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Abstract—The goal of this work is to estimate the accuracy of
a classifier on a large unlabeled dataset based on a small labeled
set and a human labeler. We seek to estimate accuracy and
select instances for labeling in a loop via a continuously refined
stratified sampling strategy. For stratifying data we develop
a novel strategy of learning r bit hash functions to preserve
similarity in accuracy values. We show that our algorithm
provides better accuracy estimates than existing methods for
learning distance preserving hash functions. Experiments on
a wide spectrum of real datasets show that our estimates
achieve between 15% and 62% relative reduction in error
compared to existing approaches. We show how to perform
stratified sampling on unlabeled data that is so large that in an
interactive setting even a single sequential scan is impractical.
We present an optimal algorithm for performing importance
sampling on a static index over the data that achieves close to
exact estimates while reading three orders of magnitude less
data.

Keywords-Accuracy estimation, active evaluation, learning
hash functions.

I. INTRODUCTION

In this paper we address the problem of evaluating the
accuracy of a classifier C(x) when deployed on a very large
unlabeled dataset D. We are given a small labeled test set L.
We consider situations where D is so large in comparison
to L that the average accuracy over L is unlikely to be a
reliable estimate of the classifier’s real performance on the
deployment data D. We present a method for more reliable
accuracy estimates of C(x) on D using the given labeled
set L, and a method for selecting additional instances to be
labeled to further refine the estimate.

This problem has applications in many modern systems
that rely on the output of imperfect classifiers. Consider
a concrete example. A search engine needs to deploy a
classifier C(x) to label if a Web page x is a homepage.
Since the label is used to decide on the rank of a web
page in a search result, it is important to calibrate reliably
the accuracy of the classifier on a general web corpus D.
Typically, editors hand pick a set of instances L, label them
as homepage or not, and measure the accuracy of C(x) on
L. This method is likely to be flawed because the Web is
so diverse and huge that it is difficult for humans to select
a representative set while keeping L small. Other examples
of the use of classifiers on large datasets include, classifying
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text snippets to an entity node in Wikipedia (1), classifying
Web table columns to semantic types in an Ontology (2), and
classifying the polarity of emotion in a tweet (3). All these
examples share the property that a classifier is deployed on
a very large dataset most of which is available in unlabeled
form at the time of evaluating the classifier, and labeled data
is scarce because human effort is required for labeling data.

In spite of the practical importance of the problem,
existing work on the topic is surprisingly limited. The
standard practice in classifier evaluation is to use a fixed
labeled test set to evaluate a classifier which is then deployed
for predictions on ’future’ instances. Can we improve this
process when the deployment set is available in unlabeled
form? The use of unlabeled data for learning a classifier
has received a lot of attention in the context of topics like
active learning, semi-supervised, and transductive learning.
However, the task of learning a classifier is very different
from the task of evaluating a given classifier. The only
existing work on selecting instances for evaluating a classi-
fier are: (4) which presents a new proposal distribution for
sampling, and (5; 6) which use stratified sampling (7). Both
these methods assume that the classifier C(x) is probabilistic
and their selection is based solely on the classifier’s Pr(y|x)
scores. Our focus is more general. We wish to evaluate the
accuracy of any classifier: be it a set of manually developed
rules, a learned generative model with uncalibrated Pr(y|x)
scores, or a non-probabilistic method like a decision tree —
none of these can be handled by the methods in (4; 5; 6).

Our method is founded on the principles of stratified
sampling like in (5; 6) but with important differences.
Instead of fixing a stratification, we learn a stratification in
terms of a generic feature space and the strategy evolves as
more data gets labeled. For stratifying data, we use hashing
instead of conventional clustering based approaches as the
latter do not scale well. We design a novel algorithm for
learning hash functions that cluster instances with similar
accuracies more effectively than existing learning techniques
for distance preserving hashing(8; 9; 10; 11; 12). Also, none
of the existing estimation methods consider the case where
the dataset D is so large that even a single sequential scan
over it will take hours. Our method is designed to perform
accuracy estimation and instance selection on D which can
only be accessed via an index.

Our experiments cover an interesting range of classifica-



tion tasks: table annotation, homepage and spam scoring of
Web pages, and DNA classification; and range in size from
0.3 million to 50 million instances. We achieve upto 62%
reduction in relative error over existing methods, and are
able to match within 0.5% the estimates of exact methods
based on full scan while sampling just 2500 instances from
indexed D.

The rest of the paper is organized as follows. We present
a formal statement of our problem and discuss existing
approaches in Section II. In Section III we present an
overview of our framework for active accuracy estimation.
In Section IV we present a novel algorithm for using the
labeled data to learn a stratification strategy. We empirically
evaluate our method and contrast with existing techniques
in Section V. In Section VI we present how we scale our
algorithm to the case where the unlabeled data D is very
large.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

We present a formal description of our problem and
discuss existing approaches for tackling it.

A. Problem statement

Given a classifier C(x), a large unlabeled dataset D =
x1, . . . ,xN , a function a(yi, C(xi)) 7→ R that measures the
accuracy of prediction C(xi) when the (unknown) true label
is yi, we define the true accuracy µ of C over D as

µ =
1

Z(D,C)

∑N

i=1
a(yi, C(xi)) (1)

where Z(D,C) is any normalizer that can be calculated
using only C and D and is independent of the unknown
yi. Many popular accuracy measures such as 0/1 accuracy,
square error, and precision can be expressed in this format
through appropriate choice of the a() and Z() functions.
We use ai for a(yi, C(xi)) when the context is clear and
overload N for Z(D,C) because it is the most common case
and it simplifies presentation. Our implementation handles
the general case and our experiments are over three kinds of
measures. We are given an initial labeled test set L that may
or may not be representative of D. Let n � N denote the
size of L. We are allowed to augment L with additional
instances selected sequentially from D and labeled by a
human oracle. Our problem is to select additional instances
to be labeled from D and provide an estimate µ̂ of the true
quantity µ such that for a fixed number of additional labels,
we minimize the square error (µ− µ̂)2.

