
Scaling up the ALIAS Duplicate Elimination System: A Demonstration

Sunita Sarawagi Alok Kirpal
{sunita,alok}@it.iitb.ac.in

Indian Institute of Technology Bombay

Abstract

Duplicate elimination is an important stage in integrat-
ing data from multiple sources. The challenges involved
are finding a robust deduplication function that can iden-
tify when two records are duplicates and efficiently apply-
ing the function on very large lists of records. InALIAS

the task of designing a deduplication function is eased by
learning the function from examples of duplicates and non-
duplicates and by using active learning to spot such exam-
ples effectively [1]. Here we investigate the issues involved
in efficiently applying the learnt deduplication system on
large lists of records. We demonstrate the working of the
ALIAS evaluation engine and highlight the optimizations it
uses to significantly cut down the number of record pairs
that need to be explicitly materialized.

1 Introduction

The goal of theALIAS deduplication system is to auto-
mate the manual, time-consuming process of removing du-
plicates in large semi-structured lists. There are two main
challenges of the duplicate elimination task thatALIAS ad-
dresses:

The first challenge is to define a robust deduplication
function that can capture when two records refer to the same
entity in spite of the various inconsistencies and errors in
data. ALIAS automates this task by learning the function
from examples of duplicates and non-duplicates. The suc-
cess of the learning approach critically hinges on being able
to provide a largecovering and challengingset of exam-
ples that bring out the subtlety of the deduplication func-
tion. ALIAS interactively discovers such challenging train-
ing pairs through the use ofactive learning.

The second challenge is to efficiently evaluate the learnt
deduplication function on large lists of records. If the func-
tion is treated as a black box, then the only method of eval-
uating it is to take a cartesian product of the entries. Then
for each pair of entries, invoke the function to determine if
the pair is a duplicate or not. This method could be intoler-
ably expensive when the number of records is large.ALIAS

views the function as a general AND/OR predicate on sim-
pler similarity functions and applies a number of novel op-
timization techniques to defer materialization of pairs.

In Section 2 we summarize the process of learning the
duplicate elimination function using active learning (details
in [1, 2]). Our focus in this demonstration is the evalua-
tion engine ofALIAS . We describe its novel cluster-based
evaluation model and optimization strategies in Section 3.

2 Learning the deduplication function

Figure 1 shows the overall design ofALIAS .
The input at this stage is a large list of unlabeled records

D in which duplicates need to be found and a small seed
setL of records labelled as duplicates and non-duplicates.
Another kind of input to this stage is a collection of sim-
ple, easy-to-define similarity functions on attribute fields
of the data. Examples of such functions are edit-distance,
soundex, abbreviation-match on text fields, and absolute
difference for integer fields. Many of the common func-
tions can be inbuilt and added by default based on the data
type. However, it is impossible to totally obviate an expert’s
domain knowledge in designing specific matching func-
tions. The deduplication function is constructed by com-
bining these similarity functions in the best possible way.
We useF to denote the set of these input similarity func-
tion andnf to denote the total number of such function.

An outline of the main steps is given in Figure 1. The
first step is to convert each pair of records inD × D and
L × L respectively into a similarity vector after applying
the nf similarity functions on them. The cartesian prod-
uct onD could be expensive to compute. We can defer its
materialization using the evaluation strategies discussed in
the next section in conjunction with proper indices (as dis-
cussed in [1]).

The initial training dataLp is used to train an initial
learner. Then the interactive process of active learning en-
sues on the unlabeled dataDp. The active learner chooses
from the unlabeled pairs, a small list of record pairs and
prompts the user for their label. The additional labeled data
is used to train a revised classifier and the next set of pairs
chosen for labeling. This process continues until the user

1



1. Input: L, D,F .
2. Create pairsLp from the labeled dataL andF .
3. Create pairsDp from the unlabeled dataD andF .
4. Initial training setT = Lp

5. Loop until user satisfaction
• Train classifierC usingT .
• Invoke the active learner to select a setS of n instances fromDp

for labeling.
• If S is empty, exit loop.
• Collect user feedback on the labels ofS.
• AugmentS with pairs inferred using transitivity of the “dupli-

cates” relation.
• Add augmentedS to T and removeS from Dp.

6. Output classifierC

Figure 1. Overall design and working of the ALIAS interactive deduplication system.

is satisfied with the learnt function. The algorithm used by
the active learner for choosing the most informative pairs
for labeling appear in [1].

The output of this process is a deduplication functionI
that when given a new list of recordsA can identify which
subset of pairs in the cross-productA×A are duplicates.

3 Optimization and Evaluation

In this section we discuss how we optimize the evalua-
tion of a learnt deduplication function on very large lists of
records. Although,ALIAS is general enough to train any
kind of classifier (Naive Bayes, Support Vector Machines,
Decision trees and so on), we recommend using decision
trees for their ease of interpretation and high accuracy. A
decision tree can be interpreted as a set of AND/OR predi-
cates on similarity functions. For example, for deduplicat-
ing a list of citation entries the learner might return a tree-
like predicate of the form below that all duplicate pairs need
to satisfy:

TitleWordMatch > 0.41
AND YearMatch > 0.3

AND (PageMatch > 0.5
OR AuthorEditDistance < 5 )

A straightforward way of evaluating this expression is
to first take a cartesian product of the citation entries. Then
for each pair of entries, calculate the first similarity function
that measures the overlap in the words common between the
Title fields, if the overlap is greater than 0.41, check the year
match and so on.ALIAS uses a number of optimizations
to improve this simple-minded scheme requiring quadratic
time. We describe these next.

