
Efficient Inference on Sequence Segmentation Models

Sunita Sarawagi sunita@iitb.ac.in

IIT Bombay

Abstract

Sequence segmentation is a flexible and
highly accurate mechanism for modeling sev-
eral applications. Inference on segmentation
models involves dynamic programming com-
putations that in the worst case can be cubic
in the length of a sequence. In contrast, typ-
ical sequence labeling models require linear
time. We remove this limitation of segmenta-
tion models vis-a-vis sequential models by de-
signing a succinct representation of potentials
common across overlapping segments. We
exploit such potentials to design efficient in-
ference algorithms that are both analytically
shown to have a lower complexity and empir-
ically found to be comparable to sequential
models for typical extraction tasks.

1. Introduction

Sequence segmentation models form the core of sev-
eral applications including speech segmentation on
phoneme boundaries (Keshet et al., 2005), information
extraction (Sarawagi & Cohen, 2004), named entity
recognition (McDonald et al., 2005), syntactic chunk-
ing (DauméIII & Marcu, 2005), shallow parsing, pitch
accent prediction, and, protein/gene finding. Tradi-
tionally many of these applications have been artifi-
cially formulated as sequence labeling tasks at the ex-
pense of a loss of flexibility of features that can be
exploited. This limitation is partly addressed by ex-
panding the label set — for example, a popular choice
in named entity recognition tasks (NER) is the Begin-
Continue-End-Unique-other (BCEUO) encoding of en-
tity labels (Borthwick et al., 1998), and in syntactic
chunking tasks is the Begin-Inside-Outside (BIO) en-
coding of labels (Zhang et al., 2002). However, with
the increasing diversity of settings where many of the
applications are being deployed, it is imperative to ex-
ploit a richer variety of features than has been possible
by sequence models. Examples of such segment level

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

features for extraction tasks are: the whole entity has
an exact match in a database of entities, the length
of the entity is between 4 and 8 words, the third or
fourth token of the entity is a “-”, and the last three
tokens in the entity are digits.

Sequence segmentation models provide a direct and
natural way of encapsulating all such entity features.
Given an input sequence x = x1 . . . xn, a segmenta-
tion s of x consists of a sequence of variable length
segments s = 〈s1, . . . , sp〉 where each segment sj =
〈tj , uj , yj〉 consists of a start position tj , an end posi-
tion uj , and a label yj ∈ Y . Conceptually, a segment
means that the tag yj is given to all xi’s between i = tj
and i = uj , inclusive. Each segment sj can be asso-
ciated with a vector of features that captures the de-
pendence of its label on input properties in the neigh-
borhood of the segment and the label of the segment
before it. The goal during inference is to simultane-
ously find a segmentation of the input sequence and
label each segment so as to maximize the total score
over all segments.

The primary limitation of segmentation models com-
pared to sequence models is the increased compu-
tational overheads of inference tasks (DauméIII &
Marcu, 2005; Sarawagi & Cohen, 2004). The segmen-
tation problem has been cast in a number of learning
frameworks, including max-margin methods (McDon-
ald et al., 2005) and CRF-based conditional likelihood
methods (Sarawagi & Cohen, 2004). In all these dif-
ferent frameworks, there is a need to compute either
the most likely segmentation as in cutting plane meth-
ods (Tsochantaridis et al., 2005) or various marginal
probabilities as in likelihood methods and large mar-
gin methods optimized via exponentiated gradient al-
gorithms (Bartlett et al., 2005). Both these inference
problems are linear in the length n of the sequence for
sequential labeling models, but can be quadratic (and
is typically cube as we show in the paper) in n for seg-
mentation models. A practical solution is to limit the
maximum length of a segment by an a priori param-
eter L but even with such a choice, the training time
for segmentation models has been observed to be 3–
10 times worse than sequential models for extraction
applications.

Efficient Inference on Sequence Segmentation Models

In this paper we seek to remove this limitation. The
key insight we exploit is that most features are com-
mon across several overlapping segments. We propose
a representation of features where such overlap can
be compactly expressed. We then design inference al-
gorithms where the running time is proportional to
the number of features irrespective of how many seg-
ments a feature overlaps with. The algorithm pays the
penalty of the segmentation models only when there
are longer entity level features — when all the features
are traditional token-level features the running time is
the same as the standard Viterbi of sequence mod-
els. We achieve this without placing any hard limit on
the length of a sequence. Empirical results show that
with the new algorithm the running time for inference
in segmentation models can be reduced by almost an
order of magnitude. For typical information extrac-
tion models this makes the running time for training
likelihood-based segmentation models comparable to
that of sequential models while achieving higher accu-
racy because of the addition of a small, yet powerful
set of entity-level features.

