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Abstract

In this paper we present a system for automatically in-
tegrating unstructured text into a multi-relational database
using state-of-the-art statistical models for structure extrac-
tion and matching. We show how to extend current high-
performing models, Conditional Random Fields and their
semi-markov counterparts, to effectively exploit a variety of
recognition clues available in a database of entities, thereby
significantly reducing the dependence on manually labeled
training data. Our system is designed to load unstructured
records into columns spread across multiple tables in the
database while resolving the relationship of the extracted
text with existing column values, and preserving the cardi-
nality and link constraints of the database. We show how to
combine the inference algorithms of statistical models with
the database imposed constraints for optimal data integra-
tion.

1 Introduction

Database systems are islands of structure in a sea of
unstructured data sources. Several real world applications
now need to create bridges for smooth integration of semi-
structured sources with existing structured databases for
seamless querying. Although a lot of research has gone in
the NLP [4, 14], machine learning [8, 18] and web mining
community [9] on extracting structured data from unstruc-
tured sources, most of the proposed methods depend on te-
diously labeled unstructured data. The database is at best
treated as a store for the structured data.

In this paper we attempt to bridge this gap by more
centrally exploiting existing large databases of the multi-
relational entities to aid the extraction process on one hand,
and on the other hand, augmenting the database itself with
the extracted information from unstructured text in a way
that allows multiple noisy variants of entities to co-exist and
aid future extraction tasks.

1.1 Applications

There are a number of applications where unstructured
data needs to be integrated with structured databases on
an ongoing basis so that at the time of extraction a large
database is available.

Consider the example of publications portals like Cite-
seer and Google Scholar. When integrating publication data
from personal homepages, it does not make sense to per-
form the extraction task in isolation. Structured databases
from, say ACM digital library or DBLP are readily available
and should be exploited for better integration.

Another example is resume databases in HR departments
of large organizations. Resumes are often stored with sev-
eral structured fields like experience, education and refer-
ences. When a new resume arrives in unstructured format,
for example, via email text, we might wish to integrate it
into the existing database and the extraction task can be
made easier by consulting the database.

Another interesting example is from personal informa-
tion management (PIM) systems where the goal is to or-
ganize personal data like documents, emails, projects and
people in a structured inter-linked format. The success of
such systems will depend on being able to automatically
extract structure from the existing predominantly file-based
unstructured sources. Thus, for example we should be able
to automatically extract from a PowerPoint file, the author
of a talk and link the person to the presenter of a talk an-
nounced in an email. Again, this is a scenario where we will
already have plenty of existing structured data into which
we have to integrate a new unstructured file.

1.2 Challenges and Contribution

A number of challenges need to be addressed in design-
ing an effective solution to the data integration task. Use-
ful clues are scattered in various ways across the structured
database and the unstructured text records. Exploiting them
effectively is a challenge.

First, the existing structured databases of entities are
organized very differently from labeled unstructured text.
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Most prior work has been on extracting information from
unstructured text which can be modeled as a sequence of
tokens. The input labeled data is thus a collection of token
sequences. In contrast, the database is a graph of entity rela-
tionships and there is no information in the database about
inter-entity sequencing. A good extraction system should
exploit both the inter-entity sequencing information from
the labeled unstructured text and the semantic relationship
between entities in the database.

Second, there is significant format variation in the names
of entities in the database and the unstructured text. The
entities in a structured database provide useful pattern-level
information that could help in recognizing entities in the
unstructured text.

Finally, in most cases the database will be large whereas
labeled text data will be small. Features designed from the
databases should be efficient to apply and should not dom-
inate features that capture contextual words and positional
information from the limited labeled data.

We design a data integration system that builds upon
state-of-the-art semi-Markov models [7, 16] for information
extraction to exploit useful information in both structured
data and labeled unstructured data in spite of their format,
structure and size variations. Our experiments show that our
proposed model significantly improves the accuracy of data
integration tasks by exploiting databases more effectively
than has been done before.

Outline In Section 2, we describe our problem setup and
present the overall architecture of the system. In Section 3,
we present background on statistical models for extraction
and matching. In Section 4 we show how we augment these
models to exploit features from the database, and integrate
data so as to meet the cardinality and link constraints in the
database. In Section 5, we present integration performance
on real-life datasets and present related work in Section 6.

2 Setup and Architecture

2.1 Relational data representation

A relational database represents a normalized set of enti-
ties with the relationships between them expressed through
foreign keys. An example of such a multi-relational
database is shown in Figure 1 representing bibtex entries
for journal articles. The database consists of three differ-
ent entities: articles, journals and authors. The foreign keys
from thearticle to the journal tables shows how journals
name have been normalized across different articles. The
author name is a set-valued attribute of articles and this re-
lationship is stored in thewrites table.

In real-life the same physical entity is often represented
by multiple names that can be thought of as noisy variants
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Figure 1. A sample normalized database for
storing journal bibitems
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Figure 2. Integrating an unstructured citation
into the database of Figure 1

of each other. The database allows these variants to co-exist
andcanonical links are placed from a noisy variant of an
entry to its canonical form. In the sample database of Fig-
ure 1, we show such canonical links between two journal
entries “ACM TODS” and “ACM Trans. Databases” and
between entries “Jeffrey Ullman” and “J. Ullman” in theau-
thorstable. Each variant of an entity has a unique identifier
and thus the canonical link is a foreign key to this unique
identifier. These foreign keys can be within the same table
as in the examples in Figure 1 or they could be across tables.
This data representation allows a user to preserve an entity
in a format that is different from its canonical form. For ex-
ample, a user might want author names in a citation to be
abbreviated although the canonical entry might contain the
full name.