We next present existing approaches for solving this task.

B. Simple baseline

A baseline method for selecting instances for labeling
and adding to L is sampling uniformly randomly from D.
Thereafter, the accuracy of the classifier is measured on L
using the standard method of averaging as:

µ̂R =
1

n

∑
i∈L

ai (2)

The square error of this estimate can be easily analyzed for
the case where the entire L is chosen uniformly randomly
from D. Since the choice of L is randomized, we analyze
the expectation of the square error (µ− µ̂R)2 over different
uniform samples L of size n. We denote this quantity as
Err(µ̂R). As shown in (7) and many other text books on
statistical sampling, its value is σ2

n where σ2 denotes the
variance of the ai values over D. Thus, the error of the
estimate is more when the accuracy values exhibit high
variance in D, and the error reduces inversely with the
size of the labeled set. We next discuss two techniques for
achieving smaller error for the same number of additional
instances labeled.

C. Stratified sampling

A simple idea to reduce the estimation error is to stratify
D into strata D1, . . . , DB such that within each stratum
the true variance in ai is likely to be small. Then perform
stratified sampling (7) where we first select a stratum based
on a policy to be discussed later in Section III and within
each stratum select instances uniformly randomly. Let Lb be
the set of labeled instances sampled in stratum b, nb be the
size of Lb, and µ̂b be the estimated accuracy measured over
Lb using straight averaging as in Equation 2. The estimated
accuracy is a weighted sum of accuracy in each stratum:

µ̂S =
∑B

b=1
pbµ̂b =

∑B

b=1
pb

1

nb

∑
i∈Lb

ai (3)

where pb denotes the fraction of instances in stratum Db.
Unlike the estimator µ̂R that is calculated on the basis of
only the labeled data L, the estimator µ̂S depends on both
the labeled data L (for estimating µ̂b) and the unlabeled data
D (for pb).

The expected square error Err(µ̂S) of this estimate can
be shown (7) to be

∑
b p

2
b
σ2
b

nb
. This means that if we can

somehow achieve perfect stratification such that within each
stratum all instances have the same accuracy, just one sample
from each stratum is sufficient to guarantee zero error! The
other extreme is where the variance of all stratum are the
same — in this case stratified sampling achieves the same
error as uniform sampling when nb ∝ pb. In all other cases,
the expected error of µ̂S is lower than µ̂R (7).

Therefore, the key to the success of this estimate is a
stratification strategy that puts instances with similar accu-
racy values in the same stratum. Two recently proposed
methods (5; 6) attempt to achieve this by assuming that
C(x) is probabilistic and its confidence score p̂(y|x) is
correlated with the accuracy of prediction y on x. They use
the prediction scores to stratify the data D into equal sized
bins. Thus, the goodness of this method totally hinges on
the reliability of these scores.

D. Proposal distribution

Another independently developed technique for selecting
instances is based on using a proposal distribution q(x) for



sampling instances (4). The accuracy over an L sampled via
q(x) is estimated as:

µ̂q =
1∑

i∈L
1

q(xi)

∑
i∈L

ai
q(xi)

(4)

Like in (5; 6), the classifier C(x) is assumed to be proba-
bilistic and capable of outputting reliable values for p̂(y|x).
These scores are used to define q(x) as:

q(x) ∝

√∫
(a(y, C(x))− µC)2p̂(y|x)dy (5)

where µC is 1
N

∑
x∈D

∫
a(y, C(x))p̂(y|x)dy. Although

the formula looks complicated, it can be easily derived by
solving for the value of q(x) that minimizes the expected
square error between µ̂q and µ, and then substituting p̂(y|x)
for the unknown true distribution Pr(y|x) and µC for the
unknown true accuracy µ (4) . Thus, the method is crucially
dependent on the goodness of these approximations.

E. Limitations of existing work

We highlight two limitations of the above two methods
that we seek to remove in our work.

First, since our goal is to evaluate arbitrary classifiers, we
want a method that does not so centrally depend on a single
p̂(y|x) score output by the classifier. As mentioned earlier,
our classifier might be a manually developed script, or a
non-probabilistic method like decision trees. Even for trained
probabilistic classifiers, a recent study (13) has shown that
most classifier families do not provide well calibrated scores.

Second, we are aware of no existing methods for handling
very large amounts of unlabeled data in the evaluation task.
Even methods that depend on a few sequential scans of the
whole data are not practical on such datasets. Our method
can use any available index partition of the unlabeled data
to avoid sequential scans as we elaborate in Section VI.

III. OUR APPROACH

The basis of our method is stratified sampling described
in Section II-C. The key steps in this method are: choose a
stratification strategy, use that to stratify the unlabeled data
D and labeled data L, estimate accuracy µ̂S using formula 3
on the stratified data, perform stratified sampling to select
more examples to label, label them, and add to L. This
process is continued in a loop.

The first challenge in the above process is choosing a
stratification strategy. As discussed earlier this approach is
better than random sampling only if the instances within a
stratum are homogeneous. Existing adaptation (5; 6) of this
process for the accuracy estimation problem, have assumed
a fixed stratification of data based on the classifier’s p̂(y|x)
values. In contrast, we learn a stratification strategy from
L and our stratification strategy constantly evolves as more
labeled data gets added. The second challenge is performing
these steps when D is so large that stratifying the entire D
is not practical. In the first part of the paper we concentrate

on learning the stratification strategy and in Section VI we
discuss how to manage the scalability challenge.

Algorithm 1 outlines the overall process. We next de-
scribe each of the steps in the algorithm.
Algorithm 1 Loop for active accuracy estimation

1: Input L,D, k,R,B
2: repeat
3: Learn stratification function h(f |w1...r) 7→ [1 . . . B]

if ≥ R instances added to L since last training.
4: Stratify L via h(.) & compute {µ̂b : 1 ≤ b ≤ B}
5: Stratify D via h(.) & compute {pb : 1 ≤ b ≤ B}
6: Display accuracy estimates: µ̂S =

∑
b pbµ̂b.