2. Graphical Models for Segmentation

We partition the potentials of a segmentation model
into two types:

• Segment potentials θi:j(y) associated with a seg-
ment from i to j where all nodes from i to j have
the base label y. Such potentials can be expressed
in terms of features of an exponential model as
θi:j(y) = exp(

∑K
k=1 wkfk(x, i, j, y)) where wk de-

notes the weight parameter of feature fk.

• Transition potentials θi where an entry θi(y′, y)
denotes the potential for a segment starting at i
getting a label y when the previous segment is
labeled y′.

With these two types of potentials, the total score of
a segmentation s = 〈s1, . . . , sp〉 where each segment
sj = 〈tj , uj , yj〉 consists of a start position tj , an end
position uj , and a label yj ∈ Y can be expressed
as

∏p
j=1 θtj (yj−1, yj)θtj :uj (yj). During inference we

need to find the sum or max marginal of a segment
or edge potential. These inference problems can be
solved optimally in polynomial time using an exten-
sion of the forward/backward algorithm for sequence
labeling. The marginal probability of any segment po-
tential can be computed via forward α and backward
β messages which are expressed recursively as follows:

Let αi(y) denote the sum of scores over all segmen-
tations of the sequence between 1 to i where the last

segment has a label y.

αi(y) =
∑

max(i−L,1)≤i′≤i

∑
y′∈Y

αi′−1(y′)θi′(y′, y)θi′:i(y) (1)

where L, the maximum segment length is a parameter
of the learning algorithm. The running time of this
algorithm is O(nL2) where n is the input sequence
length. This is because there are O(nL) iterations and
each segment i′ : i requires O(i−i′) work in computing
the potential θi′:i.

Similarly, we can recursively compute the backward
messages βi(y) that denotes the sum of scores over all
segmentations of the sequence from i+1 to n with the
segment ending at i having label y.

These can be used to find the marginal for a segment
potential i′ : i labeled y as:

∑
y′ αi′−1(y′)θi′(y′, y)θi′:i(y)βi(y)

Z(x)

where Z(x) =
∑

y αn(y).

Thus, in O(nL2) time and two sets of messages of O(n)
length we can compute the marginal probability of any
potential in the segmentation model. Similarly, we can
find the most likely segmentation by replacing the two
outer sums by two max terms in Equation 1.

Empirically, for typical NER tasks, segmentations
models are found to require about 3–10 times the run-
ning time of sequential models. The value of the max-
imum length parameter L has to be chosen to be large
enough to cover the largest segment because it is a
hard limit on the length of the segment. Thus, for
extraction from short text snippets, for example, cita-
tion records, L becomes comparable to n to cover long
entities like “Titles”. This makes inference in segmen-
tation models cubic in the length of the sequence. We
next show how to address this shortcoming of segmen-
tation models.

3. Efficient Inference Algorithms

A key insight we employ is that potentials for seg-
mentations should be defined over a larger equivalence
class of segments rather than for a single segment. We
design a representation to express these equivalences
succinctly through four kinds of potentials.

• ψi′:≥i denotes potentials shared over all segments
starting at i′ but ending anywhere after or at i.

• ψ≤i′:i denotes potentials shared over all segments
ending at i but starting anywhere before or at i′.

Efficient Inference on Sequence Segmentation Models

• ψ≤i′:≥i denotes potentials shared over all seg-
ments starting before or at i′ and ending after
or at i.

• ψi′:i denotes the usual full-segment potentials
that apply to the exact segment between i′ and
i.

We show that in almost all applications of segmenta-
tions such kinds of potentials with varying levels of
overlap across segments is commonplace.

Named Entity Recognition NER tasks are typi-
cally encoded via a BCEU encoding of labels. We can
express all such potentials along with arbitrary other
entity features without having to commit to a fixed
encoding of labels. We list some examples of such po-
tentials:

• First two tokens of segment starting at i are “Prof.
Dr”: ψi:≥i+2

• Last three tokens of segment ending at i are “of
the ACM”: ψ≤i−3:i

• A segment of length l starting at i has high cosine
similarity to a lexicon entry: ψi:i+l−1

• Segment contains “the” and “the” is the i-th word
in x: ψ≤i:≥i

• The length of a segment starting at i is > k:
ψi:≥i+k

Syntactic chunking The set of features proposed
in (DauméIII & Marcu, 2005) for syntactic chunking
via segmentation also contains a mix of the four types
of segment potentials. We highlight some examples:

• The token at position i before the start of a chunk
is “it”: ψi+1:≥i+1.

