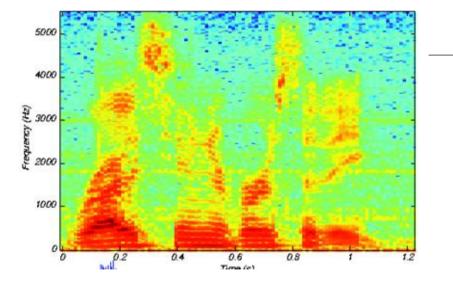


From https://research.googleblog.com/search?updated-max=2016-06-20T05:00:00-07:00&max-results=7&start=35&by-date=false



Speech recognition

Context: x (Speech spectrogram)



Output: Y (Phoneme Sequence)

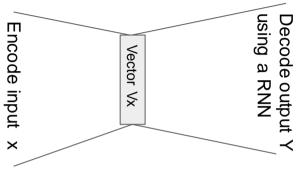
Ri ce Uni ver si ty

Challenges

- Capture long range dependencies
 - No conditional independencies assumed
 - Example during correct anaphora resolution in output sentence:
 - How is your son? I heard he was unwell.
- Prediction space highly open-ended
 - No obvious alignment with input unlike in tasks like POS, NER
 - Sequence length not known. Long correct response has to compete with short ones
 - How are you?
 - "Great" Vs "Great, how about you?"

The Encoder Decoder model for sequence prediction

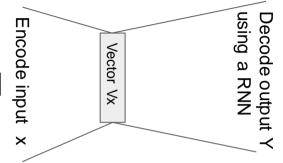
- Encode x into a fixed-D real vector X
- Decode y token by token using a RNN
 - Initialize a RNN state with X
 - Repeat until RNN generates a EOS token
 - Feed as input previously generated token
 - Get a distribution over output tokens, and choose best.



The Encoder Decoder model for sequence prediction

- Encode x into a fixed-D real vector X
- Since Y has many parts, need a graphical model to express the joint distribution over constituent tokens y1,...,yn.
 Specifically, we choose a special Bayesian network, called a RNN

$$P(\mathbf{y}|\mathbf{x},\theta) = \prod_{t=1}^{n} P(y_t|y_1,\ldots,y_{t-1},\mathbf{x},\theta)$$



Encoder decoder model

- Let v_x =fixed dimensional vector summary of input x
- Difficult to define CPD $Pr(y_t|y_1, \ldots, y_{t-1}, v_x)$ with variable length of parents. Need to share parameters.
- Redesign the BN by summarizing parents as state.

$$Pr(y_t|y_1,\ldots,y_{t-1},v_x,\theta) = P(y_t|z_t,\theta), \qquad (1)$$

where \mathbf{z}_t is a state vector implemented using a recurrent neural network as

$$z_{t} = \begin{cases} v_{x} & \text{if } t = 0, \\ RNN(z_{t-1}, y_{t-1}, \theta_{R}) & \text{otherwise.} \end{cases}$$
(2)
$$(2)$$