7: Stratified sample set L′ of k instances from D
8: For each xi ∈ L′, get label yi, and add (xi, yi) to L.
9: until accuracy µ̂S not converged and labeler not bored.

10: Return µ̂S

Learning stratification function: First, we use L to
learn to stratify D into B disjoint parts such that instances
within a stratum have similar accuracy values. We learn the
stratification in terms of a feature vector F(x, C(x)) defined
over an instance x and the result of applying the classifier
on x. Let d denote the number of features in this feature
vector. A component feature Fj(x, C(x)) (1 ≤ j ≤ d) is a
real-value representing either one of the original attributes
xj input to the classifier, or any score output by the classifier
(for example, its p̂(y|x) value if available), or the predicted
label itself or any other user-designed property like the
fraction of missing attributes in x and the prior probability
of the predicted label. In the rest of the paper we will use
fi to denote the feature vector F(xi, C(xi)).

Once we transform each instance to a point in a d
dimensional space, our problem can be recast as follows.
Given N points in d dimensional space, where a small subset
of size n of them are associated with an accuracy value ai,
partition the N points into B parts such that points in the
same part are likely to have similar accuracy values.

A standard technique to perform such partitioning is
supervised data clustering. The n labeled points are used to
learn a distance function (14; 15) on the d features so that
points with similar accuracy values have small distances in
the f space. This learned distance function is used to cluster
the N points into B parts using one of the many existing
clustering algorithms. However, such clustering approaches
do not scale well and in our setting, not only is N large, but
as we get more labeled points, the distance function learning
and clustering have to be repeated.

We instead propose to learn a hashing function using
L such that we can independently hash each instance in
D to one of B strata. This problem has recently gotten
prominence (8; 9; 10; 11) in machine learning, because of
the growing need to handle Web-scale data. Following the
practice in this literature, we model our hash function as a



concatenation of r = logB hash functions h1, . . . , hr such
that each hj(fi) maps an instance i to 0 or 1. A popular
choice for hj(f) is sign(wj .f) that maps an instance based
on the side1 of the hyperplane wj on which it lies in Rd. Let
w1...r denote the r hyperplanes w1, . . . ,wr. Our proposed
stratification function h(fi|w1...r) 7→ [1 . . . B] is then

h(fi|w1...r) =

r∑
j=1

2j−1sign(wj .fi) (6)

where sign(x) = 0 if x ≤ 0 and 1 otherwise. We will often
drop w1...r from h if the context makes it clear. Our task
now reduces to learning the parameters w1, . . . ,wr such
that instances with similar accuracy values have the same h
value. Section IV discusses how we solve this problem.

Estimating accuracy of a stratum: In step 4 of the
algorithm we use the labeled data to assign an estimate
µ̂b of the true accuracy µb in each stratum b. The straight-
forward estimate based on averaging accuracy of instances
in Lb is prone to overfitting. We therefore smooth these
estimates based on labeled data in neighboring buckets. Let
Ham(b, b′) denote the Hamming distance between the binary
representations of b and b′. The contribution of neighboring
buckets to the smoothing constant diminishes exponentially
with the Hamming distance with the neighbor. Let β denote
the exponential decay constant. Let n+b denotes the number
of instances with ai = 1 in b, Our smoothed estimate for
the accuracy of b is

µ̂b =
n+b + γ

∑r
d=1 β

d
∑
b′:Ham(b,b′)=d n

+
b′

nb + γ
∑r
d=1 β

d
∑
b′:Ham(b,b′)=d nb′

(7)

In the above equation, γ is another parameter that can
be used to control the relative importance of the observed
counts over the smoothing constant. We used γ = 5, and
β = 0.1 for our experiments. The method reduces to
Lidstone smoothing when β = 1. A second technique we
use to guard against over-fitting is to disjoint partition L
two-ways. Use one part for learning h() and the second part
for estimating µb within a stratum of h().

Estimating weight of each stratum: Next, we need to
find the fraction pb of instances from D that lie in each
stratum b. For this we need to hash partition D as per the
learned function h(f). With a single sequential pass over
the data we can assign each instance in D to a bucket b
and compute pb = 1

N

∑
i∈D[[h(fi) = b]]. Later in Section VI

when we present techniques for scaling our algorithm we
will discuss how this step can be performed without a full
scan on D.

Selecting instances for labeling: The optimal method
of sampling stratified data is to first select a bucket b with
probability proportional to pbσ̂b and then select an instance

1Without loss of generality we assume that the feature space includes
a constant feature so that we do not need to separately model the bias.

uniformly randomly within b (7). Once D has been hash
partitioned via the step above, the implementation of such
a sampling is easy. Later, in Section VI we show how to
perform this sampling without stratifying the entire D.

The above operations are performed in a loop until the
accuracy converges or until the labeling budget is exhausted.

IV. LEARNING HYPERPLANES

Our goal is to learn the r hyperplanes w1, . . . ,wr of
d dimensions each, used to parameterize our stratification
function h(f) as per Equation 6. We first characterize the
optimal objective for finding w1 . . .wr, then in Section IV-A
describe existing algorithms for solving such objectives, and
present our algorithm in Section IV-B.

The optimal w1...r is one which when used to stratify the
labeled data L and unlabeled data D minimizes the expected
square error of the estimated accuracy µ̂S . From Section II-C
we know that this error is

∑
b p

2
b
σ̂2

b

nb
where pb is the fraction

of D for which h(f |w1...r) = b, Lb is the subset of L for
which h(f |w1...r) = b, σ̂2

b is the estimated variance over Lb,
and nb is the size of Lb. For simplicity we assume that L
and D distribute in similar proportions over the strata, that
is, nb ∝ pb. This allows us to express the error in terms of
the labeled data L alone as

∑
b
nb

n2 σ̂
2
b . Further substituting

for the value of variance σ̂2
b , and a little bit of manipulation

we get the optimal values of w1...r as

wopt
1...r = argminw1...r

∑
b

E({i ∈ L : h(fi|w1...r) = b})

where E(S) =
∑
i,j∈S

(ai − aj)2

|S|
(8)

This expresses the objective in terms of the sum of square
differences in accuracy of pairs of instances within a stratum.
The main challenge in optimizing the objective is that the
sign function in h() is non-differentiable in w1...r. Even if
we upper bound the sign function with a smooth convex
function following the practice of classification algorithms,
the objective remains non-convex because multiple hyper-
planes have to be learned. However, by expressing the
objective in this term we can relate it to the recent exciting
research on learning distance preserving hash functions (8;
9; 10; 11). We will review the main techniques that have
been developed to tackle such objectives in this literature.

