
Efficient Batch Top-k Search for Dictionary-based Entity Recognition

Amit Chandel
achandel@cse.iitb.ac.in

IIT Bombay

P. C. Nagesh
nagesh@it.iitb.ac.in

IIT Bombay

Sunita Sarawagi
sunita@iitb.ac.in

IIT Bombay

Abstract

We consider the problem of speeding up Entity Recogni-
tion systems that exploit existing large databases of struc-
tured entities to improve extraction accuracy. These systems
require the computation of the maximum similarity scores of
several overlapping segments of the input text with the en-
tity database. We formulate a Batch-Top-K problem with
the goal of sharing computations across overlapping seg-
ments. Our proposed algorithm performs a factor of three
faster than independent Top-K queries and only a factor of
two slower than an unachievable lower bound on total cost.
We then propose a novel modification of the popular Viterbi
algorithm for recognizing entities so as to work with easily
computable bounds on match scores, thereby reducing the
total inference time by a factor of eight compared to state-
of-the-art methods.

1 Introduction

The extraction of structured entities from unstructured
text is a challenging problem encountered in many appli-
cations such as data warehousing, web data integration and
bio-informatics. For example, during warehouse data clean-
ing a common operation is to extract from address strings
structured attributes like street names, city names and ad-
dresses [2, 1]. A lot of work has been done in this area start-
ing from early rule-based systems [4] to the current highly
flexible and powerful conditional graphical models [18].

Typical NER1 systems rely on various properties of the
word and regular expression pattern surrounding it to find
the entity of interest. Another valuable resource is match
with an existing database of the entity of interest. For ex-
ample, as Citeseer attempts to identify journal and author
names from html pages, match of a text string with author,
journal and title entities of existing structured databases like
DBLP 2 and Bibtex servers3, can provide strong evidence

1NER- Named Entity Recognition [3, 15, 6]
2http://dblp.uni-trier.de
3http://citeseer.ist.psu.edu

about the entity type of the string. Several independent ex-
perimental studies have found that the accuracy of extrac-
tion can improve significantly when coupled with an ex-
ternal database [3, 6, 1]. However match with an external
database is hard as the form of a name in unstructured text
varies substantially from its database version. Recently, this
problem has been addressed in [6], that proposes a more
continuous notion of match through text similarity measures
like TF-IDF-based cosine similarity [20]. Though such con-
tinuous match scores have been shown to improve accuracy,
they come at the cost of increased extraction time. The time
overhead becomes more noticeable as applications that de-
pend on automatic extraction start getting deployed on a
large scale and database sizes increase.

In this paper we show how to improve the performance
of models that rely on similarity scores with existing struc-
tured databases to identify entities in unstructured text. We
first present an overview of dictionary-based entity recogni-
tion systems and then outline our main contributions in this
paper.

2 Dictionary-based entity recognition

We are given an unstructured text stringx consisting of
a sequence of tokensx1 . . . xn where each token is either
a word or a delimiter. LetY denote the set of entity types
(such as title, person-names and city-names) to be recog-
nized fromx. The entity recognition task is to segmentx
into a sequences of segmentss1 . . . sp where each segment
sj is either labeled with an entity type fromY or a special
label other denoting none of entities. For ease of nota-
tion, we assumeY includes theother label. Thus, each
segmentsj is associated with a start positiontj , an end po-
sition uj and a labelyj ∈ Y . Further, since adjacent seg-
ment abuttj anduj always satisfy1 ≤ tj ≤ uj ≤ |x|,
tj+1 = uj + 1, up = |x|, andt1 = 1.

Intuitively, we recognize entities in unstructured text
based on various simultaneous clues in and around the pro-
posed segment such as capitalization patterns and delim-
iters. Other clues like the implicit ordering of labels and
matches with known list of entities are also utilized.

1

http://dblp.uni-trier.de
http://citeseer.ist.psu.edu

A number of methods have been proposed [14, 10, 17, 2,
11, 18, 6, 15] to exploit all these clues in a combined manner
to extract the entity of interest. We describe a state-of-the-
art method for extraction called a semi-Markov model that
is elegant, provides high accuracy and is flexible enough
to include a diverse set of clues. In this model each seg-
ment sj = (tj , uj , y) is associated with a set of features
that capture various properties of the segment when it is as-
signed a labely and its previous segment is assigned label
y′. Thus, features are real-valued functions of the form:
g(y, y′,x, tj , uj) and each segment is associated with sev-
eral such feature functionsg1 . . . gv. During training each
featuregk is assigned a weightwk that intuitively captures
the importance of the feature. Details of the training process
are not relevant to this work.

Examples of features:We present some examples of com-
mon features.
First word of author names is capitalized:g7(y, y′,x, t, u) =
[[xt is capitalized]] · [[y = Author]]

The token following titles is a dot:
g8(y, y′,x, t, u) = [[xu+1 is dot]] · [[y = Title]]

The Title segment is just before the Journal segment:
g11(y, y′,x, t, u) = [[y is Journal]] · [[y′ = Title]]

Author segments consist of two capitalized initials and a capi-
talized word: g12(y, y′,x, 3, 5) = [[x3x4x5 ≈ X. X. Xx+]] ·
[[yi = Author]]

The maximum TF-IDF match of a author segment with
an entry in the personDB database:g18(y, y′,x, 3, 5) =

maxr∈personDBTF-IDF(x3x4x5, r).[[y = Author]]

In this set the first four features are boolean whereas the
last one returns continuous values between 0 and 1. More
importantly, the first four are typical entity recognition fea-
tures that can be computed efficiently by simply consider-
ing a small neighbourhood of tokens around the segment
boundary(t u). In contrast, the last one requires us to
find the person name entry that has the maximum TF-IDF
similarity score over the database of people names. If the
database, gets large, we can expect the computation of this
feature to require significantly more time than the other four
features. In general, one can define features corresponding
to Top-K such matches and not just the maximum.

