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Abstract

Efficient estimation of the maximum a priori
(MAP) assignment in large statistical rela-
tional networks still remains an open issue
in spite of the extensive research in this area.
We propose a novel method of exploiting top-
K MAP estimates from simpler subgraphs to
find an assignment that is either MAP opti-
mal, or has an associated bound on how far it
is from the optimal. Our method extends the
well-known tree reweighted max-product al-
gorithm (TRW) and is guaranteed to always
provide tighter upper bounds. Experiments
on synthetic and real data show that we are
able to the find the optimal in many more
cases than TRW, at significantly fewer itera-
tions and our bounds are much tighter than
those provided by TRW.

1. Introduction

Many applications of statistical relational learning give
rise to large and complex graphical models where
collective inference is useful (Jensen et al., 2004)
yet finding the optimum MAP labeling is challeng-
ing. Examples include, classification of hyperlinked
documents (Chakrabarti et al., 1998; Taskar, 2004;
Lu & Getoor, 2003), collective information extrac-
tion (Bunescu & Mooney, 2004; Finkel et al., 2005;
Wellner et al., 2004; Mansuri & Sarawagi, 2006), and
record linkage (Parag & Domingos, 2004; McCallum
& Wellner, 2003; Bilenko, 2004). The complexity of
estimating the MAP assignment on a graph with arbi-
trary dependency potentials is exponential in the size
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of the largest clique of the graph. In some cases it
is possible to exploit the special form of potentials to
design optimal MAP algorithms like the mincut al-
gorithm (Kolmogorov & Zabih, 2004) for associative
potentials and binary labels. In most other cases, var-
ious forms of the max-product belief propagation al-
gorithms is used to get an approximate assignment.
The belief propagation (BP) algorithm converges to
the optimal MAP assignment on trees and on graphs
with at most a single loop and a unique MAP (Wain-
wright et al., 2004; Weiss & Freeman, 2001). How-
ever, in the general case the basic BP algorithm may
not converge, and when it does, the maximum score
from the pseudo max-marginals might be unrelated
to the optimal. The tree reweighted max-product al-
gorithm (TRW) (Wainwright et al., 2005) is a vari-
ant of the BP algorithm that conceptually decomposes
the original potential as a convex combination of tree-
structured potentials. It then uses slightly modified
message passing steps to reach consensus amongst the
max-marginals of the tree edges. The algorithm can
provide an upper bound on the optimal score and this
bound is tight if and only if all trees agree on a MAP
assignment. However, there is no guarantee that such
an agreement will always be achieved. On termina-
tion we are left with the difficult problem of choosing
a good assignment. If the algorithm converges so that
the max-marginal beliefs are calibrated or a local op-
timum is detected via a weak tree agreement, then the
beliefs can be used to construct a good and sometimes
optimal solution (Meltzer et al., 2005; Kolmogorov &
Wainwright, 2005).

Our method is an enhancement of the TRW method
where we decompose the set of potentials into an ad-
ditive combination of potentials over edge sets. We
find the top K highest scoring assignments in each set
using a straightforward extension of the max-product
algorithm (Nilsson, 1998; Yanover & Weiss, 2003).
We then perform a rank aggregation operation (Fagin
et al., 2001) on the output assignments from each set
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to obtain an optimal MAP or improved bounds than
possible by TRW. The TRW method provides tight
bounds only when the trees agree on a MAP assign-
ment. In contrast, we dynamically compute bounds
from the rank aggregation step to detect an optimal
solution from the top K MAP assignments of trees.
This enables us to find tight bounds in many more
cases and in fewer iterations as we show in our exper-
imental results over synthetic and real graphs.

We also discuss how the ranked aggregation framework
can enable us to find the optimal MAP in some appli-
cations by combining the benefits of reparameteriza-
tion offered by belief propagation algorithms with the
guarantee of optimality offered by mincut algorithms
on associative potentials. We conclude with a listing
of open problems in this area.