In this paper we do not address the issue of which entry
to pick as the canonical entry or how to construct a merged
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canonical entry. These can be handled as part of follow-up
operations once the canonical links are created.

A bit of notation to summarize the above: The database
consists of a set of entities (each of which map to a database
table)E1 : : : Ee where each entity has a set of attributes or
column values (these exclude columns like primary or for-
eign keys). LetA1 : : : Am refer to the union of all attributes
over all entities. In Figure 1,m is 4 and includes title, year,
journal name and author name. Each entity in the database
has a unique identifierid and optionally a canonical iden-
tifier c that is a foreign key to theid of another entity of
which it is assumed to be a noisy variant.

2.2 Labeled unstructured text

The unstructured data is a text record representing a sin-
gle top-level entity like articles, but embedded in a back-
ground of irrelevant text. A labeled setL is provided by
someone manually labeling portions of the text with the
name of the entity to which it belongs. We will show in the
experimental section that the size ofL can be very small (5
to 10).

2.3 The task

We start with an existing multi-entity, multi-variant
databaseD and a small labeled setL. We use this to
train models for information extraction and matching so that
given an unstructured text stringx, we can perform the fol-
lowing:

� Extract attributes fromx corresponding to all attributes
in the entity database. We call this the information ex-
traction problem.

� Map the extracted entities to existing entries in the
database if they match, otherwise, create new entries.
Assign relationships through foreign keys when at-
tributes span multiple linked tables. We call this the
matching problem.

As a result of these operations the entryx is integrated
across the multiple tables of the database with the canon-
ical links resolved correctly. In actual deployment a user
might also wish to inspect the extracted entries and correct
for any errors of the automated integration step.

We continue with our sample database of Figure 1 and
show how to integrate into it a noisy unstructured citation
“R. Fagin and J. Helpern, Belief, awareness and reasoning.
In AI 1988 [10] also” (see in Figure 2). We extracted from
this two authors, a title, a journal name and a year field and
integrated them with the database as shown in Figure 2. On
matching with the database, we find the journal “AI” to be
already present and the author “R. Fagin” to be a variant

of an existing author name “Ron Fagin”. This leads to the
canonical link from the new entry and the existing author
name.

2.4 Available clues

The databaseD with its entities and canonical links, and
the labeled dataL can be exploited in a variety of ways for
learning how to integrate an incoming unstructured entry
into the database. We go over these first and later show how
these are exploited by the statistical models.

2.4.1 Clues in the database

As a database gets large, in most cases the entity to be ex-
tracted from unstructured text will exist in the database.
We therefore need models that can effectively exploit this
valuable piece of information. The entities in the database
could be useful even when unstructured text does not match
a database entity. Different entity attributes have very dis-
tinctive patterns that can be generalized to recognize these
entities in unstructured text. For example, by inspecting en-
tries in a publications database we can detect that author
names often follow a pattern of the form “[A-Z]. [A-Z]. [A-
Z][a-z]+”.

The schema of the database provides information on the
number of entities that are allowed in each record. In Fig-
ure 1, the table structure makes it clear that an article can
have at most one year, journal and title field but it can have
multiple author fields. Also, a foreign key in the database
provides information on what entity is allowed to go with
what. For example, if we label a text segment as a city
name and the segment matches the entry “San Francisco”
in the cities column, then any text segment that is labeled
as a “state” needs to match entry “CA”. In data integration
tasks, respecting cardinality and link constraints could be a
requirement even if it does not improve accuracy.

2.4.2 Information in the labeled unstructured data

Labeled unstructured data is the classical source of infor-
mation for extraction model. Traditionally, three kinds of
information have been derived from unstructured records.
First, the labeled entities hold the same kind of pattern in-
formation as the database of entities as discussed above.
Second, the context in which an entity appears is a valuable
clue that is present solely in the labeled unstructured data.
Context is typically captured via few words before or after
the labeled entity. For example, the word “In” often appears
before a journal name. Finally, the likely ordering of entity
labels within a sequence is also useful. For example, author
names usually appear before or after a title.
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3 Background

In this section we review state-of-the-art statistical mod-
els for extraction and matching. These models are designed
to exploit clues only in labeled unstructured data and in Sec-
tion 4 we will discuss how to extend these to include clues
from the database.

The problem of extracting structured entities from un-
structured data is an extensively researched topic. A num-
ber of models have been proposed ranging from the earliest
rule-learning models to probabilistic approaches based on
generative models like HMMs [17, 3] and conditional mod-
els like maxent taggers [14]. Almost all the probabilistic
models treat extraction as a sequence labeling problem. The
input unstructured text is treated as a sequence of tokensx = x1 : : : xn which needs to be assigned a correspond-
ing sequence of labelsy = y1 : : : yn from the set of labelsA = fA1 : : : Amg. A promising recently proposed model
for information extraction is Conditional Random Fields
(CRFs). CRFs have been shown [8, 18] to out-perform pre-
vious generative models like Hidden Markov Models and
local conditional models like maxent taggers [14].