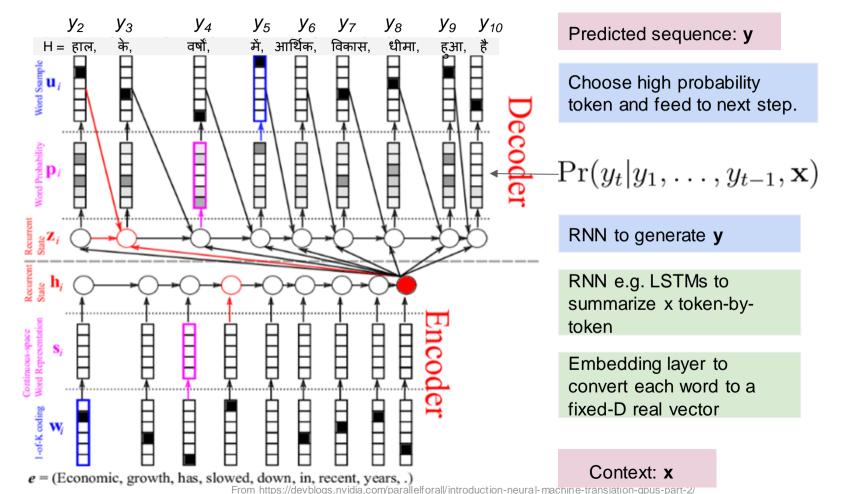
Encoder-decoder model

- Models full dependency among tokens in predicted sequence
 Chain rule P(y|x, θ) = Πⁿ_{t=1} P(y_t|y₁,..., y_{t-1}, x, θ)
 - No conditional independencies assumed unlike in CRFs
- Training:
 - Maximize likelihood. Statistically sound!
- Inference
 - $\circ~$ Find y with maximum probability \rightarrow intractable given above
 - Beam search: branch & bound expansion of frontier of 'beam width'
 - Probability of predicted sequence increases with increasing beam width.

Inference

- Finding the sequence of tokens y1,....,yn for which product of probabilities is maximized
- Cannot find the exact MAP efficiently since fully connected Bayesian network ⇒ intractable junction tree.
 The states z are high-dimensional real-vectors.
- Solution: approximate inference
 - Greedy
 - Beam-search

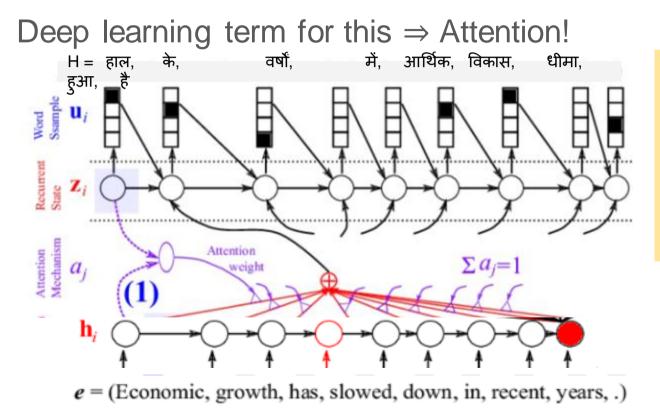
Encoder-decoder for sequence to sequence learning



Where does the encoder-decoder model fail?

- Single vector cannot capture enough of input.
 - Fix: Attention (Bahdanau 2015, several others)
- Slow training: RNNs processed sequentially, replace with
 - CNN (Gehring, ICML 2017)
 - Transformer (Self Attention(Vaswani, June 2017))
- Training loss flaws
 - Global loss functions

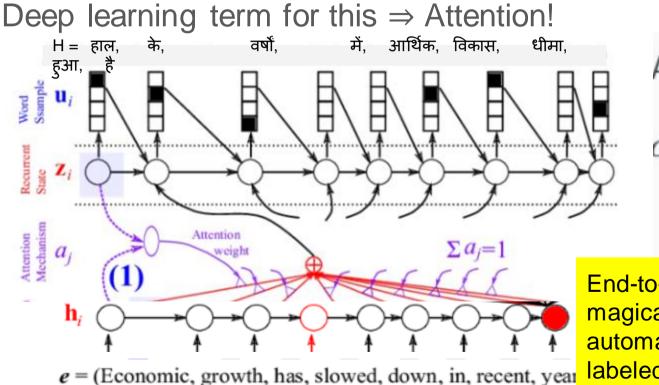
Single vector not powerful enough ---> revisit input



How to learn attention automatically, and in a domain neutral manner?