Best segmentationThe goal during entity recognition is
to break the inputx into a sequence of labeled segments
such that the weighted sum of features that are fired is max-
imized. That is, we need to find as∗ such that

s∗ = argmaxs:s1...sp

∑
sj :(yj ,tj ,uj)

W · g(yj , yj−1,x, tj , uj)

A brute force approach would require the enumeration of

all possible segmentation — an exponential number. Fortu-
nately, the special form of the function, makes it possible
to design an efficient dynamic programming algorithm as
follows:

Let L be an upper bound on segment length. Letsi:y
denote the set of all partial segmentation starting from 1 (the
first index of the sequence) toi, such that the last segment
has the labely and ending positioni. Let δ(i, y) denote the
largest value of the sum of segment scores for anys′ ∈ si:y.
We can now find the optimal segmentation by solving the
famous Viterbi equations defined as follows[eq. 1]:

δ(i, y) =

maxy′,i−L<i′≤i{δ(i′ − 1, y′)

+ W · g(y, y′,x, i′, i)} if i > 0
0 if i = 0
−∞ if i < 0

(1)

The algorithm makes a forward scan of the input tokens,
and for each token positioni and entity labely computes the
best segmentation from 1 toi by taking the maximum over
all possible segment lengths of the last segment ending ati
and all possible labels of the segment before the last. The
best segmentations∗ then corresponds to the path traced by
maxy δ(|x|, y). This requiresO(nm2L) time wherem =
|Y | andO(mnL) space. SinceL andm are small integers,
this makes the algorithm linear in the length of the input and
has been traditionally considered to be a fast algorithm.

However, as we attempt to exploit matches with large
structured databases as one of the features of segments, an
important concern becomes the time taken and number of
Top-K queries that this entails. For an input string ofn to-
kens, for each structured database column this will involve
nL Top-K queries. Since most other features in typical ex-
traction systems are lightweight functions of the input seg-
ment, the match features start dominating the total inference
cost. For example, an entire Viterbi run on a citation record
takes 0.8 seconds without dictionary features. If we add
features based on lookup in a DBLP database with 100,000
title entries, the time for best segmentation goes to 4.2 sec-
onds — a factor of five blowup.

In Section 3, we propose algorithms for batching up Top-
K searches so that the time required is significantly smaller
than doing independent Top-K queries for each segment.
Later, in Section 4 we modify the Viterbi algorithm so that
we do not require the computation of exact match scores for
all input segments.

3 Batched dictionary lookups (Batch Top-k)

In this section we address the problem of finding the Top-
K match scores for each possible segment of length no more
thanL of an input token sequencex. These scores are used
for designing match features that are needed during both
training and testing of the extraction models. We measure
similarity using the popular TF-IDF [eq.2] similarity score,
which has been found to be highly effective in text searches.

2

The TF-IDF similarity between two text recordsr1 andr2
is defined as follows:

TF-IDF(r1, r2) =
∑

t∈r1∩r2

V (t, r1)V (t, r2) (2)

V (t, r) =
V ′(t, r)∑

t′∈r V
′(t′, r)2

V ′(t, r) = log(TF(t, r) + 1) log(IDF(t))

In the above, the IDF term makes the weight of a to-
ken inversely proportional to its frequency in the database
and the TF term makes it proportional to its frequency in
the record. Intuitively, this assigns low scores to frequent
tokens (stop-tokens) and high scores to rare tokens.

We use a thresholdε to limit matches only to values
greater thanε because features with very low scores are
not useful and unnecessarily increase running time and
have even been found to reduce accuracy in some cases.
Even distinctly dissimilar record pairs have non-zero posi-
tive similarity scores due to the presence of stop-tokens.

The basic Top-K search problem with the TF-IDF simi-
larity measure is extensively researched [7, 5, 19, 20] in the
information retrieval and database literature. Thus, a sim-
ple mechanism of solving our Batch-Top-K problem is to
invoke the basic Top-K algorithm for each and every seg-
ment of length less than or equal toL in the input sequence.
However, since segments have overlapping tokens there is
scope for significant gains by batching their computations.
The state-of-the-art Top-K algorithms are highly optimized
to balance the number of tidlist4 fetches with record fetches
via lower and upper bound score estimates. Utilizing these
optimizations along with effectively sharing the partial and
final results of one sub-query in the evaluation of another is
a challenging problem.

We first present a highly optimized Top-K search algo-
rithm that combines ideas from several Top-K and range
search papers [7, 5, 19, 16]. We then present our algorithm
for the batch Top-K search problem.

3.1 Simple Top-k

Given a relationR, and an input query stringx of tokens,
the simple Top-K search problem seeks to find the records
inR with thek largest TF-IDF matches withx provided the
match score is greater than a thresholdε.