3.1 Conditional Random Fields

CRFs [8] model a conditional probability distribution
over label sequencey given the input sequencex. The
label assigned to thei-th word can be a function of any
property of thei-th word or the property of the word defin-
ing its context and the label of the word before it. These
properties are represented as a vector of feature functionsf = f1 : : : fK where eachfk is a scalar function of the
form f(yi; yi�1;x; i) 7! R. Examples of such features
are:

f7(yi; yi�1;x; i) = [[xi is capitalized]]�[[yi = Author name]]f11(yi; yi�1;x; i) = [[yi is journal]] � [[yi�1 = title]]
where the indicator function[[c]] = 1 if c if true and zero
otherwise;

The CRF model associates a weight to each of these fea-
tures, thus there is a weight vectorW = W1 : : :WK corre-
sponding to the feature vector. These are used to design a
global conditional model that assigns a probability for each
possible label sequence given (the features of) the inputx
sequence as follows:

Pr(yjx) = 1Z(x)eW�F(x;y) (1)

whereF(x;y) =Pjxji=1 f(yi; yi�1;x; i) andZ(x) is a nor-
malizing factor equal to

Py0 eW�F(x;y0).

When deployed for extraction of entities from a text se-
quencex, CRFs find the best label sequence as:

argmaxy Pr(yjx) = argmaxyW � F(x;y)
= argmaxyW �Xj f(yj ; yj�1;x; j)

An efficient inference algorithm is possible because all fea-
tures depend on just the previous label. Letyi:y denote the
set of all partial labels starting from 1 (the first index of the
sequence) toi, such that thei-th label isy. Let V (i; y) de-
note the largest value ofW � F(x;y0) for anyy0 2 yi:y.
The following recursive calculation (called the Viterbi al-
gorithm) finds the best sequence:

V (i; y) = � maxy0 V (i� 1; y0) +W � f(y; y0;x; i) if i > 00 if i = 0 (2)

The best label sequence corresponds to the path traced bymaxy V (jxj; y). This algorithm is linear in the length ofx.
Learningis performed by setting parametersW to max-

imize the likelihood of the training setL = f(x`;y`)gǸ=1
expressed in logarithmic terms as

T (W) = X
` log Pr(y`jx`;W) (3)

= X
` (W � F(x`;y`)� logZW(x`)) (4)

We wish to find aW that maximizesT (W). The above
equation is convex and can thus be maximized by gradi-
ent ascent or one of many related methods. (In our imple-
mentation, we have used a limited-memory quasi-Newton
method[10, 11].) More computational details of training
can be found in [18]. The training algorithm makes mul-
tiple linear scans through the data sequences and for each
sequence computes the value of the likelihood function and
its gradient in two scans over the features of each sequence.

3.2 Semi-Markov CRFs (Semi-CRFs)

Semi-CRFs [16, 7] extend CRFs so that features can be
defined over multi-word segments of text instead of indi-
vidual words. This provides for a more natural encoding of
the information extraction problem, which is now defined as
segmenting a text sequencex such that each segment cor-
responds to a whole entity. In CRFs, all contiguous words
which get assigned the same label implicitly represent an
entity. This is not very intuitive since entities mostly con-
sist of multiple words and higher accuracy is achieved if
features could be defined over the entire proposed entity as
shown in [16, 7].

More formally, a segmentations of an input sequencex
is a sequence of segmentss1 : : : sp such that the last seg-
ment ends atn, the first segment starts at 1, and segment
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sj+1 begins right after segmentsj ends. Each segmentsj
consists of astart positiontj , anend positionuj , and alabelyj 2 Y . A Semi-CRF models the conditional probability
distribution over segmentations for a given input sequencex as follows:

Pr(sjx;W) = 1Z(x)eW�F(x;s) (5)

where againW is a weight vector forF and Z(x) =Ps0 eW�F(x;s0) andF(x; s) =Pjsjj=1 f(j;x; s).
Like in the case of normal CRFs, the label of a seg-

ment depends on the label of the previous segment and the
properties of the tokens comprising this segment. Thus
a feature for segmentsj = (yj ; tj ; uj) is of the formf(yj ; yj�1;x; tj ; uj). An example of such features for a
segment starting at position 3 and ending at 5 is:

f8(yi; yi�1;x; 3; 5) = [[x3x4x5 appears in a journal list]]�[[yi = journal]]
During inference, the goal is to find a segmentations = s1 : : : sp of the input sequencex = x1 : : : xn such

thatPr(sjx;W) (as defined by Equation 5) is maximized.

argmax s Pr(sjx;W) = argmax sW�Xj f(yj ; yj�1;x; tj ; uj)
Let U be an upper bound on segment length. Letsi:y

denote set of all partial segmentation starting from 1 (the
first index of the sequence) toi, such that the last segment
has the labely and ending positioni. Let Vx;f ;W(i; y) de-
note the largest value ofW � F(x; s0) for any s0 2 si:y.
Omitting the subscripts, the following recursive calculation
implements a semi-Markov analog of the usual Viterbi al-
gorithm:

V (i; y) =

8><
>:

maxy0;i0=i�U:::i�1 V (i0; y0)
+W � f(y; y0;x; i0 + 1; i) if i > 0

0 if i = 0
�1 if i < 0

(6)

The best segmentation then corresponds to the path
traced bymaxy V (jxj; y). The running time of semi-
Markov Viterbi (Equation 6) is justU times the running
time of Markov Viterbi.U is usually a small number.