A. Review: Hash Function Learning

The existing techniques are all based on using different
smooth relaxations of the sign(·) function and different
strategies for incrementally solving the resultant smooth,
non-convex objective.

We first discuss a large margin technique proposed re-
cently in (12). This technique uses a hinge-like loss function
to penalize large Hamming distances between similar points
and small Hamming distances between dissimilar points.
The corresponding objective function is smoothed by a



piece-wise linear upper bound, much like in max-margin
structured learning (16). The resultant smooth, non-convex
objective is minimized using stochastic subgradient-descent.
The technique is appealing, but when we used it for our
problem of minimizing square distance between accuracies
of instances within a bucket, we got poor results. The local
minimas were so bad that the stochastic gradient optimizer
could not progress beyond the initial step with both random
and all-zero initialization of the w values.

We next turn to methods that attempt to learn the hash
hyperplanes through optimization strategies with better guar-
antee of progress. In (10) the hash-function is specified in
a kernel form and the parameters to be learned are the co-
efficients of these kernels. The objective continues to be
non-smooth and non-convex. The paper proposes to solve
it in a co-ordinate descent loop where each step optimally
solves for a single parameter keeping all others fixed. The
sequential hyperplane learning method of (11) smooths the
sign function with signed magnitude. The resultant objective
is solved by sequentially updating one hyperplane at a time
while keeping the others fixed. Under their relaxation, a
single hyperplane can be found optimally by the first Eigen
vector of a transformed data matrix. The paper then proposes
to re-weight misclassified pairs from previously learned
hyperplanes when learning the current hyperplane.

Our method also follows the policy of updating a sin-
gle hyperplane at a time as in (11), but we use a very
different strategy for smoothing the objective. All existing
hash function learning literature seek to approximate either
a Euclidean or a black box distance measure. Our distance
measure is over a scalar accuracy value, which in the
common case takes 0/1 values. We exploit this common case
to design a relaxation that is both more accurate and leads
to a more efficient algorithm.

We next present our algorithm for learning hash functions
that we call Signed Logistic Hashing.

B. Signed Logistic Hashing

We start with an initial set of hyperplanes, and update a
single hyperplane at a time on a re-weighted set of instances
until a local minima is reached. We first present a novel
algorithm for updating a single hyperplane and then present
our re-weighting strategies.

Let [wt
1, . . . ,w

t
r] denote the hyperplanes at time t when

we are trying to improve wt
j . Based on the fixed value

of the remaining hyperplanes, the training data L is hard
partitioned into B/2 groups Lt1, . . . , L

t
B/2. Using wj , our

goal is to bisect each group Ltk into two parts so that the
sum of the error over the new B buckets is minimized.
Accordingly we can rewrite objective 8 keeping all but wj

fixed as:

wopt
j = min

w

B/2∑
k=1

∑
s=0,1

E({i ∈ Ltk : sign(w · fi) = s}) (9)

For solving this objective we consider the common case
where accuracy values are binary. For binary values of ais,
E(S) = |S|fS(1 − fS) where fS denotes the fraction of
labeled instances i in S with ai = 1. Even for binary
values, the objective is non-differentiable and non-convex.
However, for this case, we propose a tractable upper bound.

Upper bounding objective 9: Let E(w, Ltk) denote the
part of objective 9 within the first summation over k. For
ease of notation we rewrite this term as

E(w, Ltk) = n1f1(1 − f1) + n0f0(1 − f0) (10)
where ns denotes the number of instances in Ltk with
sign(w · fi) = s and fs denotes the fraction of these
with a = 1. We next present a relaxation of the objec-
tive that allows us to harness the mature area of learning
binary classifiers under the loss regularization framework.
Let loss(ai,w · fi) denote a convex upper bound to the
0/1 loss [[sign(w · fi) 6= ai]] where [[z]] is 1 if z is true and
0 otherwise. Examples of such loss functions include the
popular Hinge loss and Logistic loss.

Theorem 4.1
E(w, Lk) ≤ min(

∑
i∈Lk

loss(1−ai,w·fi),
∑
i∈Lk

loss(ai,w·fi))

Proof:

E(w, Lk) = n1f1(1− f1) + n0f0(1− f0)
≤ min(n1f1 + n0(1− f0), n1(1− f1) + n0f0)

Consider the first term in the min. The number of instances
in i ∈ Lk with a = 1 and sign(w · fi) = 1 is n1f1 and with
a = 0 and sign(w · fi) = 0 is n0(1− f0). Their sum is the
0/1 loss [[sign(w · fi) 6= 1− ai]] which in turn is less than
loss(1− ai,w · fi). Similarly we can prove that the second
term in the min is less than loss(ai,w · fi).

The above theorem converts a non-smooth objective to
a minimum of two convex objectives. Also, it converts the
objective to a form that is additive over single instances
rather than over pairs of instances. This provides signifi-
cant benefits in terms of both running time and memory
requirements over existing hash learning methods. We next
elaborate on how we solve our relaxed objective.