2. Background: Markov Random Fields

We assume a graph G = (V,E) where nodes corre-
spond to output variables X1 . . .Xn and edges corre-
spond to pairs of interacting variables. Any MRF can
be expressed using pairwise potentials alone (Weiss &
Freeman, 2001). We use the notation of (Wainwright
et al., 2005) where φ is a vector of potentials defined
over elements of Xn = X1×X2 . . .Xn where each φα is
defined either over a single variable s ∈ V with a label
xs ∈ Xs or a variable pair (s, t) ∈ E with a label pair
(xs, xt) ∈ Xs × Xt. Thus, φ : Xn → Rd, where d de-
notes the dimensionality of φ. Let θ denote the vector
of parameters corresponding to the potential φ(). The
score of an assignment x ∈ Xn is

score(x) = 〈φ(x), θ〉 =
∑
α

θαφα(x)

The MAP estimation problem in a MRF is to find a
highest scoring assignment xmap ∈ Xn

xmap = argmax x∈Xn〈φ(x), θ〉

When G does not have any cycles, xmap can be found
in linear time using the well-known max-product be-
lief propagation algorithm (Pearl, 1988). For general
graphs with cycles and arbitrary potentials, the MAP
can be found optimally using the max-product algo-
rithm on a clique tree created from the triangulated
graph. The complexity of this algorithm is exponential
in the size of the largest clique in the graph. There-
fore, a number of approximate methods have been pro-
posed, most of which are variants of the belief propa-
gation algorithm but applied to general graphs with
cycles (Wainwright et al., 2005; Kolmogorov, 2004;
Pearl, 1988). Of these the various tree-reweighted be-
lief propagation algorithms (Wainwright et al., 2005;

Kolmogorov, 2004) provide upper bounds on the value
of MAP when they fail to find the optimal. Our goal
is to improve on these bounds.

The output of our algorithm is either a MAP as-
signment xmap or an approximate MAP assignment
x∗ along with a gap G such that 〈φ(xmap), θ〉 −
〈φ(x∗), θ〉 ≤ G.

3. MAP estimation via rank
aggregation

Let S1 . . . SL denote sets of collection of edges over
the MRF graph G such that each edge is included in
at least one set and all nodes are included in all sets.
In this section we will assume that each of the sets Si

defines a spanning tree over G. In Section 5 we discuss
generalizations to other cases.

We choose parameters θ(S1) . . . θ(SL) over the sets
such that the sum of these parameters are equivalent
to the given parameters θ̄ of G. Thus,∑

i

θ(Si) ≡ θ̄; θα(Si) = 0 ∀α 6∈ Si (1)

The equivalence of two sets of parameters θ1 and
θ2 means that ∀x, 〈φ(x), θ1〉 = 〈φ(x), θ2〉. A sim-
ple mechanism to ensure such equivalence is to set
θα(Si) = θ̄α

nα
∀α ∈ Si where nα is the number of sets

that contain α. The optimal choice of sets Si and pa-
rameters θ(Si) is an open problem (Wainwright et al.,
2005) 2

On each of the subsets Si we find a ranked list of as-
signments Ri = xi

1, . . .x
i
ki

and an upper bound ubi on
the maximum value of 〈φ(x), θ(Si)〉 over assignments
not in the list Ri. That is,

ubi ≥ max
x6∈Ri

〈φ(x), θ(Si)〉 (2)

Since each set Si is a spanning subset of the graph,
an assignment xi

j in each Ri is also a complete as-
signment of labels to all nodes in graph G. For
trees, it is easy to extend the max-product algo-
rithm to find the top K highest scoring assignments
in O(nK log(K + 1)) time (Nilsson, 1998). The value
of 〈φ(xi

K), θ(Si)〉 provides the upper bound ubi. Also,
for trees these bounds are tight in the sense that
ubi ≤ minx∈Ri

〈φ(x), θ(Si)〉.
2 (Wainwright et al., 2005) defines a similar decomposi-

tion over trees but they also have a parameter ρ to express
θ̄ as a convex combination over tree distribution. Given
the linear form of the MAP function, such a convex com-
bination is not strictly needed for any of our bounds, we
therefore do not use them to keep our notation simple.
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We evaluate the value of 〈φ(x), θ〉 for each assignment
x in the lists R = R1 ∪ . . . ∪ RL in a suitable order
that makes it more likely to find optimal assignments
earlier on. Some of the assignments could be common
across multiple lists. Let x∗ be the assignment with
the highest score. Thus,

x∗ = argmaxx∈R1∪...∪RL
〈φ(x), θ〉 (3)

Define the upper bound ub as
∑

i ubi.

Theorem 3.1. If 〈φ(x∗), θ〉 ≥ ub, then x∗ is MAP
optimal, otherwise 〈φ(xmap), θ〉 ≤ ub.

Proof.