• The second and third token of a chunk starting at
i− 1 are stop-words: ψi−1:≥i+1.

• The case pattern for a NP segment between tokens
i and i + 2 is three-caps:ψi:i+2.

Speech segmentation based on phoneme bound-
aries The input here is a sequence of frames and the
goal is to segment the frames along a fixed number of
phoneme boundaries. This can be treated as a segmen-
tation problem and as shown in (Keshet et al., 2005)
contains a variety of potential types as follows:

• Distance features between frames i − s and i + s
for s = 1, 2, 3, 4 for a phoneme segment starting
at i: ψi:≥i+s

• The classification scores for the frames between i′

and i being a phoneme: ψi′:i

Our goal next is to exploit the succinct form of po-
tentials to speed up the message passing algorithms

outlined in Section 2. Our new message passing al-
gorithms can run in time that in the worst case is
O(nm + H) where m is the largest gap between the
start and end boundary of potentials in that sequence
and is typically smaller than the largest length of a
segment and, H is the total number of potentials that
are fired for a sequence. Thus, for sequence labeling
tasks where m = 2, this will reduce to the standard
O(n) forward-backward algorithm, even though it can
potentially output segments much larger than 2. We
generalize this to the case of an arbitrary set of po-
tentials. The main challenge in designing an efficient
algorithm is that potentials could overlap in arbitrary
ways and we cannot afford to pass messages only along
transition edges as we did in Equation 1 with only full
segment potentials.

We first show how this is done for forward and back-
ward messages in Section 3.1. We then show in Sec-
tion 3.2 how to directly compute marginals over po-
tentials instead of summing over marginal probability
of all segments the potential overlaps with.

3.1. Forward and Backward Terms

Let θi′:i denote the product of all potentials appli-
cable to segment i′ : i; this can be expressed as
θi′:i =

∏
{ψuv : u = i′ ∨ u = (≤k), k ≥ i′, v = i ∨ v =

(≥j), j ≤ i}. For example, in Figure 1 we show various
potentials (as edges) for a sequence of length 9 where
an arrow at any of the ends of an edge denotes poten-
tials with open ends. Thus, the edge between nodes 3
and 5 denotes potential ψ3:≥5 whereas the two edges
between 4 and 7 denote the potential ψ≤4:≥7 for the
arrowed edge and ψ4:7 for the plain edge. For segment
4 : 7 the total potential θ4:7 = ψ4:≥5ψ4:7ψ≤4:≥7ψ≤6:7

Equation 1 for computing α values with no L restric-
tion can be written in matrix notation as:

αi =
∑
i′≤i

(αi′−1θi′) ∗ θi′:i (2)

where the symbol “*” denotes element-wise multipli-
cation of vectors of the same size. In the rest of the
paper, we will drop the “*” to reduce clutter and as-
sume it to be implicitly present when two vectors of
the same length abut.

Our goal is to reuse computations performed for αi−1

to reduce the number of terms summed over for com-
puting αi. For this we design a method for decompos-
ing the full segment potentials θi′:i as a′(i′, i − 1)a(i)
where a(i) is independent of i′ and a′ only involves
potentials with the end boundary at i − 1. We can-
not hope to achieve this in general for all i′ ≤ i − 1.
Therefore, we define a function A(i) such that for the

Efficient Inference on Sequence Segmentation Models

y1 y2 y3 y4 y5 y6 y7 y8 y9

0 0 1 1 1 3 5 5 8

1 3 7 7 8 9 10 10 10

Figure 1. Potentials for a sequence of length 9. Potentials
of the form ψj:≥i are represented with edges having an
arrow at i, potentials of the form ψ≤j:i are represented
with edges having an arrow at j and so on. The first row
of integers denotes A(i) values for each i and the second
row denotes the B(i) values for each i. In this case m=4.

reduced set i′ ≤ A(i− 1) such a decomposition exists.
We show how to design these functions.

Let A(i) be the maximum index j < i such that all
potentials that start before or at j end before i + 1.

A(i) = max j : ∀ψ`:k ` ≤ j ⇒ k ≤ i.

For the example in Figure 1 A(6) = 3, A(7) = A(8) = 5
and so on.

Let θi′:>i denote the product of potentials common
to all segments where the start boundary is i′ and end
boundary anywhere after i. Thus: θi′:>i−1 =

∏
{ψr:s :

r = i′ ∨ r = (≤j), j ≥ i′, s = (≥k), k ≤ i− 1}.