Optimizing the upperbound: Intuitively, we are claim-
ing that within each group our goal is to use w to partition
the data into a positive and negative side. If we had just one
group it would not matter whether we use a = 1 to denote
the positive or negative side. But since we have multiple
groups, we need to allow each group to choose the side
which it wants to call positive. Our overall objective now is:

min
w

B/2∑
k=1

min(
∑
i∈Lk

loss(1− ai,w · fi),
∑
i∈Lk

loss(ai,w · fi))

(11)
We solve the above objective using a EM-like algorithm. If
for each group k, we knew zk a function on a that is either



the identity function (Pos(a) = a) or an inverting function
(Neg(a) = 1− a), we can solve this objective

min
w

∑B/2

k=1

∑
i∈Lk

loss(zk(ai),w · fi) (12)

using standard classification techniques. So, we start with
some initial guess of zk = Pos and find a w. For a fixed
w, we find the optimal zk for each group that minimizes
loss of that group, and continue until convergence to a local
minima as shown in Algorithm 2.
Algorithm 2 Signed Logistic Hashing

Input L, r
w0

1 · · ·w0
r = Initial hyperplanes

while estimated error reduces do
for j = 1 to r do
ui = calculated weight of instance i (Section IV-B).
zk =Pos for all B/2 groups of L
while objective improves do

wj = argminw

∑B/2
k=1

∑
i∈Lk

uiloss(zk(ai),w · fi)

zk = argminz=Pos,Neg
∑
i∈Lk

lossk(z(ai),wj · fi)

Initial hyperplanes: The initial set of hyperplanes are
chosen via a hierarchical partitioning of the data as follows.
Initially, the entire data is in a single group. We find the
hyperplane that partitions the group so as to minimize loss()
on the group. We then repeat the following in a loop B− 1
times. Find the largest m groups and for each group g invoke
the binary classifier to minimize loss() on g. Pick the best of
these m hyperplanes where best is calculated by summing
error over all current buckets in the data.

Weighting instances: We need to ensure that r hyper-
planes are as different from each other as possible. We
borrow ideas from boosting for re-weighting input instances
to achieve this effect. When learning hyperplane wj we re-
weight instances in each group Lk as follows. Let minor(Lk)
be the minority class in Lk and ek denote the fraction
of instances in i ∈ Lk for which ai = minor(Lk). We
interpret ek as the error incurred on Lk from the previous
set of hyperplanes that we seek to correct via wj . As in
Adaboost, we assign weights ui to each instance i ∈ Lk as
ui =

1−ek
ek

if ai = minor(Lk) else ui = 1. Since ek ≤ 1
2

by definition, this weighs the minority instances higher than
majority. Our strategy for re-weighting is similar in spirit to
re-weightings used in (11; 9) but one crucial difference is
that we re-weight instances and not instance pairs.

In summary, we have developed an algorithm for hash
function learning that solves for a single hyperplane at
a time using an algorithm that is a small extension of
the classification algorithms used in a loss-regularization
framework. Although in this section we have restricted to 0/1
values for accuracy, similar reductions to regression models
can be used to handle arbitrary real-valued accuracies. We
defer the details to an extended version of the paper.

V. EXPERIMENTS

We first present an overall comparison of our active
accuracy estimation method with other methods of selecting
instances and estimating accuracy discussed in Section II.
We then compare with different data stratification strategies
discussed in Section IV-A.

We selected the following set of five datasets covering a
wide spectrum of real-life classification tasks.
TableAnnote. Our first dataset is created out of a classi-
fication task to annotate columns of noisy Web tables to
one of the 250 thousand type nodes in an Ontology (17).
Our dataset (D) consists of 12 million Web table columns,
and a seed labeled set (L) of 541 table columns obtained
from authors of (17). For our experiments in this paper,
we needed true labels on all 12 million columns, which
was impractical. Therefore, we setup our evaluation task
as that of comparing two algorithms: one based on the
state-of-art graphical model algorithm of (17) and called
these true label, and second based on a ’classifier’ that
assigns a predicted label based on majority support. We
compared these on 0/1 accuracy. The accuracy on the seed
set was 56.4% whereas the accuracy of D was 16.5%. This
shows the significant editorial bias in selecting the seed
set. F(x, C) consisted of 42 features including numerical
properties of the column like percentage of text/number
cells, size, average width, and the type node in the Ontology,
and other features mentioned in (17). The majority rule
classifier had no explicit confidence score. To compare with
score-based methods, we trained prediction scores using a
Sigmoid function with the 0/1 accuracy values as the class
label and all 42 features as input.
Spam. This dataset from the LibSVM dataset collection2 is
for classifying Web pages as spam or not. The data consists
of 350,000 instances and 16 million features, which we
projected using random hyperplanes to 1000 following (18).
This dataset included true labels. The classifier evaluated
was a linear SVM trained on 5000 instances on LibSVM
with default parameters, and class weights inversely propor-
tional to the skew of the two classes in the train set. In this
data, a separate seed set was not naturally available. So, we
created one by simulating a committee-based active learning
process. We created a committee of k SVMs. (We chose
k = 7) by sampling a different labeled dataset for training
each SVM. We then sampled a seed set of 5000 instances by
weighting each instance by the disagreement in predictions
by the k SVMs. Since the dataset was highly skewed, we
evaluated a weighted accuracy measure on the dataset with
the weights of 0.1 and 0.9 for predicted majority class and
predicted minority class instances respectively. The classifier
scores used were the probability scores output by LibSVM.
DNA. This dataset from the Pascal Large Scale Learning

2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#webspam
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Figure 1: Absolute error (on the Y axis) of different estimation algorithms against increasing number of labeled instances
(on the X axis). The five graphs correspond to the five different datasets as shown in the graph’s title.