Thetraining of semi-CRFs generalizes the training algo-
rithm of CRFs in a manner analogous to the generalization
of the Viterbi algorithm. We refer for details to [16].

3.3 Matching

Matching or deduplicating entities using statistical learn-
ing models is also a popular research topic [12, 2, 15].
At the core of most of these models is a binary classifier
on various similarity measures between a pair of records

where the prediction is “1” if the records match and “0”
otherwise. This is a straight-forward binary classification
problem where the features typically denote various kinds
of attribute level similarity functions like Edit distance,
Soundex, N-grams overlap, Jaccard, Jaro-Winkler and Sub-
set match [6]. Thus, we can use any binary classifier like
SVM, decision trees, and logistic regression. We use a CRF
with a single variable for extensibility. Thus, given a text
segment pair(s1; s2), the CRF predicts ar that can take
values 0 or 1 as

Pr(rjs1; s2) = e(W:F(r; s1; s2))Z(s1; s2) (7)

The feature vectorF(r; s1; s2) corresponds to various simi-
larity measures between the text segments whenr = 1, i.e.,
whens1 ands2 match.

4 Our models for data integration

In this section we describe how all the clues available
across the labeled data and the multi-relational database
can be combined to solve our data integration task. Letx = x1 : : : xn denote the input unstructured string withn tokens obtained from the text using any tokenization
method. Typically, text is tokenized based on white space
and a limited set of delimiters like “,” and “.”. Our goal is
to extract fromx, segments of text belonging to one of the
entity attributes in the databaseA = fA1; : : : Amg. We also
need to assign to each segment labeled with an attributeaj a
canonical idcj of an entry in theAj column of the database
with which it matches. If it matches none of the ids, thencj
is a special value “0” denoting “none-of-the-above”. Also,
canonical ids connected through foreign links need to re-
spect the foreign keys in the database and the labels need to
follow the cardinality constraints imposed by the schema.

4.1 Model for extraction

We deploy Semi-CRFs since they provide high-accuracy
and an elegant mechanism for extracting entities in the pres-
ence of databases. The main challenge in their usage is how
to incorporate clues obtained from the existing entities in
the database. A straightforward mechanism would be to
add the existing list of entity values as additional labeled
training examples. However, in practice we found this ap-
proach to be very sensitive to the training set and size and
often leads to a drop in accuracy.

We therefore designed models that separate out the roles
of database entities and unstructured records. We use the
database to add three types of entity-level features in the
sequential model trained over unstructured text.
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4.1.1 Similarity to a Word-level dictionary

Very often an entity in an unstructured database might al-
ready be existing in the database albeit in a slightly different
form. A number of similarity functions have been proposed
in the record-linkage literature for defining efficient and ef-
fective similarity functions which are tolerant to commonly
occurring variations in named entities. We can exploit these
to perform better extraction by adding similarity features
as proposed in [7]. An example feature based on this is:f9(yi; yi�1;x; 3; 5) =maxe2Authors inD cosine(x3x4x5, e) � [[yi = Author]]

This assigns as feature value the maximum cosine simi-
larity that segmentx3x4x5 has to the Authorname column
of the database.

4.1.2 Similarity to Pattern-level dictionary

Each entity in the database contains valuable information
at the pattern-level that can be exploited even if the entity
in the unstructured text is not the same. We design a suc-
cinct set of features to exploit such patterns as follows. We
first choose a sequence of regular expression patterns. Then
for each entrye in the database, we generalize each of the
tokens ofe to the first pattern it matches, concatenate the
pattern-ids over all tokens ine and insert the concatenated
pattern-ids ofe in the index. For example, suppose our reg-
ular expression pattern sequence consisted of the following
three patterns:

id 1 2 3
pattern [A� Z]: [A� Z][a� z]+ [A� Z]fPunctg

Then the text string “R. L, Stevenson”’ will get the
pattern-id sequence: 1,3,2 assuming the text is tokenized
on space.

We find the pattern representation of all entities in the
database and index them separately for each entity type. We
then designbooleanfeatures for segments that check for the
presence of the segment’s pattern in each entity’s pattern
dictionary.

4.1.3 Entity classifier

The database contains a variety of other clues including
typical length of entities, characteristics words and multi-
ple patterns per tokens, that is not captured by the above
two dictionaries. We capture all these by building an entity
classifier where an entity is characterized by as many such
features as required and a label that denotes its type. In ad-
dition, we also include subsets of this entity with a negative
label. This defines a multi-class classification problem. The
CRF model (or any other classifier like SVM) can be used
to train a multi-class classifier. LetCD denote such a clas-
sifier.

WhenCD is applied on a text segments, it returns a vec-
tor of scores that denotes the probability thats is of each of
the given entity types. LetEL denote the extraction model
that we are constructing from the unstructured examples.
We use classifierCD to define a new set of semi-markov
features for modelEL. If the number of distinct entity types
ism, we will havem2 features where the(i; j) feature cap-
tures the strength of thejth score obtained fromCD in iden-
tifying the ith entity inEL.