As in all existing methods [5, 19], we assume an inverted
index onR where for each tokent we maintain a list of or-
dered pairs(r, V (t, r)) of all record identifier (rid)r in R
that contain the tokent. We call this the tidlist of tokent.
Since in general, the database can be quite large we assume
that the index is stored in a relational database. The inverted
index is a relation with records consisting of a token-idt,

4tidlist refers to list of tuple-ids containing a given token. This is anal-
ogous to document-id list in a inverted-word index used in IR applications.

INPUT Query StringQ = q1q2 . . . qn, k andε

1: X = x1x2 . . . xn = tokens ofQ sorted in decreasing order of V(qi,Q)
2: maxV(t) =maxr{V (t, r)}

//tidlist(t)[cursor]=value in tidlist(t) at position=cursor
3: findmin p s.t.

∑
p<=i<=n

V (xi, X) ∗maxV(xi) < ε

4: ∀t ∈ S, fetch tidlist(t) where S ={xi|1 <= i < p}
5: bestOffset=

∑
∀t/∈S V (t,X) ∗maxV(t)

{ process the tidlists in S, row-wise}
6: for row = 1 tomax∀t∈S{|tidlist(t)|} do
7: curMax==

∑
∀t∈S V(t,X)*tidlist(t)[cursor]

8: if curMax+bestOffset< max(ε, topK[k]) then
9: break

10: end if
11: fetch (r,V(t,r))= tidlist(t)[cursor],∀t ∈ S , and update score(r)+=

V(t,X) * V(t,r)
12: UpdateTopK(r, score(r)) and add r to CandidateSet
13: end for
14: if bestOffset>0 OR NOT(all tidlists were fully merged)then
15: best estimate(r) = score(r) +curMax + bestOffset
16: ∀ r ∈ CandidateSet s.t best estimate(r)> max(ε, topK[k]) fetch r

from database, find Similarity Score (r) and add to finalSet
17: else
18: set CandidateSet to final set
19: end if
20: return the Top-K records from the final set.
{Procedure: UpdateTopK(record id r, score)

//This function maintains an ordered listtopK of top K values among

the currently seen items}

Algorithm 1. Simple Top-k

a rid r and its scoreV (t, r). We rely on suitably defined
database indices to get for a given tokent its tidlist in de-
creasing order ofV (t, r) values. For each tokent, we main-
tain in a separate table aggregate statistics about the token’s
IDF value and the maximumV (t, r) of any record contain-
ing the token. This table is small and can be assumed to be
cached in the application.

The simple Top-K algorithm is described in Algorithm
1. We first sort tokens ofx in decreasing order of their
IDF values and then divide them into two parts ‘strong’ and
‘weak’ (as suggested in [16]) where the weak set consists
of the largest suffix of the sorted list whose maximum sum
of scores is less thanε. Intuitively, this ensures that all rids
with match> ε appear at least in one strong list. We expect
most of the stop-tokens to go to the weak set. We then open
cursors on tidlists of each of then′ tokens in the ‘strong’
set in sorted order ofV (t, r) values. This createsn′ lists
of pairs(r, V (t, r)) and we merge them in a manner similar
to Fagin’s rank merging algorithm [7] to get a set of can-
didate records. The merging algorithm exploits the sorted
nature of the tidlists to estimate upper bounds on scores of
unseen records so that we can stop advancing on cursors
if the estimated upper bound score is less than the Top-K
partial scores of seen records orε. Similarly, any record
from the candidate set with upper bound score less thanε
is removed. The remaining records are then fetched from

3

database (point query), their final similarity scores com-
puted, and Top-K among them are returned.

Our approach allows us to effectively utilize the distribu-
tion of scores in tidlists and limit the size of candidate set.
Though total tidlist fetch time is not affected, the total time
spent in point queries is significantly reduced. Also we do
not make a complete parallel sorted access on all columns as
in Fagin’s algorithm, as we do not fetch tidlists from ‘weak’
segment.

3.2 Batch Top-K algorithm

In the batch Top-K setting our goal is to find the Top-
K match for each possible subsequence of tokens in a text
recordx = x1 . . . xn. Given a maximum segment length
L, for each segment sub-queryQ = qi qi+1 .. qi+j where
1 ≤ i ≤ n− L+ 1 and0 ≤ j ≤ L− 1, we need to find the
Top-K matches forQ with a given relationR provided the
match-score is≥ ε.

The easiest way to share work across multiple subqueries
is to cache data fetches. Tidlist fetches are cached because
a token occurrs in many sub-queries. We also cache records
fetched during point queries because it is common for the
same record to appear in the candidate set of overlapping
segments. We call this algorithm that shares only data
fetches but otherwise executes each Top-K independently
our baselineIterative algorithm.

The sharing of computation, in particular, the list merges
is more challenging because the Top-K algorithm above
crucially depends on token scoresV (t,Q) which change as
Q changes. Therefore, the bounds of one query might make
the results of merging a set of tidlists unusable for another.

We can maximize reuse of list merges if we ignore
bounds and perform full merges as proposed in the progres-
sive algorithm below.

3.3 Progressive Algorithm

Let L1 . . . Ln denote then tidlists for the tokens inx in
the order in which the tokens appear inx. When merging a
contiguous sets of tidlists we generate another tidlistLs in
the same decreasing score order. LetFi denote the frontier
set,Fi={Ls|s = {j, j+1, .., i}∀j ∈ [i−L+1, i]}. The pro-
gressive algorithm fetches eachLi in sequence and merges
it with each of the lists in the frontier setFi−1 to form a
new frontierFi as shown in Figure 1 forn = 5, L = 4 and
i = 4. The algorithm stops after outputting the Top-K from
frontierFn.