Let θi′:(>i−1→i) denote the product of potentials com-
mon to all segments that start at i′ and end at i but
not before i. That is, θi′:(>i−1→i) =

∏
{ψr:s : r =

i′ ∨ r = (≤j), j ≥ i′, s = i ∨ s = (≥i)}. Note,

θi′:i = θi′:>i−1θi′:(>i−1→i) (3)

From the definition of A(i− 1) we can claim that,

θi′:(>i−1→i) = θA(i−1):(>i−1→i) if i′ ≤ A(i− 1) (4)

Using equations 3 and 4, we can choose a(i) =
θA(i−1):(>i−1→i) and a′(i′, i − 1) = θi′:>i−1 and use
these to write the expression for αi that reuses com-
putations from αi−1 as follows: Let α̂i = αi−1θi and
α̂1 = 1. Equation 2 can be rewritten as

αi =
X

i′≤A(i−1)

α̂i′θi′:>i−1ai +
X

A(i−1)<i′≤i

α̂i′θi′:i

= αP
i−1ai +

X
A(i−1)<i′≤i

α̂i′θi′:i (5)

where αP
i−1 denotes the sum of scores over all possi-

ble segmentations of sequence from 1 to i where the
last segment’s start boundary is before or at A(i− 1)
and the end boundary after i − 1. We compute αP

i
recursively as:

αP
i =

αP

i−1a>i +
PA(i)

j=A(i−1)+1 α̂jθj:>i if A(i) > 0

0 if A(i) ≤ 0

where a>i is like ai except that we exclude potentials
where the end boundary is strictly at i.

Thus, by maintaining an additional set of n forward
terms denoting αP

i we are able to compute αi by sum-
ming over only i−A(i−1) terms instead of i−1 terms.
Note that i−A(i−1) ≤ m, the maximum gap between
the boundaries of any potential.

Example For the potentials in Figure 1 we show how
to compute α7 given A(6) = 3.

α7 = αP
6 a7 + α̂4θ4:7 + α̂5θ5:7 + α̂6θ6:7 (see Eq5)

= αP
6 ψ≤4:≥7ψ≤6:7 + α̂4ψ4:≥5ψ4:7ψ≤4:≥7ψ≤6:7 +

α̂5ψ≤6:7 + α̂6ψ≤6:7

Similarly, with A(7) = 5 we compute αP
7 as

αP
7 = αP

6 ψ≤4:≥7 + α̂4ψ4:≥5ψ≤4:≥7 + α̂5

Beta terms The backward message β, for segmen-
tation models is defined as

βi = θi+1

∑
i′>i

θi+1:i′βi′

The computation of the beta messages can be opti-
mized similarly to reuse terms from βi+1 in the com-
putation of βi. Accordingly, we define an index B(i)
such that for all i′ ≥ B(i) we can decompose θi:i′ as
b(i)b′(i + 1, i′) where b(i) is independent of i′ and b′

involves potentials not before i + 1.

Let B(i) be the smallest index j such that all potentials
that end after or at j do not have their start boundaries
before i, that is,

B(i) = min j : ∀ψ`:k k ≥ j ⇒ ` ≥ i.

The last row in Figure 1 shows B(.) values. For ex-
ample B(4) = 7 because there is no potential after
position 7 that starts before position 4.

Let θ<i+1:i′ denote the product of all potentials in seg-
ments that end at i′ but start anywhere to the left of
i + 1. That is, θ<i+1:i′ =

∏
{ψr:s : r = (≤k), k ≥

i + 1, s = i′ ∨ s = (≥j), j ≤ i′}

Let θ<i+1→i:i′ denote the product of all potentials
shared by segments ending at i′ and starting at i but
not after i. Thus, θ<i+1→i:i′ =

∏
{ψr:s : r = i ∨ r =

(≤i), s = i′ ∨ s = (≥j), j ≤ i′}. Thus,

θi:i′ = θ<i+1→i:i′θ<i+1:i′ (6)

The definition of B(i) implies that:

θ<i+1→i:i′ = θ<i+1→i:B(i+1) if i′ ≥ B(i + 1) (7)

Efficient Inference on Sequence Segmentation Models

Using equations 6 and 7 we can set b(i) =
θ<i+1→i:B(i+1) and b′(i + 1, i′) = θ<i+1:i′ to compute
βi without summing over all n− i as follows:

βi = θi+1(
X

B(i+2)>i′>i

θi+1:i′βi′ +
X

i′≥B(i+2)

bi+1θ<i+2:i′βi′)

= θi+1(
X

B(i+2)>i′>i

θi+1:i′βi′ + bi+1β
P
i+2) (8)

where βP
i =

∑
i′≥B(i) θ<i:i′βi′ , represents the sum

over all segmentations s where the first segment in s
starts before i and ends at or after position B(i). βP

i
is computed recursively as:

βP
i =

b<iβ

P
i+1 +

Pj=B(i+1)−1

j=B(i) θ<i:jβj if B(i) ≤ n

0 otherwise.

where b<i is like bi except that we exclude potentials
where the start boundary is strictly at i.