4.2 Model for matching

Given a segmentsj of x for which the attribute labelaj
resolves to one of them attributesA1 : : : Am, we need to
find a canonical idcj that denotes which existing values of
the attribute it matches in the database andcj = “0” if it
matches none of the existing entities.

We adopt the pair-wise match model of Section 3.3
where for each canonical labeled segment in the training
data we form pairs with the database entities. The entities
with the same canonical id get a label of “1” and others get a
label of “0”. In addition to examples in the training data we
can easily also generate pairs of records from the database
and assign a label of “1” to those with the same canonical-id
and zero otherwise.

An important concern about the pair-wise matching pro-
cess is efficiency. We cannot afford to attempt potential
match with each and every possible canonical id for which
there is an entry in the database. We solve this problem
by using a top-K index for each database column. Given a
text segmentsj , we probe the index to get a candidate set
of segmentsfsj1; sj2; : : : ; sjKg and evaluatePr(cijsj ; sji)
for each candidatesji with canonical labelci. If the pre-
dicted valuer is “0” for each candidate, we claim that the
segment resolves to none-of-the-existing entities.

When presented with a record with multiple extracted at-
tribute segmentss1 : : : sp, we need to simultaneously assign
canonical-ids to each of these so as to not violate any of the
integrity constraints. We first search the attribute index to
find the top-K candidate canonical id for each attribute seg-
ment. We then pose database queries to find all canonical
idsc0j which have direct or indirect foreign key link(s) from
each of the top-K canonical idscj associated with the at-
tribute segmentsk. We denote the set of link constraints
asL, which is a set of tuples of the form(aj ; cj ; a0j ; c0j),
whereaj is the attribute type of an attribute segmentsk, cj
is one of the top-K canonical ids for the segment,a0j is an
attribute having a foreign key relationship withaj , andc0j
is the canonical id of the entry with the attributea0j and is
being referred by the entrycj .

Assuming that a segment sequence has two attribute seg-
mentsk ands0k such that they are of attribute typesaj anda0j respectively, then a link constraint is said to be violated
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if any of the following is true:

� Attribute aj has a foreign link to the attributeaj0 in
the database schema, and canonical idcj assigned to
the segmentsk points to a canonical id other thanc0j
assigned tos0k, i.e. (aj ; cj ; a0j ; c0j) =2 L.

� same as above with the roles ofj andj0 reversed.

4.3 Overall training and deployment process

The overall training and deployment process for
extraction and matching appears in Figures 3 and 4.

4.3.1 Training process

During the offline training phase, we first train the entity
classifier out of the entities in the database. The entity clas-
sifier could be trained incrementally but we do not support
that currently. For the similarity and pattern features, we
maintain an inverted index over each of the entity columns
that is always kept upto-date with the entries in the database.

Next, for each labeled document we create its normal
intrinsic features and then probe the entity classifier and in-
dices to create the three kinds of database derived features.
The index probes for computing the various dictionary fea-
tures is performed using a Top-K search on the inverted in-
dex. Also, since this requires multiple index probes on over-
lapping segments of the input, we have designed a batch
top-K index search algorithm [5] where instead of indepen-
dently finding top-K matches for all candidate segments, we
batch the top-K queries over overlapping segments. This

1: Perform backward Viterbi scan and cache all then:jY j possible
suffix upper bound scoresV 0(i; y) (See eq: 8)

2: Initialize priority queueP with the start stateS = (0; null).
3: Initialize global-LB= �1.
4: while P is not emptydo
5: Retrieve a state� with the maximum sequence upper bound

estimate
(�) = �(�) + �(�) from the queueP .
6: if � is a goal statethen
7: Return the solution
8: end if
9: Generate successors of the state� , and add valid successors

� 0 toP provided
(� 0) � global-LB.
10: Periodically update global-LB via beam search from� .
11: end while
12: Return failure

Figure 5. Constrained inference using A*

significantly reduces the time required for finding matches.
We do not consider such optimizations in this paper because
of lack of space and because our main focus here is accu-
racy of extraction via skillful feature design. We cache the
index lookups but compute all the other features on the fly
for each training iteration.

We then train a semi-CRF model for extraction that out-
puts the weight values for each feature type. We train the
match model by forming pairs both out of top-K matches
of the training segments with the database entities and also
with pairs formed purely out of database entities. The
trained models are stored on disk for the deployment stage.

4.3.2 Deployment process

While making inference on the labels of an unstructured
text, we also need to follow the cardinality constraints im-
posed by the database schema. The Viterbi algorithm pre-
sented earlier cannot easily meet these constraints because
this upsets the Markovian property that Viterbi depends on.
Section 4.4 presents an A* based search algorithm that can
efficiently find the optimal segmentation even with con-
straints. After extracting the attribute segments, we assign
canonical ids while maintaining the link constraints using
another run of the same A* algorithm.

4.4 The A* inference algorithm

A simple mechanism to extend Viterbi for constrained
labeling is via a beam search which maintains not just the
best path but the bestB paths at any position. When we
extend the path by one more segment, we check for con-
flicts and drop invalid extensions. This is guaranteed to find
the optimal solution whenB is very large and the time and
space requirement is multiplied byB. In practice, conflicts
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are rare and the beam search algorithm might be unneces-
sarily maintaining alternatives that are never used.