The total number of list merges isO(nL) which is much
smaller than theO(nL2) merges performed when execut-
ing each Top-K independently. However, empirical results
show that the progressive algorithms is significantly slower
than the iterative algorithm primarily because of the various

123

2 3

123

2 3

L

L

L3 L

L

L

L

4

4

4

3 4

F F

L L2
5

3 4

Figure 1. Moving Frontier

optimizations in the underlying Top-K, including pruning
of lists based on upper bounds and the elimination of weak
tidlists. Some of the tidlists may be arbitrary large, almost
half the size of the given relation, in that case most of the
time is spent in retrieving the tidlist from the database and
merging these long lists. We next propose an algorithm that
avoids these deficiencies.

3.4 Segmented Algorithm

Given a stringx, we use the criterion of simpleTop-k
above to mark the tokens in a sub-queryQ of x as weak
or strong. A token is globally strong if it is strong in any
of the subqueries, otherwise it is globally weak. We use
Li to denote the tidlist of a tokenxi if it is weak, oth-
erwise we denote it bySi. The strong and weak tokens
might be arbitrarily interleaved inx. Our strategy is to
merge the lists for strong tokens completely for each sub-
queryQji = {xj , ..., xi} progressively. Note that this dif-
fers from Progressive Algorithm 3.3, in that weak tokens
are ignored while merging. Figure 2 shows an example of
the complete merged lists for n=7 and L=7, wherex2, x3,
x5 andx6 are the strong tokens. As these are short tokens,
a complete merge will not take much time compared to the
time taken for partial merge in case of simpleTopK. But we
gain since we can reuse the complete merge for other sub-
queries, where as we could not reuse the partial merged lists
in Iterative algorithm. In this case, since we perform com-
plete merges we scan the tidlists in rid order so as to allow
for faster merges.

Then we iterate over each sub-queryQji. If all the to-
kens ofQ are strong, we output top k records of the merged
list Zj,i, whereZj,i denotes the complete merger of all
strong tokens fromj to i. If all the tokens are weak, there
will not be any result≥ ε forQji. If Qji contains both weak
and strong tokens, we find the complete merged list of all
the strong tokens ofQji (Step 10 of Algorithm 2). Then
we filter it using the best estimated contribution from weak
tokens, to obtain candidate list and find the actual scores
for records in the candidate list by point queries against the
database. To make point queries efficient, we also cache

4

2 3 4 5 6 71

Z Z

Z

Z

Z

Z

2,3

3,5

2,5

5,6

3,6

2,6

Figure 2. Complete Merged Lists in Seg-
mented Batch TopK

the result of the point queries. Segmented Batch-Top-K is a
efficient, yet simple to implement algorithm.

INPUT: X = x1x2 . . . xn,k,ε,L

OUTPUT: Batch Top-K

1: Mark eachxi as global weak or global strong w.r.t. query X
2: S = Set of all strong tokens
3: Moving from left, merge the lists of strong token progressively
4: Zj,i = Merged list of strong tokens of subqueryxj . . . xi
5: for each pair (j,i) in{(u, v) : v − u < L, 1 ≤ u ≤ v ≤ n} do
6: if {xj , . . . , xi} ⊆ S then
7: output top-k fromZj,i
8: else
9: if NOT ({xj . . . xi} ⊆ X − S) then

10: α = min{γ : xγ ∈ S, j ≤ γ ≤ i}
11: β = max{γ : xγ ∈ S, j ≤ γ ≤ i}
12: Cα,β = candidate set filtered fromZα,β
13: Do point queries for eachr ∈ Cα,β and output top-k
14: end if
15: end if

16: end for

Algorithm 2. Segmented Batch Top-k

4 Optimizing Viterbi with dictionary lookups

We show how to modify the Viterbi algorithm for finding
the best segmentation so as to not requireexactdictionary
match scores for all possible input segments. Our goal is
to exploit cheaper non-dictionary features and bounds on
match scores to reduce the set of segments for which we
need to get exact similarity.

Consider the Viterbi Equation 1. Suppose now the
feature functiong(y, y′,x, i′, i) instead of necessarily re-
turning the exact feature value, returns a lower bound
gl(y, y′,x, i′, i) and an upper boundgu(y, y′,x, i′, i)
within which the actual value lies. For features that are
cheap to compute the lower and upper bounds are the same.
For the more expensive dictionary features, it is relatively
cheap to get lower and upper bounds via aggregate token
statistics or partial merges of the strong lists, but the exact

values require expensive point queries or complete tidlist
merges.

We therefore start with bounds on the exact values and
refine the bounds only when the existing tight features can-
not uniquely find the best segmentation.

For ease of exposition we partition features into one of
two types: state featuresthat are independent of the pre-
vious labely′ and transition featuresthat depend on the
transition features; and assume that the expensive dictio-
nary features are all state features.

Given an inputx, for each of its segments = (t, u, y)
with start boundaryt, end boundaryu (u < t+L) and label
y, we maintain the following quantities:

• suffixUB(u, y): an upper bound to the total score over
all segmentation fromu + 1 until the end positionn
with the previous labely. This is the maximum score
we can obtain over all segmentation starting withu+1
where the previous label isy.

• suffixLB(u, y): a lower bound to the total score over
all segmentation fromu + 1 to n where the previous
label isy. This is the score we are guaranteed to ob-
tain for the best segmentation starting fromu+ 1 with
previous labely.