Most likely segmentation The computation of the
most likely segmentation can also optimized via two
dynamic programming equations similar to the two
equations for αi and αP

i above so as to compute the
maximum over at most m terms.

3.2. Computing Marginals around Potentials

The forward and backward messages can be combined
to compute the marginals for various potentials. For
normal segmentation models with potentials only of
the form ψs:e, this involves only O(1) computations
of the form α̂sθs:eβe. However, for potentials where
the segment start and end boundaries are not fixed,
computing the marginal for a potential of the form
ψ≤s:≥e could require summing O(n2) such terms. We
propose two ways to reduce the number of terms to
be summed over. First, we use tricks like in the com-
putation of α and β terms where we decompose po-
tentials and depend on a parallel set of αP and βP

terms. Second, we share computations across adja-
cent potentials. These two techniques together allow
us to compute each marginal in O(1) amortized time
per potential. In the following sections we will use µ
to denote un-normalized marginals i.e., the marginals
before the division by Z(x).

Potentials of the form ψ≤s:e For such potentials
the marginal µ≤s:e requires summing over s terms as
follows:

µ≤s:e =
∑
i′≤s

α̂i′θi′:eβe

We simplify this computation to reuse work across
multiple related marginals as follows:

µ≤s:e =
{
αP

e−1aeβe if A(e− 1) = s
µ≤(s−1):e + α̂sθs:eβe if A(e− 1) < s

The first case in the above equation follows from Equa-
tion 5 used to simplify the computation of α terms.
The second case is a simple recursion and shows how
we can reuse work in computing marginals of adjacent
potentials. By the definition of A(.) in Eq: 4, we know
that s > A(e − 1) and the case of A(e − 1) = s is a
base case of the recursion.

Potentials of the form ψs:≥e In this case
marginals require summing over n − e terms as fol-
lows:

µs:≥e = α̂s

∑
i≥e

θs:iβi

We simplify this computation so as to require summing
over no more than m terms as follows:

µs:≥e =
{
α̂sβ

P
s+1bs if B(s + 1) = e

µs:≥(e+1) + α̂sθs:eβe if B(s + 1) > e

Edge potentials also fall in this class except that we
need to restrict the previous label.

Potentials of the form ψ≤s:≥e In this case we need

µ≤s:≥e =
∑
i′≤s

α̂i′

∑
i≥e

θi′:iβi

We simplify this computation so as to not require sum-
ming over O(n2) terms as follows:

µ≤s:≥e =

µ≤s:≥(e+1) + µ≤s:e if B(s + 1) > e

(µ′(s− 1)b<s + α̂sbs)β
P
s+1 if B(s + 1) = e

where µ′(s − 1) = µ≤s−1,≥B(s)/β
P
s In the equation

above the first case is obvious. The second case where
B(s + 1) = e is derived next.

µ≤s:≥e =
X
i′≤s

α̂i′θ<s+1→i′:e

X
i≥e

θ<s+1:iβi (see Eq : 8)

=
X
i′≤s

α̂i′θ<s+1→i′:eβ
P
s+1

=
X
i′≤s

α̂i′θ<i′+1→i′:e

Y
i′<j≤s

θ<j+1→<j:e β
P
s+1

=
X
i′≤s

α̂i′bi′
Y

i′<j≤s

b<j β
P
s+1 (see Eq 7)

= ((µ≤s−1:≥B(s)/β
P
s)b<s + α̂sbs)β

P
s+1

It was tricky to get all the indices right in the above
algorithm. We verified correctness by testing1 that we
get the same results on a direct computation of all the
terms without such optimization.