From https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

Single vector not powerful enough ---> revisit input



From https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

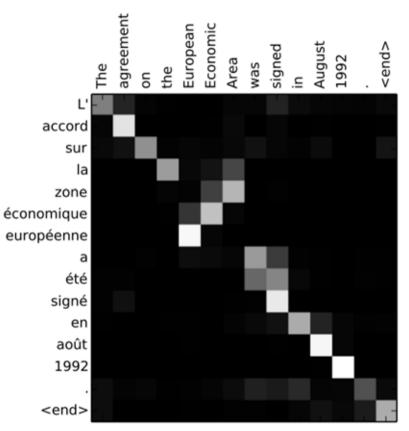
 $Attn(\mathbf{z}_{t-1}, \mathbf{h}_i) = A_{ti}$ $\alpha_{ti} = \frac{\exp(A_{ti})}{\sum_p \exp(A_{tp})}$ $\mathbf{v}_{x,t} = \sum \alpha_{ti} \mathbf{h}_i$

End-to-end trained and magically learns to align automatically given enough labeled data

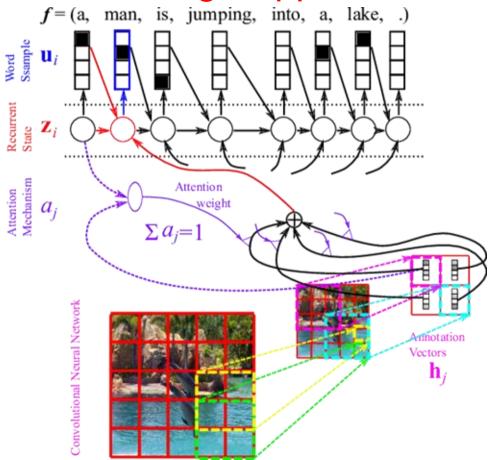
Example of attention in translation

Nice animated explanations for attention.

https://distill.pub/2016/augmentedrnns/#attentional-interfaces



Same attention logic applies to other domains too

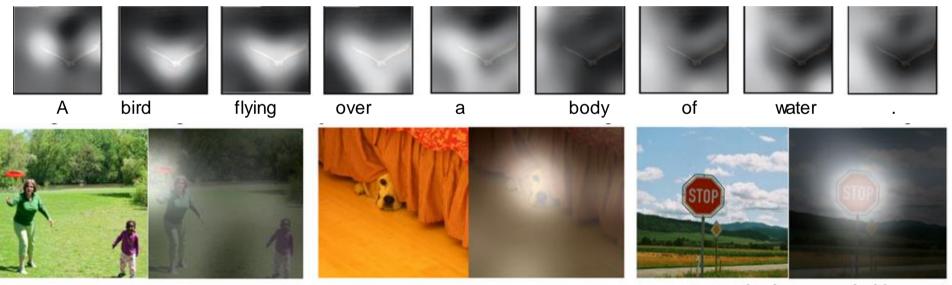


Attention over CNNderived features of different regions of image

From https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

Attention in image captioning. Attention over CNN

A bird flying over a body of water.