We propose a better optimized inference algorithm based
on the A* search paradigm. This algorithm is guaranteed
to find the optimal solution given unbounded space but be-
cause of the non-Markovian constraints we cannot guaran-
tee optimality in polynomial time. The algorithm allows
us to tradeoff optimality and efficiency by controlling the
number of search nodes expanded. Even when it is made to
terminate early the solution will be no worse than a normal
Viterbi run with a fixed beam size.

A* is a branch and bound search algorithm that de-
pends on upper and lower bounds guarantees associated
with states in the search space to reach the optimal solution
via the minimum possible number of states. An outline of
the inference algorithm based on the A* technique is given
in Figure 5.

Our state space consists of the set of partial segmentation
starting from the beginning of the sequence to an intermit-
tent positioni. Thus, each state� in the state space can be
expressed as a sequence of segments�(s) = s1 : : : sk such
that the first one starts at 1 and the last one ends ati, i.e.,
using the segment notation from Section 3.2,s1:l = 1 andsk:u = i.

We denote a state as�(i; s1 : : : sk), the start state asS(0; null) and a goal state asG(n; s1 : : : sp), wheresp:u =n. Each state� has associated with it an upper bound score
(�) based on which it is ordered in a priority queueP .
Initially, P has only the start state. In each iteration we de-
queue the state with the largest upper bound and generate
its successors as follows:

Generating successors The successors of a given state� are all the states which extend the segmentation�(s) = s1 : : : sk with a segmentsk+1 which starts ati + 1, i.e., sk+1:t = sk:u + 1 = i + 1, ends at a position
no greater thani + U and has a label that does not violate
any constraint given the sequence of labels in the segmen-
tation of � . The constraints imposed can be any arbitrary
constraints on label assignments. In our case, cardinality
constraints derived from the database schema are imposed
during extraction. While for matching, we enforce link con-
straints derived from the database entities as discussed in
Section 4.2.

Calculating upper bound We now discuss how to com-
pute the upper bound score
(�) associated with a state� .
This score consists of two parts: the first part�(�) is the
actual score over the partial segment sequence�(s); thus�(�) = W � F(x; �(s)). This value can be computed in-
crementally when a state� 0 is generated from its parent�
with the extension of a single segment. The second part�(�) is an upper bound on the maximum score possible if

�(s) is extended with segments that take it to a goal state.
The sum
(�) = �(�) + �(�) thus is an upper bound on
the maximum possible score of the entire sequence from
the start position 1 to an ending positionn with the prefix
of the path constrained to be�(s).

The value of�(�) is computed for all states in a single
backward Viterbi pass that ignores all constraints, and thus
provides an upper bound on the maximum possible score.
Formally, lets0j:y denote the set of all partial segmentations
starting from the positionj + 1 to n, such that the segment
ending at positionj has the labely. Let V 0x;f ;W(j; y) de-
note the largest value ofW � F(x; s0) for any s0 2 s0j:y.
Omitting the subscripts, the following recursive calculation
implements a semi-Markov, backward Viterbi algorithm:

V 0(j; y) =

8><
>:

maxy0;j0=j+1:::j+U V 0(j0; y0)
+W � f(y; y0;x; j + 1; j0) if j < n

0 if j = n
�1 if j > n

(8)

The valueV 0(j; y) is the suffix upper bound score�(�) for
any partial segmentation�(j; s1 : : : sk) such thatsk ends atj and has labely.

4.4.1 Pruning on lower bounds

For most of the inference tasks, the number of state expan-
sions before reaching a goal state is small. But sometimes,
with many label constraints, the number of expansions can
be large. For such cases, we limit the number of expansions
and the size of the priority queue to some predefined maxi-
mum value. Another idea is to prune nodes which will never
be part of an optimal solution. We can determine a lower
bound solution using beam search Viterbi for constrained
inference described earlier. Here, the beam size need not be
very large, actually the value of 3-5 suffices in practice. The
solution can be used as a lower bound, and the states with
the sequence upper bound less than the lower bound can be
pruned. The lower bound can be dynamically updated by
extending the partial solution of the current best state using
the beam search Viterbi technique. The frequency of up-
dates of lower bound is a function of the number of expan-
sions and queue size to optimize the overall performance.
We skip details due to lack of space.

5 Experiments

We evaluated our system on the following datasets.

PersonalBibtex In this case our goal was to simulate the
scale of databases as would arise in a PIM. One of the au-
thors of this paper had a set of 400 journal entries over her
.bib files collected over 10 years. This was loaded on a nor-
malized relational database following a schema similar to
that shown in Figure 1 with one intermediate table called
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Journal issuesto further normalize journals at the level of
individual issues. Thearticlestable points toJournal issues
which in turn points toJournals. The set of attributes con-
sisted of title and page numbers from articles, year and vol-
ume from journal-issues, author names, and journal names.
Of these, year, page-numbers and volume are fairly easy to
detect and provide close to 95% accuracy with or without a
DB. We therefore concentrate only on the remaining three
fields in reporting accuracy values.

The unstructured records consisted of 100 citations ob-
tained by searching Citeseer for citations of a random sub-
set of authors appearing in the bibtex database. These were
manually tagged with attribute and match ids. Of these 45%
titles, 78% journals and 75% authors already appeared in
the database. These were not exact matches but noisy inex-
act matches that needed manual resolution. We have pub-
lished the dataset1 for others to use.