〈φ(xmap), θ〉 = max(max
x6∈R

〈φ(x), θ〉,max
x∈R

〈φ(x), θ〉)

= max(max
x6∈R

〈φ(x), θ〉, 〈φ(x∗), θ〉)

We next prove that maxx6∈R 〈φ(x), θ〉 ≤ ub

max
x6∈R

〈φ(x), θ〉 = max
x6∈R

∑
i

〈φ(x), θ(Si)〉 (from 1)

≤
∑

i

max
x6∈Ri

〈φ(x), θ(Si)〉 (Ri ⊆ R)

≤
∑

i

ubi = ub (from 2)

Thus, 〈φ(xmap), θ〉 ≤ max(ub, 〈φ(x∗), θ〉) By def-
inition of MAP 〈φ(x∗), θ〉 ≤ 〈φ(xmap), θ〉. If
〈φ(x∗), θ〉 ≥ ub, then 〈φ(x∗), θ〉 = 〈φ(xmap), θ〉, oth-
erwise 〈φ(xmap), θ〉 ≤ max(ub, 〈φ(x∗), θ〉) = ub

Algorithm 1 shows our ranked aggregation algorithm
that returns an assignment x∗ and an upper bound
on gap between the scores of xmap and x∗. In this
algorithm, we allow the ranked assignments in Ri and
the bounds ubi to be refined incrementally rather than
instantiate all of Ri in advance. This form of lazy
evaluation allows for the possibility of generating fewer
than K assignments if an optimal is found before it.
We implemented an online version of the Top−K max-
product algorithm that does not require a fixed K to
be specified a priori and can incrementally find the
next highest scoring assignment. Another method of
reducing the number of assignments evaluated is to
order the lists such that lists that are likely to contain
the MAP are placed earlier in the ordering.

At this point it is useful to compare the above results
with the results in (Wainwright et al., 2005) which re-
lies on a similar decomposition of potentials over trees.
In (Wainwright et al., 2005) optimality is detected if
and only if all trees agree on a MAP assignment. For

the case of trees and with K = 1 we would detect op-
timality in exactly the same set of cases but our check
for optimality is faster since it does not require enu-
meration of all MAP assignments of a tree which in
degenerate cases can be quite large. However, as we
show in the experiments there are many cases where we
find the optimal solution even when the optimal is not
in the topmost position of any of the lists. This some-
times enables us to find the optimal even when the
belief propagation algorithm does not converge. Also,
the bounds we return are guaranteed to be tighter.
We can make the following additional claim about the
rank-aggregation algorithm.

Corollary 3.1. When an assignment appears in each
list Ri and the bounds ubi are tight, we are guaranteed
to return a xmap from R. However, it is not necessary
for the Ris to have a common assignment in order to
find a xmap.

Algorithm 1 Rank-aggregate(S1 . . . SL, θ)
Choose θ(Si) i = 1 . . . L: such that

∑
i θ(Si) ≡ θ

Ri,ubi: Ranked assignment lists and bounds from
each Si

while lists not exhausted do
i = index of first list with unseen assignments,
advance to next xi in Ri and get new ubi.
ub =

∑
i ubi

x∗=xi if x∗ uninitialized or 〈φ(xi), θ〉>〈φ(x∗), θ〉
if 〈φ(x∗), θ〉 ≥ ub then

x∗ is MAP optimal. return (x∗,0).
end if

end while
return (x∗, ub− 〈φ(x∗), θ〉).

3.1. Reparameterization

The chances of reaching agreement amongst trees in-
creases if we reparameterize the distribution so that
the new parameters reflect the (max) marginal prob-
ability of the respective node and edge assignments.
This makes it more likely that local modes from each
set will agree with global modes. All variants of
max-product belief propagation algorithms strive to
achieve such reparameterization (Wainwright et al.,
2005; Kolmogorov, 2004; Pearl, 1988). Of these the
tree reweighted algorithms (Kolmogorov, 2004; Wain-
wright et al., 2005) are better suited to reaching agree-
ment amongst a set of tree structured distributions.

Our final method is given in Algorithm 2. In each iter-
ation, we first invoke the rank aggregation algorithm
to find a MAP. If that fails, we apply one round of
reparameterization to get a new value of θ for which
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the value of 〈φ(x), θ〉 is equal to the old value. We
consider three different tree-based reparameterization
techniques as discussed in the next section.