A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a

From https://arxiv.org/pdf/1502.03044v3.pdf

Attention in Speech to Text Models

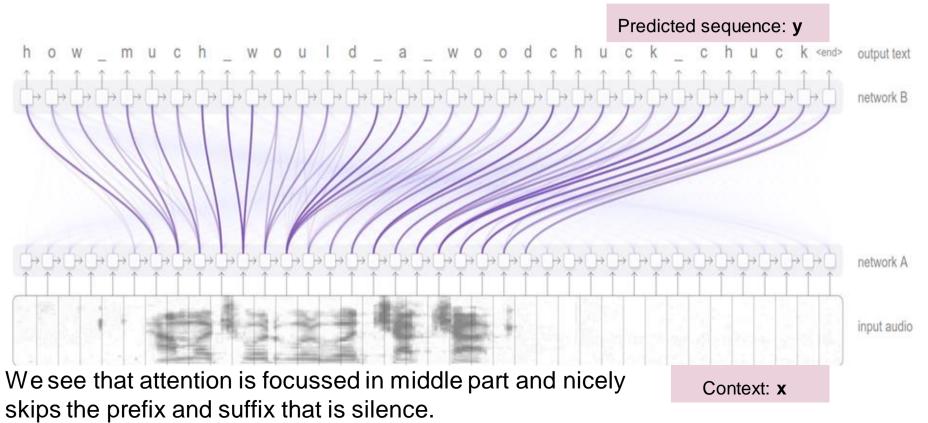
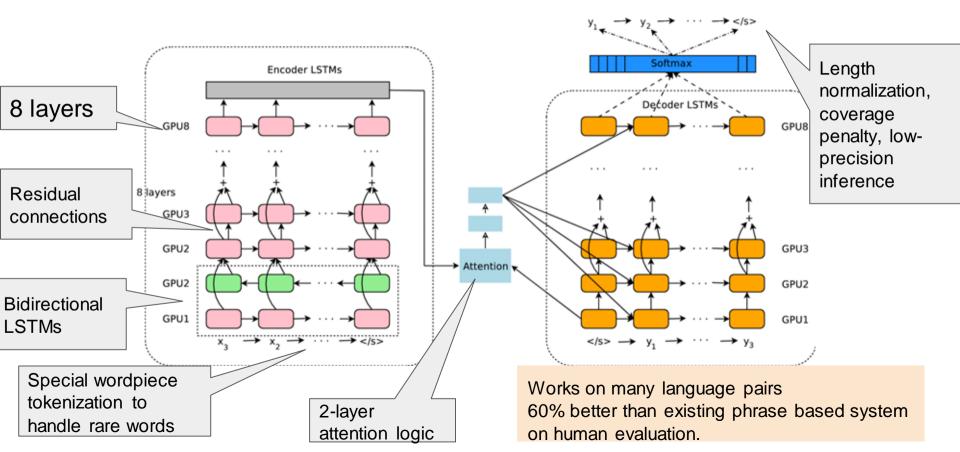


Diagram from https://distill.pub/2016/augmented-rnns/

Google's Neural Machine Translation (GNMT) model



Results

Table 10: Mean of side-by-side scores on production data							
	PBMT	GNMT	Human	Relative			
				Improvement			
$English \rightarrow Spanish$	4.885	5.428	5.504	87%			
$\mathrm{English} \to \mathrm{French}$	4.932	5.295	5.496	64%			
English \rightarrow Chinese	4.035	4.594	4.987	58%			
$\text{Spanish} \to \text{English}$	4.872	5.187	5.372	63%			
French \rightarrow English	5.046	5.343	5.404	83%			
$\mathbf{Chinese} \to \mathbf{English}$	3.694	4.263	4.636	60%			

Summary

- Deep learning based models for sequence prediction has revolutionized and unified many diverse domains.
- 2015-2018 has seen several improvements to the encoderdecoder method
 - Increase capacity via input attention
 - Eschew RNN bottleneck via multi-layer self-attention
 - Fix loss function via better calibration and global conditioning
- Other interesting developments not covered
 - Memory networks for remembering rare events (Kaiser, ICLR 2017)

What next?

 Move away from black-box, batch-trained, monolithic models to transparent models with more control from humans and evolving continuously.

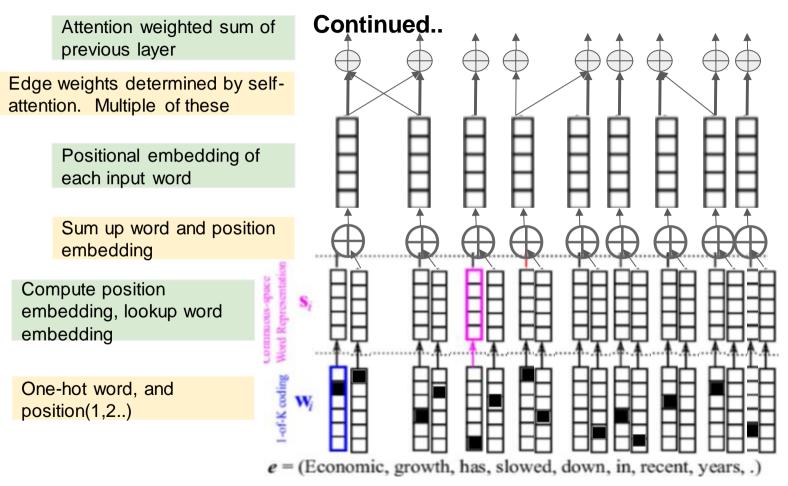
Generalize to other structured learning tasks
 No natural ordering of variables.

