
Neural Models for

Sequence Prediction ---

Recurrent Neural Networks
Sunita Sarawagi

IIT Bombay

sunita@iitb.ac.in

Sequence Modeling taks

More examples

● Forecasting

RNN: Recurrent Neural Network

● A model to process variable length 1-D input

● In CNN, each hidden output is a function of corresponding

input and some immediate neighbors.

● In RNN, each output is a function of a 'state' summarizing

all previous inputs and current input. State summary

computed recursively.

● RNN allows deeper, longer range interaction among

parameters than CNNs for the same cost.

RNNs: Basic type

● Notation:

○ ht to denote state

instead of zt

○ Input to RNN is xt,

instead of yt

RNN: forward computation example.

RNN for text (Predict next word) – word embeddings

Training a sequence model

● Maximum Likelihood

● Mechanism of training

○ Input to RNN is the true tokens upto time t-1

○ Output is the probability distribution over tokens

○ Maximize the probability of the correct token.

● Advantages

○ Easy. Generative --- token at a time. Sound-- full dependency!

Training RNN parameters

Backpropagation through time

● Unroll graph along time

● Compute gradient through back-propagation exactly as in

feedforward networks

● Sum up the gradient from each layer since parameters

are shared.

Backpropagation through time

Exploding and vanishing gradient problem

Product of non-linear interactions: gradient either small or large

Fixes for vanishing/exploding gradient problem

● No parameters for updating state: state is a "reservoir" of

all past inputs, output is a learned function of state. E.g.

Echo state networks, Liquid networks

● Multiple time scales: add direct connection from far inputs

instead of depending on state to capture all far-off inputs.

● Shortcomings of above:

○ How far back we look at each t is same for all t and cannot be

changed for different times or different inputs

○ Only accumulate information, cannot forget information.

● Solution: Gated RNNs e.g. LSTMs

Gated RNNs

● Gates control which part of the long past is used for

current prediction

● Gates also allow forgetting of part of the state

● LSTM: Long Short Term Memory, one of the most

successful gated RNNs.

● An excellent introductions here:

○ http://colah.github.io/posts/2015-08-Understanding-LSTMs/

○ http://blog.echen.me/2017/05/30/exploring-lstms/

The sequence prediction task

● Given a complex input x

○ Example: sentence(s), image, audio wave

● Predict a sequence y of discrete tokens y1,y2,..,yn

○ Typically a sequence of words.

○ A token can be any term from a huge discrete vocabulary

○ Tokens are inter-dependent

■ Not n independent scalar classification task.

Neural network

x y= y1,y2,..,yn

Motivation

● Applicable in diverse domains spanning language, image,

and speech processing.

● Before deep learning each community solved the task in

their own silos → lot of domain expertise

● The promise of deep learning: as long as you have lots of

labeled data, domain-specific representations learnable

● This has brought together these communities like never

before!

Translation

Context: x Predicted sequence: y

● Pre-DL translation systems were driven by transfer grammar rules painstakingly

developed by linguists and elaborate phrase translation

● Whereas, modern neural translation systems are scored almost 60% better

than these domain-specific systems.

Image captioning

Image from http://idealog.co.nz/tech/2014/11/googles-latest-auto-captioning-experiment-and-its-deep-fascination-artificial-intelligence

A person riding a

motorcycle on a dirt road

Context: x Predicted sequence: y

● Early systems: either template-driven or transferred captions from related

images

● Modern DL systems have significantly pushed the frontier on this task.

Conversation assistance

From https://research.googleblog.com/search?updated-max=2016-06-20T05:00:00-07:00&max-results=7&start=35&by-date=false

Context: x

Predicted sequences: y

Syntactic parsing

Context: x Predicted sequence: y

Speech recognition

Context: x (Speech spectrogram) Output: Y (Phoneme Sequence)

Ri ce Uni ver si ty

Challenges

● Capture long range dependencies

○ No conditional independencies assumed

○ Example during correct anaphora resolution in output sentence:

■ How is your son? I heard he was unwell.

● Prediction space highly open-ended

○ No obvious alignment with input unlike in tasks like POS, NER

○ Sequence length not known. Long correct response has to

compete with short ones

■ How are you?
● “Great” Vs “Great, how about you?”

The Encoder Decoder model for sequence

prediction
● Encode x into a fixed-D real vector X

● Decode y token by token using a RNN

○ Initialize a RNN state with X

○ Repeat until RNN generates a EOS token

■ Feed as input previously generated token

■ Get a distribution over output tokens, and choose best.

E
n
c
o

d
e

 in
p

u
t x

V
e
c
to

r V
x

D
e

c
o

d
e

 o
u
tp

u
t Y

u
s
in

g
 a

 R
N

N

The Encoder Decoder model for sequence

prediction
● Encode x into a fixed-D real vector X

● Since Y has many parts, need a graphical

model to express the joint distribution

over constituent tokens y1,...,yn.