• segmentUB, segmentLB: the upper bound and lower
bound on the sum of scores of the state features of seg-
ments.

• inaxact-F: the set of features yet to be refined for seg-
ments

• prefixCurrent: the current best score of a segmentation
from the start position1 and ending in segments, ex-
cluding the scores of the state features ofs.

There are two main phases of the algorithm. A backward
Viterbi phase when we compute the suffixUB, suffixLB,
segmentLB and segmentUB values for all segments. This is
followed by a forward phase where we depend on a branch
and bound algorithm to refine the match scores of only the
minimum number of segments needed to find the optimal
segmentation.

4.1 Backward Viterbi pass

In the reverse Viterbi pass we find the suffixUB and
suffixLB values for each positioni(1 ≤ i < n) and la-
bel y. During this pass we also store for each segment, the
upper bound segmentUB and lower bounds segmentLB on
the state scores of each segment while also recording the
features inaxact-F which need refinement. For each seg-
ments = (t, u, y) the segmentUB and segmentLB values

5

are computed as follows:

segmentUB(t, u, y) =
∑
wj≥0

wj .g
u
j (y,x, t, u)

+
∑
wk<0

wk.g
l
k(y,x, t, u)

segmentLB(t, u, y) =
∑
wj≥0

wj .g
l
j(y,x, t, u)

+
∑
wk<0

wk.g
u
k (y,x, t, u)

Now using the following backward Viterbi we compute
the suffixUB and suffixLB values for each positioni and
labely. Assumeg′ includes only transition features.

suffixUB(i, y) = max
y′,i<i′≤i+L

{segmentUB(i+ 1, i′, y′) +

W.g′(y′, y, i+ 1, i′) + suffixUB(i′, y′)}
suffixLB(i, y) = max

y′,i<i′≤i+L
{segmentLB(i+ 1, i′, y′) +

W.g′(y′, y, i+ 1, i′) + suffixLB(i′, y′)}

An important issue is how to assign the initial lower
boundgl and upper boundgu for the TF-IDF similarity
features. There are several options: One option is to as-
sign the trivial bounds of 0 and 1 respectively — this re-
quires no work but would produce weak values of suffixUB
and suffixLB causing the followup forward refinement to
do several refinements. A second option is to compute the
upper and lower bounds from the aggregate token statistics.
This gives tighter bounds at negligible overheads since the
token statistics are cached in memory. A third option is to
perform partial tidlist fetch and merges , for example fol-
lowing the Segmented batch topk algorithm we perform all
the strong segment merges and perform the point queries
only when asked to refine to the exact score. As we per-
form increasing amount of work during the initialization,
we run into the likelihood of most of the work being wasted
and not useful for finding the best segmentation. We found
the second option to provide the right tradeoff between the
tightness of the initial bound and the time spent in its com-
putation.

4.2 Forward selective refinement phase

We perform a branch and bound search strategy to or-
der segments based on their promise of being part of the
optimal segmentation and refine the inexact features in that
order. For each segments we maintain upper and lower
bounds on the best possible path passing through the seg-
ment as: pathUB= suffixUB(u, y) + segmentUB(s) +
prefixCurrent(s) and pathLB = suffixLB(u, y) +
segmentLB(s) + prefixCurrent(s). Initially, prefixCurrent
is negative infinity for all but the set of segments starting

at 1 for which it is 0. We use a priority queue to main-
tain the segments sorted on their pathUB values. A lower
bound on the best possible segmentation is the maximum
of the pathLB values over all segments. Let bestLB de-
note this lower bound. This is the least score that the best
segmentation is guaranteed to have. All segments with
pathUB less than bestLB can be removed from the prior-
ity queue. The algorithm proceeds by dequeuing the seg-
ment s with the highest pathUB value. If s.inaxact-F is
not empty, we refine the features in inaxact-F exactly and
remove them from inaxact-F. We adjust segmentUB and
segmentLB values ofs by the refined amount and prop-
agate the change to pathLB and pathUB and bestLB val-
ues. Ifs is an ending segment, that is,s.u = n, then en-
sures is fully refined (segmentLB=segmentUB for s) and
put it back to queue, after settings.u = n + 1. Note
that s.u = n + 1 is an indicator that the path through
this segment has exact score and if it is dequeued, then the
path traced froms backwards gives the best possible seg-
mentation. Otherwise, for all segmentss′ starting afters
(i.e., with s′.t = s.u + 1), if s′.prefixCurrent is less than
s.prefixCurrent+s.segmentLB+W.g′(s′.y, s.y, s′.t, s′.u),
we update the prefixCurrent value ofs′, makes the previous
segment ofs′, and adds′ to the priority queue with updated
weights provided suffixUB(s′) is greater than bestLB . (The
g′ vector only includes the transition features and the third
term can also be cached during the backward Viterbi pass.)

The algorithm is guaranteed to return the optimal so-
lution when it terminates (the proof is similar to standard
proofs used in Top-K [7] and A-star [8] search algorithms)
but with fewer feature refinements than required by the for-
ward Viterbi pass. The storage requirement of this algo-
rithm isO(nLY) — this is comparable to the requirements
of normal Viterbi. The priority queue is also limited to be
no more thanO(nLY) size since for each segment we have
only a single entry in the queue. The time taken in the
backward passO(nLY 2) is the same as for normal forward
Viterbi except that the expensive dictionary features are re-
placed by fast bounds. During the forward pass, the main
cost is the feature refinements which in the worst case can
be the same as in normal Viterbi but in most practical cases
significantly less as we will see in the experimental section.