Thank you.

Where does the encoder-decoder model fail?

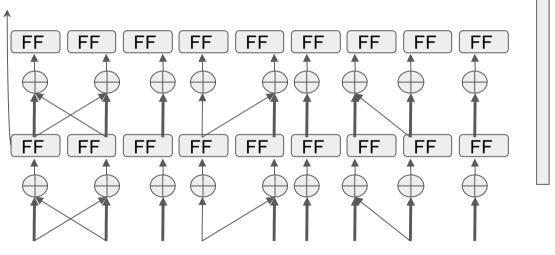
- Single vector cannot capture enough of input
 Fix: Attention
- Slow training: RNNs processed sequentially, replace with
 - CNN (Gehring, ICML 2017)
 - Attention (Vaswani, June 2017)
- Training loss flaws
 - Systematic bias against long sequences
 - Not aligned with whole sequence error during inference
 - Generate sequences during training, score their errors and minimize (Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)

Attention is enough. No need for RNN



Continued..

6 of these to capture different granularity of bindings among input tokens.

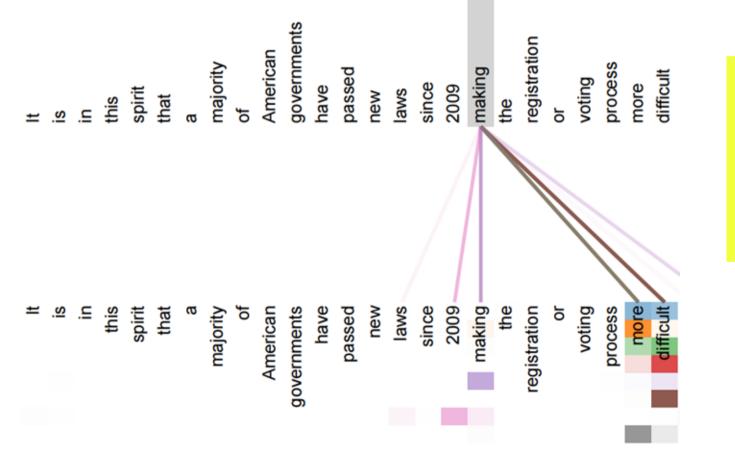


Repeat similar 6-layers to replace RNN for decoder too and between decoder and encoder

Tokens at all positions processed in parallel --- only sequentiality among the 6 layers which are fixed.

Author's slides https://www.slideshare.net/ilblackdragon/attention-is-all-you-need

Example: how attention replaces RNN state



Attention around "making" converts it to phrase "making more difficult"

Performance

M-1-1	BLEU		Training Co	Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [17]	23.75				
Deep-Att + PosUnk [37]		39.2		$1.0\cdot10^{20}$	
GNMT + RL [36]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot10^{20}$	
MoE [31]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0\cdot10^{20}$	
GNMT + RL Ensemble [36]	26.30	41.16	$1.8\cdot10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$		
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$		

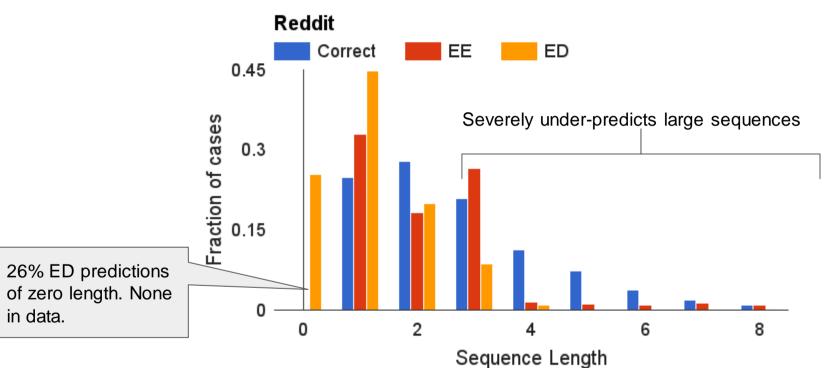
RNNs/CNNs no longer indispensable for sequence prediction

Attention captures relevant bindings at much lower cost

Where does the encoder-decoder model fail?