Address data The Address dataset consists of 395 home
addresses of students in IIT Bombay India. These addresses
are less regular than US addresses, and extracting even
fields like city names is challenging [3]. We purchased a
postal database that contains a hierarchy of India pin-codes,
cities and states arranged over three tables linked via for-
eign keys. All state names and 95% of the city names ap-
peared in the database but the database was clean and con-
tained no canonical variants whereas in the unstructured text
there were several noisy variants. The labeled data had other
fields also like Road names and building names totaling to
a total of 16. We trained the extraction model over all six-
teen labels but report accuracy over only the three labels for
which we had columns in the database.

Platform We used Postgres to store the structured
database and Lucene to index the text columns of the
database. Our extraction and matching code was in
Java. The learner was the open source CRF and semi-
CRF package that we have contributed to sourceforge
(http://crf.sf.net).

Features Features followed the template in Section 5.2.
Each token contributed two types of features: (1) the token
itself if it was encountered in the training set, otherwise a
special feature called “Unknown” and, (2) the set of regu-
lar expressions like digit or not, capitalized or not that the
token matches. In the semi-Markov model for each seg-
ment we invoke features on the first, last and middle tokens
of the segment. The context features consist of features on
the tokens one left and one right of the segment. These
are all Markov features that can be handled by any Begin,

1http://www.it.iitb.ac.in/̃sunita/data/personalBib.tar.gz

Continue, End state encoding [4]. In addition, edge fea-
tures captured the dependency between labels assigned to
adjacent segments. The semi-Markov non-database features
were segment length and counts for each possible regular
expression that fires. The semi-Markov database features
were of three types as described in Section 4.1. We used
two similarity functions JaroWinkler and SoftTFIDF [6] in
addition to Lucene scores.

Experiment settings Since our system is targeted to set-
tings when labeled data (L) is limited, by default we used
roughly 5% of the available data for training. The rest was
used for testing. We also report numbers with increasing
fraction of training data. All numbers are averaged over
five random selections of training and test data. We measure
accuracy in terms of the correctness of the entire extracted
entity (i.e., partial extraction gets no credit). We report for
each label recall, precision and F1 values2.

Our main focus in this paper is accuracy and we will
study that in Sections 5.1 to 5.4. However, to establish prac-
tical feasibility of using a learning-based system, we will
also report summarized results on training and test time in
Section 5.5.

5.1 Overall data integration performance

In this section, we first present accuracy of the full inte-
gration task (extraction + matching) by more centrally ex-
ploiting the database.

We summarize the results in Table 1 where we report
precision, recall and F1 values of integration for each text
field for our datasets introduced earlier. The first set of
numbers is where the database does not contribute to the
learning models at all and the models are trained using the
unstructured data alone. The second set of numbers is due
to our model trained using both database specific features
and features from unstructured text for both extraction and
matching. The table shows that for all labels there is a sig-
nificant improvement in F1 accuracy. For some fields like
journals of the PersonalBib dataset and state names of ad-
dress dataset, F1 improves by more than 50%.

The table also shows separate extraction and matching
accuracies. For all labels there is a significant improvement
ranging from F1 differences of 7 to 25 of extraction perfor-
mance. For example, for journal we were able to increase
F1 from 35 to 51 whereas for state we got a jump from 23
to 49. The overall average F1 went up by 10 points which
is a 40% reduction in error.

In case of matching with databases, we added approx-
imately 100 examples from the database as training in-
stances. Matching results for IITB database with and with-
out databases are almost the same. For personal bibtex

2F1 is defined as 2*precision*recall/(precision+recall).
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Integration Extraction Match
Only-L L + DB Only-L L + DB Only-L L + DB

Dataset Label P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
PersonalBib author 63 76 69 79 84 81 67 81 73 74 85 79 94 98 96 94 98 96

journal 34 26 29 64 50 56 40 31 35 56 48 51 88 93 90 88 94 91
title 58 50 54 80 53 63 68 59 63 74 68 71 76 63 69 94 76 86

Address city 67 69 68 75 76 77 70 72 71 78 78 78 97 99 98 97 99 98
state 30 14 19 50 37 51 36 17 23 59 42 49 96 85 89 96 85 89
pincode 89 87 88 92 91 90 94 92 93 96 94 95 94 92 93 96 94 95

Table 1. Accuracy of overall integration, extraction and matching with and without an external
database (P=precision, R=recall)

database, there is a significant improvement in the accuracy
of title when the database tuples are added in the training,
while for other labels (journal and author) the accuracies are
comparable.

We now present a finer grained analysis of the results
and study the effects of various factors like data sizes, fea-
ture sets and databases on extraction since that is what con-
tributes to most of the difference.

5.2 Effect of various features

We assess the usefulness of various kinds of clues for
aiding the extraction tasks by evaluating performance with
various feature combinations for two different train sizes of
PersonalBib. In Figure 6, we show F1 numbers, starting
with an extraction model trained only on features ofL and
then we add four different database features in sequence:
schema derived cardinality information, similarity features,
entity classifier and regex-level match features. Accuracy
improves with each additional feature type. The first sig-
nificant improvement was on using the similarity features
of the database, followed by the improvement due to regex
features. Next we evaluate the importance of features de-
rived purely fromL by dropping features of three types: en-
tity, context and labelorder while keeping all the database
features. Dropping the entity features ofL raises accuracy
slightly, probably because given the small training set these
tend to overfit the data. The context and edge (label depen-
dency) features are important as seen by the drop in accu-
racy. Interestingly, if context and edge features are removed
in parallel before removing entity features (not shown in
figure), accuracy does not drop much. Thus, one of context
and edge features is important and the two together are not
needed.