5 Experimental results

In this section we demonstrate the efficiency of our
BatchTopK algorithms and show the time improvement in
entity recognition with the optimized Viterbi algorithm. We
report experiments on two unstructured data sources.
Cora: Cora is a popular citations benchmark [13] that con-
sists of references collected from the reference section of
several academic papers. This dataset consists of 500 en-
tries.

6

Articles: This dataset consists of 100 journal ar-
ticles collected by one of our authors from Cite-
seer and therefore formatted slightly differently from
the Cora dataset. Also, unlike Cora it consists
only of journal entries. The dataset is available at
http://www.it.iitb.ac.in/∼sunita/data/personalBib.tar.gz.

In both cases our goal was to extract title, author names
and journal names from the unstructured text. The refer-
ence database for defining similarity features was DBLP
consisting of 360,000 titles and 280,000 authors. The av-
erage length in DBLP of title and author field was 8 and
3 respectively. As in most real life datasets, we observe
that tokens exhibit a zipfian distribution. There are many
stop tokens whose tidlist sizes range in tens of thousands,
that are spread out in the tail of the distribution. The
maxt |tidlist(t)| was 108284 and 102259 for DBLP title and
author databases respectively.

All experiments were run with default values ofε = 0.5,
top k = 10 and full database size. We also show graphs
with changing values of these parameters. The maximum
segment size was 20 for the Title dictionary match and 6 for
the authors dictionary match. The average query length for
articles dataset was 34 and 28 for cora dataset.

The database and inverted index was stored in Postgres
version 7.4.2. The Batch Top K and Viterbi algorithms
were implemented in Java and interacted with Postgres via
JDBC. All our experiments were performed on an IBM
X220 server with 2 GB of main memory and Intel PIII pro-
cessor rated at 1.2 GHz.

5.1 BatchTopK experimental results

We first study the performance of the following batch
Top-K algorithms. We compare our proposed Segmented
Batch-Top-K with the Iterative Batch-Top-K algorithm that
issues independent Top-K searches for each segment but
caches tidlist fetches and results of point queries. We also
compare the Batch-Top-K algorithm with a lower bound on
the most optimized Batch-Top-K algorithm possible given
a simple Top-K algorithm. For computing the lower bound
we partition the query string into non-overlapping seg-
ments, and sum up the time taken for the most optimized
simple Top-K for each segment. This is a lower bound
since we are solving a subset of all possible simple Top K
searches of Batch-Top-K and there is no sharing possible
amongst disjoint segments. We choose a partitioning that
produces a tight lower bound by picking the most expen-
sive non-overlapping segments (Algorithm 3).

In Figure 3 we report running times for the above three
methods on a set of 100 queries selected at random from
the unstructured records of the dataset. For queries of arti-
cle dataset, we perform the experiment on title and author
fields, with corresponding full size dictionaries (360K titles,

LowerBound(x1, xn)
for every sub segmentxi, . . . xj required by Batch Top-Kdo

call simple Top-Konxi . . . xj using the best implementation ofsim-
ple Top-Kand measure time taken

end for
let xa . . . xb be the segment, that took maximum time, T

return T + LowerBound(x1, xa−1) + LowerBound(xb+1, xn)

Algorithm 3. Lower bound on Batch-Top-K

and 280K author names) and for Cora only report numbers
with the title field. Though there is no natural ordering in
the set of queries, we sort them in increasing order of the
time taken by the Iterative method. We observe that for
some of the long running queries, the Iterative algorithm can
be almost a factor of ten worse than the Segmented Batch-
Top-K algorithm. When averaged over the 100 queries, on
both datasets we found Segmented to take one-third the time
of Iterative for Titles and half the time of Iterative for Au-
thors. Also, Segmented takes no more than twice the time of
the lower bound, that includes significantly fewer segments.

The performance improvement in Segmented over It-
erative is due to savings in repeated tidlist merges. We
observe that this time improvement is greater for queries
over titles, than authors. While querying over authors
database we have very few strong tokens, as compared to ti-
tle database. This is because of the shorter length of the au-
thor field(average=3) and a shorter collection of tokens that
could find a good match over author database. In contrast,
titles fields are longer (average=8) and there are far more to-
kens that match with the titles database. Therefore, Batch-
TopK over authors yields fewer records and have lesser run-
ning times. Fewer strong tokens over authors database im-
plies fewer tidlist merges and thereby reduced gain of Seg-
mented over Iterative.

We have not included numbers for the Progressive algo-
rithm (Section 3.3) because it takes more than a factor of
ten times the running time of Iterative. This is mainly due
to uniform treatment of all tokens. Stop-words (weak to-
kens) have very lengthy tidlists which take longer time for
fetch and merges.