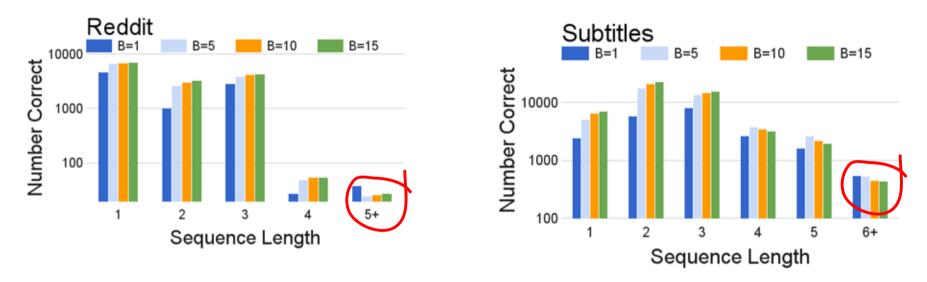
- Single vector cannot capture enough of input.
 - Fix: Attention
- Slow training: RNNs processed sequentially, replace with
 - CNN (Gehring, ICML 2017)
 - Attention (Vaswani, June 2017)
- Training loss flaws
 - Poor calibration
 - Not aligned with whole sequence error during inference
 - Generate sequences during training, score their errors and minimize (Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)

Bias against longer sequences



ED over-predicts short sequences

Surprising drop in accuracy with better inference



For long sequences, accuracy drops when inference predicts a higher scoring sequence ---- why?