Challenge3 is for a binary DNA classification task. The data
consists of 50 million instances and 800 binary features.
Other details about the classifier, the seed selection, accuracy
measure, and scores used are the same as that of the Spam
dataset; only the sizes of training and seed data are 100K
instances each.
HomeGround and HomePredicted. The source of these
datasets is Yahoo!4. Each instance is a (entity, web page)
tuple and the classifier has to decide if the web page
was a homepage for the entity. F(x, C) consisted of 66
numerical features which includes ranking features, entity
match features and static web page features. The entire data
consisted of 14 million instances but an editorial process
selected and assigned labels only to 22 thousand of them.
The company used a gradient boosted decision tree (GBDT)
classifier for the task. We created two datasets out of this
source: the first called HomeGround was restricted to the
22 thousand with editorial label as true labels and GBDT
labels as predicted, the second called HomePredicted over
all 14 million with GBDT labels as true labels and the
output of a trained linear SVM as predicted labels. For
this task precision is more important than accuracy, so in
HomeGround only instances with predicted label true were
relevant. The final dataset had 514 points in training and
1060 in test. For HomePrediction, we retained all 14 million
instances for scalability experiments, therefore we measured
weighted accuracy as in Spam. This measure can be treated
as an approximation to precision because it gives more
importance to instances with predicted label 1 (minority
class).

In Table I we present a summary of the five datasets.

3ftp://largescale.ml.tu-berlin.de/largescale/dna/
4All experiments on these datasets were performed by A. Iyer at Yahoo!

Dataset # Size Accuracy (%)
Features Seed(L) Unlabeled(D) Seed(L) True(D)

TableAnnote 42 541 11,954,983 56.4 16.5
Spam 1000 5000 350,000 86.4 93.2
DNA 800 100,000 50,000,000 72.2 77.9
HomeGround 66 514 1060 50.4 32.8
HomePredicted 66 8658 13,951,053 83.2 93.9

Table I: Summary of Datasets

A. Overall comparison

We compare our overall algorithm of active evaluation
in Section III (Slogistic) with existing alternatives that we
discussed in Section II including,

1) Random sampling (Random)
2) Proposal sampling as in (4) (PropSample)
3) Stratified sampling with scores as in (5; 6) (ScoreBins)

All numbers are averaged over 10 random seeds and we
compare different methods on the absolute difference be-
tween the estimated and true accuracy. We set the default
number of strata to 16, that is, r = 4.

In Figure 1 we show the absolute difference in accuracy
estimates with increasing number of instances labeled. We
select k = 5 instances in one round, and restratify after 100
labels (R = 100). Every dot in the figure denotes the error
in estimated accuracy after the retraining. These graphs help
us make the following important observations:

1) The estimation error reduces significantly as we select
more instances from D and add to the labeled set L.
For some cases, example TableAnnote, the difference is
quite substantial going from 15% to less than 1% after
adding 1000 selected instances. This establishes the
practical importance of the problem we are addressing.

2) The best results are obtained with Slogistic. Even the
starting seed set error is lowest for Slogistic proving
that the stratified estimate µ̂S that uses both L and D
is more accurate than simple averaging using only L.

3) While stratified sampling based on scores (ScoreBins)



performs better than non-stratified methods like Ran-
dom and PropSample, ScoreBins is much worse than
Slogistic. This establishes the superiority of feature-
based learned stratification over classifier score based
stratification. The PropSample method is even worse
affected by unreliable scores because its accuracy esti-
mate does not involve D unlike the ScoreBins method.

4) Even when the initial accuracies are the same, as in
the HomePredicted dataset, with more labeled data
Slogistic performs much better than ScoreBins. This
establishes the importance of evolving the stratification
with increasing labeled data, instead of keeping it fixed
as in the ScoreBins method.

B. Evaluating stratification methods

We next compare our Signed Logistic algorithm (Slo-
gistic hash) for learning hyperplanes with two state-of-
art alternatives discussed in Section IV-A: the Sequential
projection method of (11) (SeqProj hash) and the Kernel-
based approach of (10) (BRE hash). For reference, we also
compare with simple averaging (NoStratify) and ScoreBins.

Figure 2 plots the absolute difference between the true
accuracy and estimated accuracy for different number of
hash bits and labeled data sizes. The experiments in this
section helped us make the following observations:

1) On all datasets and all combinations of training sizes
and hash bits, hyperplanes learned via the Slogistic
algorithm provide much better stratification than Se-
qProj hash. This shows that our relaxation based on the
logistic function that exploits the special nature of 0/1
accuracies is more effective than the signed magnitude
relaxation of SeqProj hash.

2) BRE hash is worse than SeqProj hash; this validates
the conclusions made in (11), and establishes that the
general strategy of solving for a single hyperplane at a
time is better than co-ordinate ascent methods.

3) Although we do not separately plot running times here
due to lack of space, we found that Slogistic was on
average 2 times faster than SeqProj hash and 3 times
faster than BRE Hash. The main reason is that the
objectives in these methods are defined in terms of pairs
of points unlike ours. The pairwise objective also blows
up the memory requirements of these methods; both of
which could not scale to our experiments on the DNA
dataset with more than 40000 points.

VI. SCALING UP OUR ALGORITHM

In this section we describe how we scale our entire accu-
racy estimation process (Algorithm 1) when the unlabeled
data D is very large. Since labeled data is expensive to
obtain, we assume that L is small and our learning algorithm
for h(f) is not a bottleneck. Unlabeled data is accessed in
two steps of Algorithm 1: First, in step 5 for calculating
the fraction pb of instances in each bucket b which in turn

are used to estimate accuracy in step 6. Second, in step 7
for selecting the k instances to be labeled. An exact method
for these steps requires a sequential scan over D every time
h(f) is retrained. An easy option is to replace D with a
smaller uniform sample of D. We will show that this option
is suboptimal compared to the methods we propose here.

We assume that the unlabeled data D is indexed so as to
partition the data into disjoint parts D1, . . . , DU where for
each partition u we can (a) get its size Nu in terms of number
of instances, and (b) generate a uniform random sample of
instances within the partition. All indexing strategies that
we are aware of can support these capabilities easily. In
Sections VI-A and VI-B we show how these capabilities
are exploited to intelligently sample from D, and in Sec-
tion VI-C we show empirically how effective they are in
approximating the exact method based on full scan.