1Be careful about using the following code – I’ve only
proven that it works, I haven’t tested it. Donald Knuth

Efficient Inference on Sequence Segmentation Models

Algorithm 1 Alphas(n,ψi′:≥i,ψ≤i′:i,ψ≤i′:≥i,ψi′:i, θi)
Initialize: α̂1 = 1, A(0) = 0
for i = 1 . . . n do

Initialize θ<i+1:i = 0,αi = 0,αP
i = 0

for i′ = i down to A(i− 1) + 1 do
Get θ<i′:i,θi′:i from θ<i′+1:i and ψs
αi = αi + α̂i′θi′:i

Compute A(i) from ψs
if A(i) > 0 then

Get θj:>i,θ<j:>i from θ<j:i with j = A(i− 1) + 1,
for j = A(i− 1) + 1 . . . A(i) do
αP

i = αP
i + α̂jθj:>i

Get θj+1:>i,θ<j+1:>i from θ<j:>i and ψs.
if A(i− 1) > 0 then

Get ai,a>i from a>i−1 and ψs.
αi = αi +αP

i−1ai

αP
i = αP

i +αP
i−1a>i

α̂i+1 = αiθi+1

3.3. Complexity Analysis

We show that the worst case complexity of inference
is O(nm + H) where m is the maximum span of any
potential and H is the total number of features ex-
pressed as potentials. Consider the computation of α
and αP terms via Equation 5. The maximum number
of terms summed over in each of the equations is m,
the maximum gap between end positions of any poten-
tial. This explains the O(nm) part. We explain the
O(H) part by showing that the θ-s can be computed in
such a way that if the same potential is applicable to k
adjacent segments the amount of work done is a con-
stant independent of k. For this we start from i′ = i
and decrease i′ and in each iteration compute θi′:i and
θ<i′:i from a previous computation of θ<i′+1:i. We
maintain the features in an efficient array-like struc-
ture such that for each i′ : i pair (there can be at most
nm of these) and for each of the four possible kinds of
potentials of the form ψ≤i′:≥i,ψ≤i′:i,ψi′:≥i,ψi′:i, we
can retrieve all applicable features in O(1) amortized
time. Then, θi′:i can be computed from θ<i′+1:i by
adding only the newly active features. We show how
to compute the forward α terms via efficient poten-
tial reuse in Algorithm 1. The computation of betas
is analogous.

In contrast, for the original algorithm the complexity
in the average case is O(nL+G) where L is a hard limit
on the maximum segment length and is expected to be
greater than m and G is the total number of features
fired over all segments. We show that O(G) = O(L2H)
in the presence of token-level features. For example,
consider a feature with the corresponding potential
of the form ψ≤s:≥s+`−1. This feature would be fired
(L − ` + 1)(L − ` + 2)/2 times since it overlaps with
that many segments. If all features were at the word-
level with ` = 1, then O(G) = O(L2H). In tasks like

title/journal name extraction from citations where L
is around 20 and several token-level features (like word
and regular expression patterns indicators) are mixed
with a few segment-level features (like match with a
dictionary), this can lead to enormous savings as we
see in the experimental section below. If we were to ex-
press complexity without involving the G and H terms
and assumed that we need to perform O(k) work to
find potential of a k length segment, we get O(nL2)
average case complexity for the old segmentation algo-
rithm, which is reduced to O(nm2) worst case for the
new algorithm.

The marginals µ can be computed in O(mn) time as
follows. All features are first sorted in increasing or-
der of their start boundary followed by a decreasing
order of their end boundary. The computation of µs
is done in the same order so that no storage needs to
be allocated for them and the compute cost of µ is
shared across all features with the same start and end
boundary.

4. Experiments

We compare the optimized segmentation model (Seg-
mentOpt) with the unoptimized model (Segment) and,
for reference, also with the popular sequential labeling
model with the begin-continue-end-unique (BCEU)
encoding of labels (SequenceBCEU). We train each of
these models to maximize the conditional likelihood
objective regularized with a Gaussian prior on the pa-
rameters.

Datasets: We compared on three different extrac-
tion tasks spanning eight labels. The Cora Journals
dataset is the popular Cora citations dataset (Peng &
McCallum, 2004) with two modifications: in the orig-
inal Cora dataset, all authors are combined in a single
label whereas we separate out individual authors, this
makes the extraction problem harder but more mean-
ingful and allows better exploitation of author name
lexicons. We subset to include only journals (163 in
all) to exploit journal and author names lexicons in
the publicly available DBLP database. We extract ti-
tle, authors and journal names. The Address corpus
consists of 395 home addresses of students in a ma-
jor university in a country with much less structure
to their addresses than typical US addresses. We con-
sidered extraction of city names and state names from
this corpus. For this dataset, we procured an exter-
nal dictionary of city names and state names obtained
from a postal database. The Articles dataset was cre-
ated by starting from 400 journal entries over all the
author’s .bib files collected over several years. The un-
structured records consisted of 100 citations obtained

Efficient Inference on Sequence Segmentation Models

Table 1. Comparing various methods on three IE tasks, with and without semi-Markov features. Column R is recall, P
is precision and Time refers to the total training and testing time in seconds. SegmentOpt abbreviates SegmentOpt and
Segment abbreviates Segment.