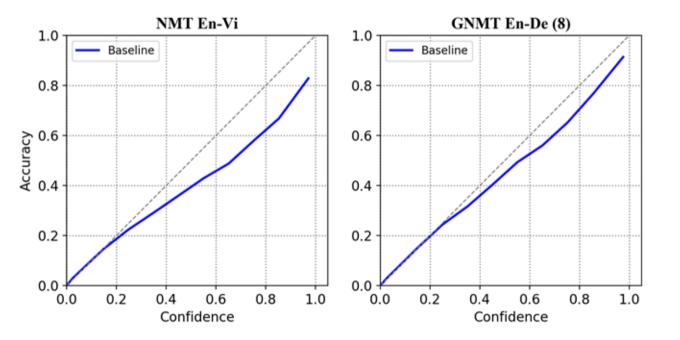
Two Causes

- 1. Lack of calibration
- 2. Local conditioning

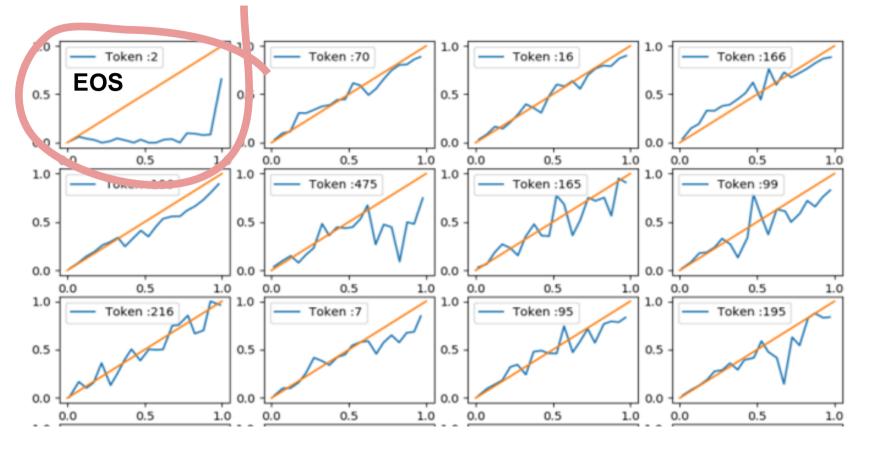
Lack of calibration

- Next token probabilities not well-calibrated.
 - A 0.9 probability of $y_t = "EOS"$, does not imply 90% chance of correctness.
- Bane of several modern neural architectures e.g. Resnets, not just sequence models
 - High in accuracy but low in reliability!
 - Mostly over-confident.
 - See: On Calibration of Modern Neural Networks, ICML 2017

Calibration plots



Investigating reasons for poor calibration



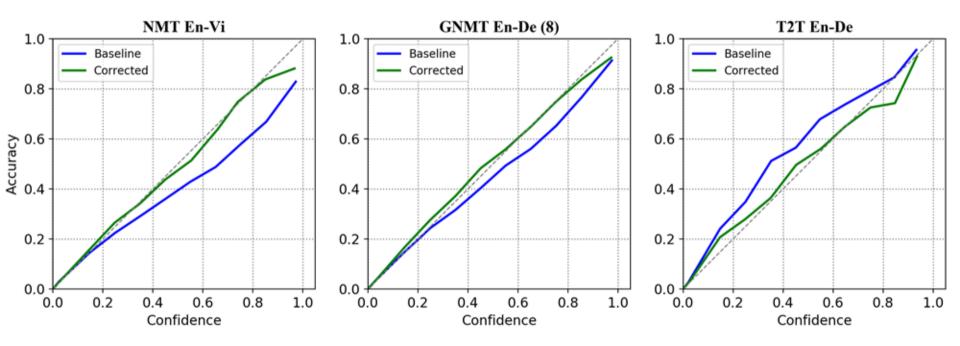
Reasons for poor calibration

- Observations
 - a. End of sequence token is seriously over-confident
 - b. Calibration is worse when encoder attention is diffused.
 - c. Other unexplained reasons.

Kernel embedding based trainable calibration measure

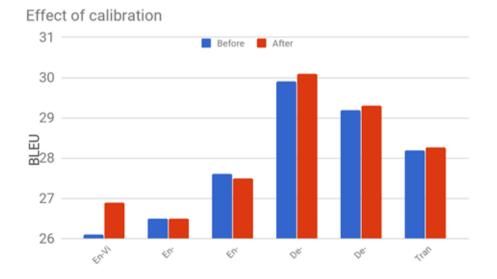
• Train models to minimize weighted combination of 0/1 error and calibration of confidence scores.

Corrected calibrations



Fixing calibration leads to higher accuracy

- 1. Beam search for predicting highest probability sequence
 - a. Grows token-by-token a beam of highest scoring prefixes
 - b. Poor calibration misleads beam-search



Two Causes

- 1. Lack of calibration
- 2. Local conditioning

Problems of local conditioning

Local conditioning causes the log-probability of each correct token to saturate (get very close to zero) even when the correct sequence does not have the highest probability.

$$P(\mathbf{y}|\mathbf{x},\theta) = \prod_{t=1}^{n} P(y_t|y_1,\ldots,y_{t-1},\mathbf{x},\theta)$$

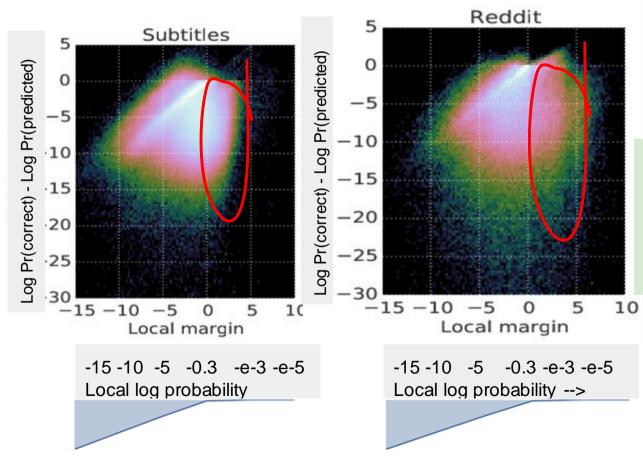
Local conditioning for sequence prediction