A. Assigning bucket weights

We discuss how to sample D so as to accurately estimate
µ̂S defined in Equation 3. With a slight rewrite of that
equation, we express µ̂S as

µ̂S =
1

N

∑
i∈D

µ̂h(fi) (13)

Our goal is to approximate µ̂S without making a full pass
of D, which can be extremely large. If we use a uniform
random sample U from D to get an estimate µ̂SU =∑
i∈U µ̂h(fi)/m, the expected square difference between

µ̂SU and µ̂S can be shown to be
∑
b pb(µ̂b− µ̂S)2/m where

m is the size of sample U .
Is it possible to perform better than uniform random

sampling given the limited ways in which we can access
D? Instead of a uniform sample, suppose we get a sample
Q from a proposal distribution q(i) for i ∈ D and estimate
accuracy as:

µ̂Sq =
1

N

 1

m

∑
i∈Q

µ̂h(fi)

q(i)

 (14)

Without any restriction on the way unlabeled data can be
sampled, an optimal choice is q(i) ∝ µ̂h(fi). With this
choice, the error between µ̂Sq and µ̂S is zero. But, per-
forming this sampling is impossible without first assigning
each i ∈ D to a bucket of h(.), which is what we are trying
to avoid in the first place. The only q(i) we are allowed is
the one which assigns the same probability to all instances
i within a index partition Du of D. We next provide an
optimal choice of such a q(i).

Theorem 6.1 When q(i) is restricted so that all instances
within a partition Du are sampled with the same proba-
bility qu, the expected squared error between µ̂Sq and µ̂S
Eq
(
(µ̂Sq − µ̂S)2

)
is minimized when

qu ∝
√∑

b

µ̂2
bp(b|u) (15)

where p(b|u) is the fraction of i ∈ Du with h(fi) = b.



20%

25%

30%

35%

S
q

u
a

re
 e

rr
o

r

HomeGround

NoStratify ScoreBins SeqProj_hash BRE_hash Slogistic_hash

0%

5%

10%

15%

20%

2 5 7 2 5 7

250 500

S
q

u
a

re
 e

rr
o

r

Num bits

Train size

20%
25%
30%
35%
40%
45%
50%

S
q

u
a

re
 e

rr
o

r

TableAnnote
NoStratify ScoreBins SeqProj_hash BRE_hash Slogistic_hash

0%
5%

10%
15%
20%

2 5 7 2 5 7

250 541

S
q

u
a

re
 e

rr
o

r

Num bits

Train Size

4%
5%
6%
7%
8%
9%

S
q

u
a

re
 e

rr
o

r

Spam

NoStratify ScoreBins SeqProj_hash BRE_hash Slogistic_hash

0%
1%
2%
3%
4%

2 5 7 2 5 7

1500 5000

S
q

u
a

re
 e

rr
o

r

Num bits

Train size

6%

8%

10%

12%

14%

16%

S
q

u
a

re
 e

rr
o

r

HomePredicted

NoStratify ScoreBins SeqProj_hash BRE_hash Slogistic_hash

0%

2%

4%

6%

2 5 7 2 5 7 2 5 7

1000 1500 4000

S
q

u
a

re
 e

rr
o

r

Num bits

Train size

3%

4%

5%

6%

7%

S
q

u
a

re
 e

rr
o

r

DNA

NoStratify ScoreBins Slogistic_hash

0%

1%

2%

3%

2 5 7 2 5 7 2 5 7

40000 50000 60000

S
q

u
a

re
 e

rr
o

r

Num bits

Train size

Figure 2: Error of different stratification methods against increasing training sizes and for different number of bits. The
five methods compared: No-stratify, ScoreBins, SeqProj hash, BRE hash, Slogistic hash are presented in this order in each
group of bars. For the DNA dataset SeqProj hash and BRE hash could not be completed because of memory problems.

Proof:

Eq
(
(µ̂Sq − µ̂S)2

)
=

1

m
Eq

(
(
µ̂h(.)

Nq(.)
− µ̂S)2

)
=

1

m

∑
i

(
µ̂h(fi)

Nq(i)
− µ̂S)2q(i)

=
1

m

∑
u

∑
b

(
µ̂b
Nqu

− µ̂S)2p(b|u)puqu

In order to get a distribution we require Nqupu = 1 where
pu is the fraction of instances in data partition Du. The value
of pu = Nu

N is known to us exactly from the index. From the
last expression we get that Eq

(
(µ̂Sq − µ̂S)2

)
is minimized

by the following constrained objective:

min
q1,...,qU

∑
u

∑
b

µ̂2
b

qu
p(b|u)pu s.t.

∑
u

Npuqu = 1 (16)

This objective is convex in the q-s and can be solved in
closed form to get the optimal solution as in Equation 15.

To calculate qu we need an estimate of p(b|u). We use the
following strategy to obtain these estimates. Initially, we de-
pend on the labeled data and a small static sample to estimate
p(b|u). As the algorithm progresses and more instances are
sampled from any Du, we use these to continuously refine
p(b|u). We show empirically that in spite of depending on an
estimate of p(b|u), these values of qu do better than uniform
sampling.

B. Selecting instances

In this step we need to sample k instances from D such
that the probability g(i) of including sample i is proportional
to σ̂h(fi); and we have to do this without evaluating h(fi)
over each i ∈ D. Our only option is to use a proposal
distribution q(i) that is restricted to choose the same q(i)
for each i in data partition Du. Using q(i) we sample a

set S of size larger than k, and from S we sample the
k instances by weighting each instance as g(i)/q(i). The
sampling is efficient if q(i) is close to g(i). We find the best
q(i) by solving for the unlabeled bucket weights q1, . . . , qU
for which the expected L1 distance between g(i) and q(i) is
minimized. Under the restriction imposed on q(i), this goal
can be formulated as the following linear program:

min
q1,...,qU

∑
u

∑
b

pup(b|u)
∣∣∣∣ σ̂bZg − qu

∣∣∣∣ s.t.∑
u

Npuqu = 1

(17)
where Zg denotes the normalizer for the g(i) distribution
which we approximate as Zg =

∑
b σ̂b

∑
u pup(b|u). In the

above, | σ̂b

Zg
− qu| is the difference between the sampling

probability of an instance that belongs to Du and has h(f) =
b. The term pup(b|u) estimate the fraction of such instances.
Thus, the objective above estimates the L1 distance between
g(i) and q(i) under the constraint that the qu values define
a distribution. This objective can be easily solved as a linear
program using any off the shelf package.