Markov features (m=1) Semi-Markov (m = 7, 20, 20)
dataset method R P F1 Time method R P F1 Time |G|/|H|
Address SequenceBCEU 81.8 84.6 83.1 397 Segment 88.6 89.6 89.0 1130 8261

SegmentOpt 85.5 87.9 86.5 292 SegmentOpt 88.4 89.9 89.1 342 2152
Articles SequenceBCEU 81.7 84.8 82.9 220 Segment 85.5 86.4 85.8 2241 130826

SegmentOpt 83.2 85.0 83.9 139 SegmentOpt 85.3 86.2 85.6 257 17015
Cora SequenceBCEU 90.9 90.7 90.8 696 Segment 91.7 89.7 90.7 3623 193921

SegmentOpt 91.4 89.9 90.6 557 SegmentOpt 91.6 89.7 90.6 800 21238

by searching Citeseer for citations of a random sub-
set of authors appearing in the Bibtex database. The
dataset is publicly available 2. We extracted individ-
ual author names, title and journal names. The main
difference between this and the Cora dataset is that
the lexicon has a greater overlap for this dataset.

Features: We used indicator features for the word
itself and various surface patterns (capturing capital-
ization, digit pattern and delimiters) at the word and
one position to its left and right. These features apply
on the start, end and in-between part of segments –
to get features equivalent to those in SequenceBCEU.
Transition features are used with a history size of 1.
These are all word-level features. The segment-level
features we added were length feature for each pos-
sible segment-length value and for each available ex-
ternal lexicon we added features corresponding to the
highest match with whole entities in the lexicon. We
used two similarity functions (TFIDF, and JaroWin-
kler) which are known to work well for name-matching
in data integration tasks (Cohen et al., 2003). For the
benefit of the sequence models we also added word
level dictionary match features using the same simi-
larity functions. Thus, we believe that an equivalent
set of features are available to the sequence and seg-
mentation models.

We measure F1 accuracy of classifying the entire field
correctly. The numbers are averaged over four random
selections of 30% of the data for training and the rest
for testing.

In Table 1 we compare SequenceBCEU with Segmen-
tOpt (without any segment-level features), and Seg-
ment with SegmentOpt both with segment level fea-
tures of maximum length 7 for the address data, and
20 for the other two. The numbers are averaged over
all extracted labels in the dataset. We observe that
F1 improves from 83 to 89 for the address data, 84 to
86 for Articles, and remains unchanged at 91 for the
Cora dataset. This supports the conclusions in earlier
work that segmentation models are better suited for

2http://www.it.iitb.ac.in/s̃unita/data/personalBib.tar.gz

extraction tasks. The running time of Segment is a
factor of 3–10 of SequenceBCEU. This shortcoming is
removed with SegmentOpt where we are able to get the
same accuracy advantage at the cost of only a factor
1–2 times higher running time compared to Sequence-
BCEU. Even with m of segment-level features as high
as 20, the running time is comparable to the time of
a sequence model. This gain is explained by the large
difference in the sizes of features fired per sequence as
shown in the last column. For example, the original set
of 193,921 feature firings are represented equivalently
as 21,238 feature firings (a factor of 10 reduction) with
the succinct representation.

The improvement in running time achieved by Seg-
mentOpt becomes more significant with increasing
training fraction as we show in Figure 2 where running
time for Segment increases sharply whereas Segmen-
tOpt stays close to SequenceBCEU.

In Table 2 we illustrate the penalty of picking a wrong
segment size L for Segment where we show F1 accu-
racy and running time with increasing segment size
(parameter L for Segment and m for SegmentOpt).
For a small segment size (10) in the Cora dataset ac-
curacy of Segment is only 81 whereas with a segment
size of 20 accuracy increases to 90.7, but this also dou-
bles the running time. In contrast, for SegmentOpt
accuracy remains steady around 90 and running time
increases by only 15%.