3.1 Optimization 1: Grouped evaluation
Our goal is to design an execution engine that can ef-

ficiently evaluate an AND/OR combination of predicates
on a generalclass of similarity functions while delaying
the explicit materialization of pairs. While there has been

prior work on optimizing the evaluation of a specific sim-
ilarity function, there is little prior work on evaluating a
combination of them efficiently. We propose an operator-
based evaluation model where each operator takes as input
a stream ofgroupsof records and outputs another stream of
groupsof record. Agroupconsisting of a set ofn records
actually represents the set ofn(n − 1)/2 pairs of records
but the pairs are not materialized. The idea is to pipeline
operators involved in the complete or partial evaluation of
the atomic similarity functions such that they work on these
linear groups as far as possible.

The component similarity functions so far were required
to just work on pairs of records and return a real value de-
noting some similarity measure. Now they need to support
an optional API that returns an evaluation plan for the func-
tion in terms of these inbuilt operators. The evaluation tree
may not be an exact reproduction of the function’s logic,
as long as it is able to put all record pairs that satisfies the
similarity predicate in at least one group.

The challenge is to design operators that adhere to the
linearity of the groups and at the same time are useful for
expressing a large class of similarity functions. The set
of operators that are currently supported inALIAS are de-
scribed below. In the discussion that follows, we use the
termPartition to denote a set of groups.

1. Create groups: create finer groups by breaking each
group in an input partition into smaller, possibly over-
lapping groups. We have currently three methods of
creating groups:

• Equal match: create groups by putting all
records with equal values of an attribute set in the
same group. This is easily implemented by sort-
ing the records in a group on the attributes and
outputing all records with matching values as a
new group.

• Range match: create groups by grouping to-
gether all records with values of an ordered at-
tribute within some range. This can be executed

2



by sorting the records on the attribute and using
a sliding window to output overlapping groups.

• Hash match: Use a hash function to map each
record into a set of values. All records mapped
to a hash bucket define a group. The differ-
ence between Hash and Equal match is that while
the hash match may put a record into multiple
groups, the equal match puts a record in only one.

2. Selectcondition on a group: output only those records
in each group that satisfy some condition.

3. Split an input partition into two partition streams by
applying a condition on each record of a group and
outputting it into the first stream if it satisfies the con-
dition and in the second stream if it does not.

4. Merge a group G with a partition P: Union each group
in P with G.

5. Union two partitions: the resultant partition is a union
of the groups in each partition.

6. Join two partitionsP1, P2: intersect each possible
group pair (gi

1, gj
2) wheregi

1 belongs toP1 andgj
2 be-

longs toP2.

7. Aggregate: Given a partition with each group at-
tached with a weight and a threshold, output all possi-
ble minimal subsets of groups whose aggregate weight
is greater than equal to the threshold.

8. Compact: collapse all groups in a partition with over-
lap in records greater than a threshold into a single
group.

In Figure 2 we show how the similarity function predi-
cate “YearMatch> 0.3” can be expressed using these op-
erators. The YearMatch function returns a score of 1 when
two years are equal, 0.35 when year is null in one or both,
and 0 in all other cases. The first “Split” operator splits
each group into records based on Year=NULL and feeds the
non-null records to the Equal node that creates a group cor-
responding to each distinct value of year. The final Merge
operator merges the Null-group(output by the Split opera-
tor) with each group output by Equal. Thus, all record pairs
with YearMatch> 0.3 will appear in at least one group.

3.2 Optimization 2: Prefix expensive predicates
with simpler canopies

Sometimes, it might be possible to come up with sim-
pler functions (calledcanopies) that bound a more expen-
sive function i.e. they might produce some false matches
but will not drop any true matches.

For example, as shown in Figure 2, the predicate Au-
thorEditDistance< 5 can be prefixed by a simple canopy
LengthDifference< 5, since two records with their length
differing by more than 5 cannot have an edit distance less
than 5.

Figure 2. Example demonstrating the evalua-
tion process and partial operator tree

3.3 Optimization 3: Reorder predicates to evalu-
ate cheaper ones first

Some similarity functions are more expensive to evaluate
than others. Also, they might materialize pairs earlier than
others. For example, the YearMatch function is significantly
easier to evaluate than the WordMatch function. Unlike nor-
mal expensive function optimization (as in predicate migra-
tion), the cost of each function is not easily modeled as a
constant value per tuple. The cost depends on the size and
number of input partitions. Also, once a function generates
groups of size 2, all subsequent functions after it get little
scope for optimization. Figure 2 shows the reordering of
YearMatch function before the expensive WordMatch func-
tion. This avoids early application of the expensive func-
tions on large lists by deferring them until partitions with
smaller groups are obtained.

Figure 2 demonstrates the step by step application of
these three optimizations for our example predicate. The
operator tree does not show the ORed PageMatch due to
lack of space. This operator plan provides a significant im-
provement over evaluating the function via cartesian prod-
ucts.

Acknowledgments This project was funded by the Ministry
of Information Technology, India under the project “Mobile agents
for collaborative distributed applications”, 2001-2002. We would
like to acknowledge the contribution of B. Anuradha and C. Mouli
in the initial version of the software [2] and S. Sudarshan for help-
ful discussions.

References
[1] S. Sarawagi and A. Bhamidipaty. Interactive deduplication

using active learning. InProc. of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining(KDD-2002), Edmonton, Canada, July 2002.

[2] S. Sarawagi, A. Bhamidipaty, A. Kirpal, and C. Mouli. Alias:
An active learning led interactive deduplication system. In
Proc. of the 28th Int’l Conference on Very Large Databases
(VLDB) (Demonstration session), Hongkong, August 2002.

3


	Introduction
	Learning the deduplication function
	Optimization and Evaluation
	Optimization 1: Grouped evaluation
	Optimization 2: Prefix expensive predicates with simpler canopies
	Optimization 3: Reorder predicates to evaluate cheaper ones first