5.1.1 Effect of database size and epsilon

In Figure 4(a) we plot the running times of various Batch-
Top-K algorithms for different dictionary sizes on the Ar-
ticles dataset with epsilon fixed at 0.5. The time reported
is averaged over 100 queries. As expected the relative
improvement over Iterative increases as database sizes in-
creases. In Figure 4(b) we report results with varying values
of ε for the full database size. Top-K algorithms are sensi-
tive to epsilon and running times increase rapidly for lower
values of epsilon. The number of strong tokens in a query
increases as epsilon decreases. This leads to rapid increase

7

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

tim
e

(m
se

c)

Query

Segmented
Iterative

Lower Bound

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

tim
e

(m
se

c)

Query

Segmented
Iterative

Lower Bound

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100

tim
e

(m
se

c)

Query

Segmented
Iterative

Lower Bound

(a) Articles Dataset : Title field (b) Cora Dataset : Title field (c) Article Dataset : Author field

Figure 3. Running times (in milliseconds) of different Batch Top-K algorithms

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 50 100 150 200 250 300 350 400

tim
e

(m
se

c)

Database size (thousands)

Segmented
Iterative

Lower Bound

(a) DB size variation

0

5000

10000

15000

20000

25000

30000

35000

40000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(m
se

c)

threshold

Segmented
Iterative

Lower Bound

(b) Epsilon variation

Figure 4. Effect of varying DB size and epsilon
on running times (in milliseconds) of different
Batch Top-K algorithms

in running times of Iterative as the total number of tidlist
merges increase. With Segmented however, the re-usage of
tidlist merges, assauges the increase in the running times.

ε 0.3 0.5 0.7 0.9
accuracy 76.0 76.3 70.12 69.46

Table 1. Effect of epsilon on accuracy of the
model

5.2 Inferencing algorithms

In this section we show the running times of our opti-
mized inference algorithm (Optimized-Viterbi) and com-
pare with the normal Viterbi algorithm running with the
Segmented Batch-Top-K algorithm and Iterative Batch-
Top-K algorithm. Note that the accuracy of entity recog-
nition is unaffected by the different inferencing techniques,
as they all return the optimum segmentation.

We trained two models of NER, one on 150 examples
from the cora dataset and the other on 50 examples from
the articles dataset. The training process assigned weights
to the various features including the dictionary match fea-
tures for the title and author columns. We fixed the value of
epsilon to be 0.5 for all training and inferencing processes.
This value was observed to provide sufficiently high accu-
racy for reasonable running times.

We show an example of the variation of accuracy with
epsilon for the articles dataset on the authors column of
DBLP in Table 1. We setε to different values, re-train our
model, and measure accuracy. We observe that accuracy
drops for higher values ofε. For lower values ofε, the train-
ing and inferencing times are very high. We choose a value
of 0.5 as the right trade off for accuracy and running time.
Theε = 1 case corresponds to not using the database. This
illustrates the importance of external databases which boost
accuracy from 69 to 76.

Overall comparisonsIn Table 2 we present an overall com-
parison of the three methods for Viterbi-based inferencing
and for reference also show the running time of Viterbi
without any dictionary-based similarity feature. We observe
that compared to Viterbi without any dictionary similar-
ity features, Viterbi with a simple Iterative TopK algorithm
could take upto a factor of twenty higher running time. This
is reduced by more than a factor of half with the Segmented
Batch-Top-K algorithm. The improvement for Cora-author
is smaller because in this case even the Iterative algorithm
took only 20% more time. Also optimized Viterbi for Au-
thors performed worse because the overhead of the two pass

8

Average Inference Time (ms)
DataSet Dictionary Viterbi with Optimized

no dictionary Iterative BTK Segmented BTK Viterbi
Articles Title 715 16398 8609 2230
Cora Title 559 12520 5090 1582
Articles Author 640 1900 880 1192
Cora Author 404 564 467 763

Table 2. Overall result of the Inferencing Algorithms

Viterbi is more than the savings due to partial segment re-
finement. The reason is because the Cora dataset mostly
includes machine learning papers and these have little over-
lap with the DBLP database. Optimized Viterbi for Titles
reduced running time by more than a factor of three over
Segmented Batch-Top-K.

Changing database sizeWe wish to study the effect of
costly features on the running times of our inferencing algo-
rithms. To vary the cost of our distance feature, we simply
choose dictionaries of larger size, as this directly increases
the cost of evaluating the distance feature. We observe in
Figure 5 that for smaller dictionary sizes Optimized-Viterbi
is slightly slower than Viterbi with Segmented Batch-Top-
K. This is because, for small dictionaries, the optimized
Batch-Top-K algorithms are fast, and the savings in dic-
tionary lookups due to Optimized-Viterbi are offset by the
two stages of Viterbi that it requires. But as the dictionary
size grows, the savings in dictionary lookups start mak-
ing a significant impact on running time and for the largest
database size there is a factor of four reduction even over the
optimized Segmented Batch-Top-K algorithm and a factor
of eight reduction over the independent Batch-Top-K algo-
rithm.

The superior performance of the Optimized Viterbi al-
gorithm does not make the Segmented Batch-Top-K algo-
rithm redundant because during training we do not just re-
quire just the best segmentation but need to sum over the
scores of all possible segmentation. In summary, these ex-
periments show that when the database size is large, both
the Segmented Batch-Top-K and the Optimized Viterbi al-
gorithm proposed in this paper can significantly improve the
performance of entity recognition systems.

6 Related work

The work presented here is most related to the Top-K
search problem, for which a number of algorithms have
been proposed in the database and IR literature [7, 5, 19,
20, 16] and these are already discussed in Section 3.1. We
build upon this work to design our segmented Batch-Top-
K algorithm. We know of no earlier work on the specific

0

5000

10000

15000

20000

0 50 100 150 200 250 300 350 400

tim
e

(m
se

c)

Database size (thousands)

Optimized Viterbi
Viterbi with Segmented

Viterbi with Iterative

(a) Articles Dataset

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400

tim
e

(m
se

c)

Database size (thousands)

Optimized Viterbi
Viterbi with Segmented

Viterbi with Iterative

(b) Cora Dataset

Figure 5. Comparison of average inferencing
time of Viterbi and Optimized Viterbi

Batch-Top-K problem that we solve in this paper.