Discussion In these experiments, the training ob-
jective was maximizing conditional likelihood; this re-
quires marginal probabilities of potentials. We ex-
pect similar gains on max-margin methods trained
via the exponentiated gradient optimization meth-
ods (Bartlett et al., 2005) since they require the same
set of marginals. The training of max-margin methods
via cutting plane algorithms (McDonald et al., 2005;
Keshet et al., 2005; Tsochantaridis et al., 2005) that
require finding the highest scoring segmentations will
also show improvements, although we expect the gap
to be smaller. Recently, DauméIII and Marcu (2005)
propose a new structured learning framework where

Efficient Inference on Sequence Segmentation Models

Address

50

550

1050

1550

2050

2550

3050

0 10 20 30 40 50 60
Training %

Ti
m

e
(s

ec
on

ds
)

Sequence
SegmentOpt
Segment

Articles

50
2050
4050
6050
8050

10050
12050
14050

0 20 40 60 80
Training %

Ti
m

e
(s

ec
on

ds
)

Sequence
SegmentOpt
Segment

Cora

50
2050
4050
6050
8050

10050
12050

0 20 40 60 80
Training %

Ti
m

e
(s

ec
on

ds
)

Sequence
SegmentOpt
Segment

Figure 2. Running time against training set size for SequenceBCEU, Segment and SegmentOpt.

Table 2. Sensitiveness to segment size in the two semi-Markov models.
Articles Cora

Segment size → 10 15 20 25 10 15 20 25
F1 Segment 83.5 85.0 85.8 85.8 81.0 88.8 90.7 90.3

SegmentOpt 85.5 85.7 85.6 85.6 90.8 90.1 90.6 90.3
Time(s) Segment 1026 1810 2241 2698 1687 2771 3623 3813

SegmentOpt 175 245 257 260 712 767 800 781

the search for the best segmentation is integrated with
parameter training. Our main idea of defining poten-
tials over a larger equivalence class of segments and
the modified dynamic programming algorithm is also
applicable in this setting.

Concluding remarks Segmentation of sequences
provide a natural, flexible, and high-accuracy model-
ing of several applications. The main limitation to
their adoption vis-a-vis sequential models has been
increased computational cost of inference algorithms.
We removed this limitation by designing a compact
feature representation for the mix of token-level and
segment-level features in typical segmentation tasks,
and exploited these to design efficient inference al-
gorithms. The algorithm pays the penalty of entity-
level features only when needed and is comparable to
Viterbi on sequential models when entity features are
a small fraction of the total feature set. In addition,
there is no a priori hard limit on the maximum length
of a segment. In future we would like to generalize
to feature values that are continuous functions of the
distance from the segment boundaries, for example,
a feature that captures a Gaussian distribution on the
length of the segment. Another interesting future work
is generalizing to 2D segmentation models.

Acknowledgements The work reported here was
supported by research grants from Microsoft Research
and an IBM Faculty award.

References

Bartlett, P. L., Collins, M., Taskar, B., & McAllester, D.
(2005). Exponentiated gradient algorithms for large-
margin structured classification. In L. K. Saul, Y. Weiss
and L. Bottou (Eds.), Advances in neural information

processing systems 17, 113–120. Cambridge, MA: MIT
Press.

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R.
(1998). Exploiting diverse knowledge sources via maxi-
mum entropy in named entity recognition. Sixth Work-
shop on Very Large Corpora New Brunswick, New Jer-
sey. Association for Computational Linguistics..

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003). A
comparison of string distance metrics for name-matching
tasks. Proceedings of the IJCAI-2003 Workshop on In-
formation Integration on the Web (IIWeb-03). To ap-
pear.

DauméIII, H., & Marcu, D. (2005). Learning as search opti-
mization: approximate large margin methods for struc-
tured prediction. ICML ’05: Proceedings of the 22nd
international conference on Machine learning (pp. 169–
176).

Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2005).
Phoneme alignment using large margin techniques.
Workshop on the Advances in Structured Learning for
Text and Speech Processing, NIPS.

McDonald, R., Crammer, K., & Pereira, F. (2005). Flexi-
ble text segmentation with structured multilabel classi-
fication. Human Language Technology Conference Con-
ference on Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP).

Peng, F., & McCallum, A. (2004). Accurate information
extraction from research papers using conditional ran-
dom fields. HLT-NAACL (pp. 329–336).

Sarawagi, S., & Cohen, W. W. (2004). Semi-markov con-
ditional random fields for information extraction. NIPS.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research (JMLR), 6(Sep), 1453–1484.

Zhang, T., Damerau, F., & Johnson, D. (2002). Text
chunking based on a generalization of winnow. J. Mach.
Learn. Res., 2, 615–637.