 $\log \Pr(y_t | y_1, \dots, y_{t-1})$ Positive sequence: "S,1,1,1,1,1,E", Negative sequence: "S,0,E". 2 3 5 t= 4 6 7 8 S -0.01 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -6 1 - 0.4 - 0.3 - 0.3 - 0.3 - 0.3 -6 -6 - 0.3 0 -6 -6 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 Е -6 -1.8 -1.7 -1.6 -1.5 -1.5 -1.5 -0.01

Margin between position and negative sequence optimized by ED local loss is -0.4 - (-1.4) = 1!

Log-probability of positive sequence = -1.9 Log-probability of negative sequence = -0.4 Margin between positive and negative sequence = -1.5!

ED objective is zero even when prediction is wrong



More training data will not help if your training loss is broken!

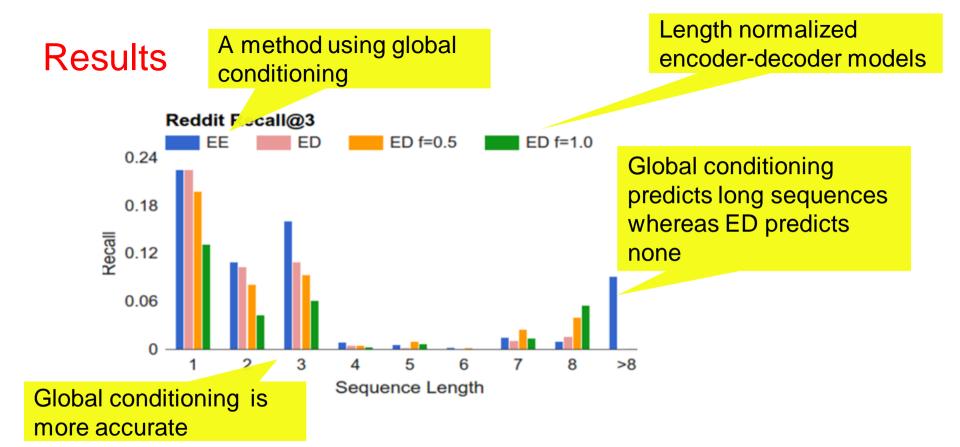
How to fix the ED training loss?

Avoid local conditioning, use global conditioning $\Pr(Y_i|X_i, \theta) = \frac{e^{S(Y_i|X_i, \theta)}}{\sum_{Y \in \text{sample}} e^{S(Y|X_i, \theta)}}$

Use for

- Applications, like conversation where response restricted to be from a whitelist of responses
- Else, sample responses adaptively during training

More details in Length bias in Encoder Decoder Models and a Case for Global Conditioning by Siege and Sarawagi. EMNLP'16



Thank you!

Properties of a good loss function for training

• Scoring models

 $(X, Y) \rightarrow Model \ (\Theta) \rightarrow S(Y|X,\Theta) \in \mathbf{R}$

- Inference: find Y with highest score
- Training: minimize loss per labeled instance {(Xi, Yi)}
 - If loss ~ 0, then correct output Yi has the highest score.
 - Not true for encoder decoder models!

Peculiar biases of predictions from ED model

- ED over-predicting short sequences
 - Even after accounting for the fact that short messages are more common given any particular context.
- Increasing the beam width sometimes decreased quality!

These observations are on models trained with billions of examples for a conversation task.

Datasets

- Reddit comments on user posts
 - 41M posts, 501M comments
- Open Subtitles subtitles on non-English movies
 - 319M lines of text

For each data set:

- 100K top messages = predicted set.
- 20K top tokens used to encode tokens into ids.