Our ideas for extending Viterbi to a A-star like search
algorithm for reducing costs of expensive features is related
to the factored A-star algorithm of [9]. However, the setting
there is different in that features are decomposed into dis-
joint sets and the suffix upper bound is computed for each
set separately and summed up to get the total upper bound.
Thus, there may not be any single path that corresponds to
the upper bound. In our case, we have bounds associated
with the values of features and the algorithm attempts to
minimize expensive refinements of these bounds.

While there is prior work on the role of dictionaries to
improve extraction accuracy [12, 2, 1, 6], we are not aware
of any work addressing the performance issues associated
with exploiting large databases.

9

7 Conclusion

A number of applications now depend on statistical mod-
els for the automatic extraction of structured entities from
unstructured text. These models combine clues from a
number of different sources including match with existing
databases of structured entities. As the size of the database
increase, the computation of match scores with successive
segments of the unstructured text, becomes a bottleneck in
the extraction process. In this paper we proposed two ways
to address this performance problem. We first formulated a
Batch-Top-K problem to batch up the computation of sim-
ilarity scores for overlapping segments and developed an
algorithm that is a factor of two to three faster than inde-
pendent Top-K searches with data caching. Our algorithm
combines the optimization tricks from earlier Top-K search
algorithms such that it is at most a factor of two worse than
an unachievable lower bound. Next, we modified the stan-
dard Viterbi algorithm used to find the best entity segments
so as to not require exact similarity computation for all seg-
ments. This further reduces the running time by a factor of
three for large databases.

References

[1] E. Agichtein and V. Ganti. Mining reference tables
for automatic text segmentation. InProc. of ACM
SIGKDD, Seattle, USA, 2004.

[2] V. R. Borkar, K. Deshmukh, and S. Sarawagi.
Automatic text segmentation for extracting struc-
tured records. InProc. of ACM SIGMOD, Santa
Barabara,USA, 2001.

[3] A. Borthwick, J. Sterling, E. Agichtein, and R. Grish-
man. Exploiting diverse knowledge sources via max-
imum entropy in named entity recognition. InSixth
Workshop on Very Large Corpora New Brunswick,
New Jersey. Association for Computational Linguis-
tics., 1998.

[4] M. Califf and R. Mooney. Relational learning of
pattern-match rules for information extraction.Work-
ing Papers of the ACL-97 Workshop in Natural Lan-
guage Learning, pages 9–15, 1997.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data clean-
ing. In Proc. of ACM SIGMOD, 2003.

[6] W. W. Cohen and S. Sarawagi. Exploiting dictionaries
in named entity extraction: Combining semi-markov
extraction processes and data integration methods. In
Proc. of ACM SIGKDD, Seattle, USA, 2004.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware.Journal of Computer
and System Sciences, 66:614,656, Sept. 2001.

[8] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernet-
ics, 4:100–107, 1968.

[9] D. Klein and C. D. Manning. Factored a* search for
models over sequences and trees. InProc. of Inter-
national Joint Conference on Artificial Intelligence,
2003.

[10] J. Kupiec. Robust part of speech tagging using a hid-
den Markov model.Computer Speech and Language,
6:225–242, 1992.

[11] J. Lafferty, A. McCallum, and F. Pereira. Condi-
tional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProc. of ICML,
Williams, MA, 2001.

[12] I. Mansuri and S. Sarawagi. A system for integrating
unstructured data into relational databases. To appear
in ICDE, 2006.

[13] F. Peng and A. McCallum. Accurate information ex-
traction from research papers using conditional ran-
dom fields. InHLT-NAACL, pages 329–336, 2004.

[14] A. Ratnaparkhi. Learning to parse natural language
with maximum entropy models.Machine Learning,
34, 1999.

[15] S. Sarawagi and W. W. Cohen. Semi-markov con-
ditional random fields for information extraction. In
NIPs, 2004.

[16] S. Sarawagi and A. Kirpal. Efficient set joins on simi-
larity predicates. InProc. of ACM SIGMOD, 2004.

[17] K. Seymore, A. McCallum, and R. Rosenfeld. Learn-
ing Hidden Markov Model structure for information
extraction. InPapers from the AAAI-99 Workshop on
Machine Learning for Information Extraction, pages
37–42, 1999.

[18] F. Sha and F. Pereira. Shallow parsing with conditional
random fields. InProc. of HLT-NAACL, 2003.

[19] M. Theobald, G. Weikum, and R. Schenkel. Top-
k query evaluation with probabilistic guarantees. In
Proc. of VLDB, pages 648–659, 2004.

[20] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gi-
gabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishing, San Fran-
cisco, 1999.

10

	Introduction
	Dictionary-based entity recognition
	Batched dictionary lookups (Batch Top-k)
	Simple Top-k
	Batch Top-K algorithm
	Progressive Algorithm
	Segmented Algorithm

	Optimizing Viterbi with dictionary lookups
	Backward Viterbi pass
	Forward selective refinement phase

	Experimental results
	BatchTopK experimental results
	Effect of database size and epsilon

	Inferencing algorithms

	Related work
	Conclusion