C. Empirical evaluation

Here we show that with well-designed sampling methods
we can obtain accuracy estimates that are close to those
obtained via the exact method based on sequential scan while
reading orders of magnitude less data.

We perform these experiments on the three largest
datasets: TableAnnote, HomePredicted, and DNA from Sec-
tion V consisting of 12 million, 14 million, and 50 million
instances respectively. We created indices on each of the data
by hashing on a seven bit signature. The hyperplanes for the
signature were obtained by first projecting the data onto the
top-seven Eigen vectors of a sample of size 0.1 million from
the data D. Then sequentially we choose a hyperplane for
hashing by finding the bias and Eigen vector that achieves
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Figure 3: Comparing methods of sampling from indexed data
for estimating bucket weights

the greatest reduction in variance while achieving at least
a one-third/two-thirds split of the data. The data was thus
divided into 27 = 128 partitions. The maximum size of a
partition was 5% of the data showing a fairly good balance
among partitions.

We evaluate our method of sampling D for estimating
accuracy (discussed in Section VI-A) by comparing against
a baseline where a uniform random sample on D is used to
estimate pb. We measure error by comparing the estimated
accuracy with the estimate obtained via a full scan. In
Figure 3 we compare the two methods for varying budgets
on the number of instances to be sampled for each dataset.
We see that as the amount of data sampled is increased,
both estimates get closer to exact estimates from full scan.
With just 2500 sampled instances, the estimated accuracy
is within 0.5% of the optimal, and with 20,000 it is within
0.2%. Our method performs much better than uniform for
small sample sizes. As expected, the difference diminishes
as the sample size grows.

We performed similar experiments comparing our algo-
rithm for instance selection in Section VI-B with uniform
selection. Due to space limitations we cannot show those
graphs. These experiments also support the above finding
that that it is possible to perform stratified sampling on
indexed unlabeled datasets; and an intelligent sampling
strategy provides significant gains over uniform random
sampling.

VII. CONCLUSIONS

In this paper we addressed an important challenge arising
in real-life deployments of classification models — cali-
brating a classifier’s accuracy on large unlabeled datasets
given only a few labeled instances and a human labeler.
We proposed a method based on stratified sampling the-
ory that provides better estimates than straight averaging
and better selection of instances for labeling than random
sampling. We proposed a stratification method based on
hashing on r learned hyperplanes. We relate our problem to
the recent exciting literature on learning distance preserving
hash functions, and propose a novel formulation that leads
to an efficient learning algorithm. Experiments on a wide
spectrum of real datasets show that our estimates achieve
between 15% and 62% relative reduction in error compared

to existing approaches. We make our algorithm scalable by
proposing optimal sampling strategies for accessing indexed
unlabeled data directly. We show that our strategies achieve
close to optimal performance while reading three orders of
magnitude fewer instances on datasets of upto 50 million
instances.

Future work include estimating accuracy of structured
learning tasks such as sequential labeling where predicted
labels within a sequence are not i.i.d, and handling accuracy
measures like F1 where the denominator depends on the
unknown true label.
Acknowledgment: This work was partly supported by
research grants from the Indo-German Max Planck Centre
for Computer Science (IMPECS) and from Yahoo! Research.

REFERENCES

[1] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti,
“Collective annotation of wikipedia entities in web text,” in
SIGKDD, 2009.

[2] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu, “Recovering semantics of tables
on the web,” PVLDB, vol. 4, no. 9, 2011.

[3] D. Davidov, O. Tsur, and A. Rappoport, “Enhanced sentiment
learning using twitter hashtags and smileys,” in COLING
(Posters), 2010, pp. 241–249.

[4] C. Sawade, N. Landwehr, S. Bickel, and T. Scheffer, “Active
risk estimation,” in ICML, 2010.

[5] P. N. Bennett and V. R. Carvalho, “Online stratified sampling:
evaluating classifiers at web-scale,” in CIKM, 2010.

[6] G. Druck and A. McCallum, “Toward interactive training and
evaluation,” in CIKM, 2011.

[7] W. G. Cochran, Sampling Techniques, 3rd ed. Wiley, 1977.
[8] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in

NIPS, 2008.
[9] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Comple-

mentary hashing for approximate nearest neighbor search,” in
ICCV, 2011.

[10] B. Kulis and T. Darrell, “Learning to hash with binary
reconstructive embeddings,” in NIPS, 2009.

[11] J. Wang, S. Kumar, and S. Chang, “Sequential projection
learning for hashing with compact codes,” in ICML, 2010.

[12] M. Norouzi and D. Fleet, “Minimal loss hashing for compact
binary codes,” in ICML, 2011.

[13] A. Niculescu-Mizil and R. Caruana, “Predicting good proba-
bilities with supervised learning,” in ICML, 2005.

[14] K. Weinberger and L. Saul, “Fast solvers and efficient imple-
mentations for distance metric learning,” in ICML, 2008.

[15] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon,
“Information-theoretic metric learning,” in ICML, 2007.

[16] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun,
“Large margin methods for structured and interdependent
output variables,” JMLR, vol. 6, pp. 1453–1484, 2005.

[17] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and
searching web tables using entities, types and relationships,”
in VLDB, 2010.

[18] P. Li and A. C. König, “b-bit minwise hashing,” in WWW,
2010.


	Introduction
	Problem statement and existing solutions
	Problem statement
	Simple baseline
	Stratified sampling
	Proposal distribution
	Limitations of existing work

	Our approach
	Learning Hyperplanes
	Review: Hash Function Learning
	Signed Logistic Hashing

	Experiments
	Overall comparison
	Evaluating stratification methods

	Scaling up our algorithm
	Assigning bucket weights
	Selecting instances
	Empirical evaluation

	Conclusions