5.3 Effect of increasing training data

We show how the relative accuracy of extraction with
and without a database is affected by increasing labeled
training data. For these experiments we fixed the test set to
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Figure 6. Effect of various features from the
database (db) and labeled data (L) on F1 ac-
curacy

50% of available and selected different random subsets for
training. Figure 7 shows average F1 with increasing train-
ing sizes. Accuracy increases as expected in both cases and
the database continues to be useful even for larger training
set.

5.4 Effect of changing database

In order to evaluate the sensitivity of our results to par-
ticular databases, we report numbers where our personal
bibtex database is changed to the publicly available DBLP
database while keepingL unchanged. In Table 2, we report
performance on the two databases. We notice that title per-
formance remains unchanged whereas author and journal
accuracy drop by 4 and 3 F1 points respectively. However,
there is still an overall 14% reduction in extraction error due
to use of the database.

5.5 Running time

As the time required to train an extraction model domi-
nates the integration process, we report performance num-
ber for extraction only. We compare the time required for
extraction with and without databases.
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Figure 7. Increasing fraction of labeled data
(L) versus F1 with and without a database

Only-L L + PersonalBib L + DBLP
Label P R F1 P R F1 P R F1
author 67 81 73 74 85 79 70 82 75
journal 40 31 35 56 48 51 53 44 48
title 68 59 63 74 68 71 74 68 71
overall 63 66 64 71 74 72 68 71 69

Table 2. Accuracy of extraction with changing
databases (P=precision, R=recall)

We report training times for extraction models in three
settings: without a database, with the smaller personal bib-
tex and the larger DBLP database. The personal bibtex
database has 400 article tuples, 1800 author entries and
200 journals. The DBLP database is relatively large and
contains approximately 60000 articles, 70000 authors, and
200 journals. Figure 8 shows the average time required to
train an extraction model for various training set sizes under
these three settings. Even with 50 training records and the
larger DBLP database, the time required is no more than 15
minutes, and less than double the time required by the no-
database setting. It is possible to reduce the gap further by
more efficient index probes as discussed in [5].

Once an extraction models is trained, it is applied on
unstructured instances using the A* algorithm discussed in
Section 4.4. For extraction without databases, inference on
a single bibtex entry took on average 800 ms. For extrac-
tion with personal bibtex database average inference time is
around 1800 ms, while with DBLP database it is 4600 ms.
This time can also be reduced considerably via efficient in-
dex lookups [5].

6 Related work

External dictionaries have been exploited to improve ac-
curacy of NER tasks based on conditional models. A com-
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Figure 8. Increasing fraction of labeled data
(L) versus running time (seconds) with and
without databases

mon scheme is to define boolean features based on exact
match of a word with terms that appear in an entity dictio-
nary [4]. This is extended in [7] to handle noisy dictionar-
ies through features that capture various forms of similarity
measures with dictionary entries. In both these cases the
goal is to exploit entity lists in isolation whereas our goal is
to handle multiple inter-linked entity lists. Also, we exploit
entity lists more effectively by building an entity classifier
and pattern dictionaries.

Another mechanism is to treat the dictionary as a col-
lection of training examples and this has been explored for
the case of generative models in [17, 3] This method suf-
fers from a number of drawbacks: there is no obvious way
to apply it in a conditional setting; it is highly sensitive to
misspellings within a token; and when the dictionary is too
large or too different from the training text, it may degrade
performance. In [1], some of these drawbacks are addressed
by more carefully training a HMM so as to allow small vari-
ations in the extracted entities, but this approach being gen-
erative is still restricted in its scope of the variety of features
that it can handle compared to recent conditional models.
Also, it cannot effectively combine information available in
both labeled unstructured data and external databases.

Recently there has also been work on exploiting links for
matching entities in a relational database, including con-
ditional graphical models for grouped matching of multi-
attribute records [13] and CRFs for matching a group of
records enforcing the transitivity constraint [12]. These
are techniques for batched deduplication of a group of
records whereas we are addressing an online scenario
where unstructured records get inserted one-at-a-time in the
database.

7 Conclusions

In this paper we showed how to integrate unstructured
text records into existing multi-relational databases using
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models that combine clues from both existing entities in the
database and labeled unstructured text. We extend state-of-
the-art semi-Markov CRFs with a succinct set of features
to capture pattern-level and entity-level information in the
database, use these to extract entities and integrate them in
a database while respecting its key constraints. Experiments
show that our proposed set of techniques lead to significant
improvement in accuracy on real-life datasets.

This is one of the first papers on statistical models for
integrating unstructured records into existing databases and
there is lot of opportunity for future work. We plan to de-
velop other ways of exploiting a database of entities partic-
ularly inter-entity correlation expressed via soft-constraints.
Another important aspect is creating standardized version of
entities either by choosing the best of the existing variants
or merging several noisy variants.
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