Specifically, we choose a special

Bayesian network, called a RNN

E
n
c
o

d
e

 in
p

u
t x

V
e
c
to

r V
x

D
e

c
o

d
e

 o
u
tp

u
t Y

u
s
in

g
 a

 R
N

N

Encoder decoder model

Encoder-decoder model

● Models full dependency among tokens in predicted sequence

○ Chain rule

○ No conditional independencies assumed unlike in CRFs

● Training:

○ Maximize likelihood. Statistically sound!

● Inference

○ Find y with maximum probability → intractable given above

○ Beam search: branch & bound expansion of frontier of ‘beam width’

■ Probability of predicted sequence increases with increasing beam width.

Inference

● Finding the sequence of tokens y1,....,yn for which product

of probabilities is maximized

● Cannot find the exact MAP efficiently since fully

connected Bayesian network ⇒ intractable junction tree.

The states z are high-dimensional real-vectors.

● Solution: approximate inference

○ Greedy

○ Beam-search

Encoder-decoder for sequence to sequence learning

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

Context: x

Predicted sequence: y
y2 y3 y4 y5 y6 y7 y8 y9 y10

H = हाल, के, वर्षों, में, आर्थिक, ववकास, धीमा, हुआ, है

Embedding layer to

convert each word to a

fixed-D real vector

RNN e.g. LSTMs to

summarize x token-by-

token

RNN to generate y

Choose high probability

token and feed to next step.

Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input.

○ Fix: Attention (Bahdanau 2015, several others)

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Transformer (Self Attention(Vaswani, June 2017))

● Training loss flaws

○ Global loss functions

Single vector not powerful enough ---> revisit input

Deep learning term for this ⇒ Attention!

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

H = हाल, के, वर्षों, में, आर्थिक, ववकास, धीमा,
हुआ, है How to learn attention

automatically, and in a

domain neutral

manner?

Single vector not powerful enough ---> revisit input

Deep learning term for this ⇒ Attention!

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

H = हाल, के, वर्षों, में, आर्थिक, ववकास, धीमा,
हुआ, है

End-to-end trained and

magically learns to align

automatically given enough

labeled data

Example of attention in translation

Nice animated explanations for

attention.

https://distill.pub/2016/augmented-

rnns/#attentional-interfaces

Same attention logic applies to other domains too

Attention over CNN-

derived features of

different regions of

image

From https://devblogs.nvidia.com/parallelforall/ introduction-neural-machine-translation-gpus-part-2/

Attention in image captioning. Attention over CNN

states

A bird flying over a body of water .

From https://arxiv.org/pdf/1502.03044v3.pdf

A bird flying over a body of water.

Attention in Speech to Text Models

Diagram from https://distill.pub/2016/augmented-rnns/

Context: x

Predicted sequence: y

We see that attention is focussed in middle part and nicely

skips the prefix and suffix that is silence.

Google’s Neural Machine Translation (GNMT) model

8 layers

2-layer

attention logic

Bidirectional

LSTMs

Residual

connections

Special wordpiece

tokenization to

handle rare words

Length

normalization,

coverage

penalty, low-

precision

inference

Works on many language pairs

60% better than existing phrase based system

on human evaluation.

Results

Summary

● Deep learning based models for sequence prediction has

revolutionized and unified many diverse domains.

● 2015-2018 has seen several improvements to the encoder-

decoder method

○ Increase capacity via input attention

○ Eschew RNN bottleneck via multi-layer self-attention

○ Fix loss function via better calibration and global conditioning

● Other interesting developments not covered

○ Memory networks for remembering rare events (Kaiser, ICLR 2017)

What next?

● Move away from black-box, batch-trained, monolithic

models to transparent models with more control from

humans and evolving continuously.

● Generalize to other structured learning tasks

○ No natural ordering of variables.

Thank you.

Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input

○ Fix: Attention

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Attention (Vaswani, June 2017)

● Training loss flaws

○ Systematic bias against long sequences

○ Not aligned with whole sequence error during inference

■ Generate sequences during training, score their errors and minimize
(Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)

Attention is enough. No need for RNN

Edge weights determined by self-

attention. Multiple of these

⊕ ⊕ ⊕⊕ ⊕⊕⊕⊕⊕

Continued..Attention weighted sum of

previous layer

Positional embedding of

each input word

Sum up word and position

embedding

Compute position

embedding, lookup word

embedding

One-hot word, and

position(1,2..)

Continued..

FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF

6 of these to capture different granularity of

bindings among input tokens.

Repeat similar 6-layers to replace RNN

for decoder too and between decoder

and encoder

Tokens at all positions processed in

parallel --- only sequentiality among the

6 layers which are fixed.

Author’s slides https://www.slideshare.net/ilblackdragon/attention-is-all-you-need

Example: how attention replaces RNN state

Attention around

“making” converts

it to phrase

“making more

difficult”

Performance

RNNs/CNNs no longer indispensable for sequence prediction

Attention captures relevant bindings at much lower cost

Where does the encoder-decoder model fail?

● Single vector cannot capture enough of input.

○ Fix: Attention

● Slow training: RNNs processed sequentially, replace with
■ CNN (Gehring, ICML 2017)

■ Attention (Vaswani, June 2017)

● Training loss flaws

○ Poor calibration

○ Not aligned with whole sequence error during inference

■ Generate sequences during training, score their errors and minimize
(Ranzato 2016, Wiseman & Rush, 2016, Shen 2016, Bahdanau 2016, Norouzi 2016)

Bias against longer sequences

26% ED predictions

of zero length. None

in data.

Severely under-predicts large sequences

ED over-predicts short sequences

Surprising drop in accuracy with better inference

For long sequences, accuracy drops when inference predicts a higher scoring

sequence ---- why?

Two Causes
1. Lack of calibration

2. Local conditioning

Lack of calibration

● Next token probabilities not well-calibrated.

○ A 0.9 probability of yt = “EOS”, does not imply 90%

chance of correctness.

● Bane of several modern neural architectures e.g.

Resnets, not just sequence models

○ High in accuracy but low in reliability!
■ Mostly over-confident.

○ See: On Calibration of Modern Neural Networks, ICML 2017

Calibration plots

Investigating reasons for poor calibration

EOS

Reasons for poor calibration

● Observations

a. End of sequence token is seriously over-confident

b. Calibration is worse when encoder attention is diffused.

c. Other unexplained reasons.

Kernel embedding based trainable calibration

measure
● Train models to minimize weighted combination of 0/1

error and calibration of confidence scores.

Corrected calibrations

Fixing calibration leads to higher accuracy

1. Beam search for predicting highest probability sequence

a. Grows token-by-token a beam of highest scoring prefixes

b. Poor calibration misleads beam-search

Two Causes
1. Lack of calibration

2. Local conditioning

Problems of local conditioning

Local conditioning causes the log-probability of each correct

token to saturate (get very close to zero) even when the

correct sequence does not have the highest probability.

Local conditioning for sequence prediction

-0.01

-6

-6

-6

S

1

0

E

-1.6

- 0.4

-1.4

-1.8

-1.6

- 0.3

-1.5

-1.7

-1.6

- 0.3

-1.5

-1.6

-1.6

- 0.3

-1.5

-1.5

-1.6

- 0.3

-1.5

-1.5

-1.6

- 0.3

-1.5

-1.5

-6

-6

-6

-0.01

-6

-6

-6

-0.01

Margin between position and

negative sequence

optimized by ED local loss is

-0.4 - (-1.4) = 1!

Log-probability of positive sequence = -1.9

Log-probability of negative sequence = -0.4

Margin between positive and negative sequence = -1.5!

t= 1 2 3 4 5 6 7 8

Positive sequence: “S,1,1,1,1,1,1,E”, Negative sequence: “S,0,E”.

ED objective is zero even when prediction is wrong

More training data will

not help if your training

loss is broken!

-15 -10 -5 -0.3 -e-3 -e-5

Local log probability

-15 -10 -5 -0.3 -e-3 -e-5

Local log probability -->

L
o
g
 P

r(
c
o
rr

e
c
t)

 -
L
o
g
 P

r(
p
re

d
ic

te
d
)

L
o
g
 P

r(
c
o
rr

e
c
t)

 -
L
o
g
 P

r(
p
re

d
ic

te
d
)

How to fix the ED training loss?

Avoid local conditioning, use global conditioning

Use for

● Applications, like conversation where response restricted

to be from a whitelist of responses

● Else, sample responses adaptively during training

More details in Length bias in Encoder Decoder Models and a Case for Global Conditioning by Siege

and Sarawagi. EMNLP’16

Results

Global conditioning

predicts long sequences

whereas ED predicts

none

Global conditioning is

more accurate

A method using global

conditioning

Length normalized

encoder-decoder models

Thank you!

Properties of a good loss function for training

● Scoring models

(X, Y) → Model (𝚹) → S(Y|X,𝚹) ∈ R

● Inference: find Y with highest score

● Training: minimize loss per labeled instance {(Xi, Yi)}

○ If loss ~ 0, then correct output Yi has the highest score.

○ Not true for encoder decoder models!

Peculiar biases of predictions from ED model

● ED over-predicting short sequences

○ Even after accounting for the fact that short messages are more

common given any particular context.

● Increasing the beam width sometimes decreased quality!

These observations are on models trained with billions of

examples for a conversation task.

Datasets

● Reddit – comments on user posts

○ 41M posts, 501M comments

● Open Subtitles – subtitles on non-English movies

○ 319M lines of text

For each data set:

● 100K top messages = predicted set.

● 20K top tokens used to encode tokens into ids.