Algorithm 2 Find-MAP(S1 . . . SL, θ̄)
θ1 = θ̄
for iterations n = 1, 2 . . . do

(x∗, gap) = Rank-aggregate(S1 . . . SL, θn)
if gap is 0, i.e., x∗ is optimal then

return (x∗, 0)
end if
θn+1 = reparameterize(θn, S1 . . . SL)
if θn same as θn+1 then

return (x∗,gap)
end if

end for

4. Experiments

We present empirical results of rank-aggregation over
some synthetic and real-data. We ran three vari-
ants of the reparameterization algorithm — the edge-
based (TRW-Edge) and tree-based (TRW-Tree) al-
gorithms discussed in (Wainwright et al., 2005) and
the sequential update algorithm (TRW-Sequential) de-
scribed in (Kolmogorov, 2004). Of these, only TRW-
Sequential is guaranteed to return monotonically de-
creasing bounds with every iteration and none of the
algorithms is guaranteed to converge to a zero gap and
give the global optimum. For TRW-Edge and TRW-
Tree, at all iterations, we returned the best of the top-1
tree assignments as the MAP assignment. This as-
signment will be the global optimum if tree-agreement
occurs. In the case of TRW-Sequential, we used the
greedy scheme discussed in (Kolmogorov, 2004) to ob-
tain the current estimate of the MAP assignment. In
our experiments we observed that this scheme is gener-
ally superior to the ”best of the best tree assignments”
approach.

In practice, TRW-Tree and TRW-Edge often suffer
from oscillations, so a damping parameter of 0.5 was
used in their update steps. For all the three variants,
we fixed the set of trees apriori.

Synthetic graphs: We generated 50 instances each
of 10 × 10 grids and 15-node cliques. The potentials
of these graphs correspond to the Ising model. The
cases where these potentials are attractive and mixed
were considered separately. The node potentials in
both the cases were chosen u.a.r. from [−1, 1]. For the
attractive case, edge potentials were chosen u.a.r. from
[0, 1], while for the mixed case, they were chosen from
[−0.5, 0.5].

For the grid graphs, we used two spanning trees —
one comprising of all rows and one column, and the
other comprising of all columns and one row. For the
15-node cliques, we used 15 spanning trees, each one
of which was a star rooted at a distinct node. Each
algorithm was run under a limit of 70 iterations and
for rank aggregation we chose K = 10.

Table 1 compares the proposed rank aggregation algo-
rithm with the three tree agreement algorithms that
detect optimality only when trees agree on a MAP.
Our results are averaged over 50 graphs in each fam-
ily. Some important observations:

• Rank-aggregation finds the optimal in many cases
where tree agreement cannot even after 70 itera-
tions, the exception being cliques with mixed po-
tentials, where no algorithm succeeds. The TRW-
Tree algorithm is the biggest beneficiary of Rank-
aggregation in almost all the cases.

• Rank-aggregation takes much fewer iterations to
find the optimal. For cliques with attractive po-
tentials, it always succeeds without any need for
reparameterization. Even in the other cases, it
takes just 50-70% of the iterations required by the
tree-agreement algorithms. Although rank aggre-
gation takes slightly longer per iteration in finding
the top-K rather than just the top-1 assignment,
the reduced number of iterations more than pays
off for the extra time.

• Whenever rank-aggregation fails, the gap is sig-
nificantly lower than that obtained by either of
the tree-agreement algorithms.3 For example, in
cliques with mixed potentials the average gap of
TRW-Sequential is reduced from 15.5 to 12.4.
The results also confirm that in many cases, the
MAP assignment may not be top-1 assignment for
any tree. Hence, we observe higher average MAP
scores returned by top-K in the case of failures.
The difference is substantial in the case of cliques
with mixed potentials (e.g. 9.7 vs 12.8 in TRW-
Edge).

• The performance of TRW-Sequential is clearly su-
perior to the other two tree-algorithms. However,
here too, rank-aggregation further provides a sig-
nificant improvement, mainly by greatly reducing
the gap returned in the case of failures and cut-
ting down the number of iterations required. In

3In some cases, like TRW-Edge over grids with mixed
potentials, it may appear that the gap worsens with
rank-aggregation. However, if we average only over the
cases where top-K fails, then the gap reduces with rank-
aggregation.
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TRW-Tree TRW-Edge TRW-Sequential
Family TreeAgree RankAgg TreeAgree RankAgg TreeAgree RankAgg
Grid 0 (-) 0 (-,-) 30 (16) 38 (15,7) 50 (9) 50 (7,6)

(Attr.) 50 (25.8,93.9) 50 (23.8,95.5) 20 (1.8,96.2) 12 (1.6,96.7) 0 (-,-) 0 (-,-)
Grid 30 (17) 37 (12,8) 32 (13) 40 (10,6) 39 (8) 43 (6,6)

(Mixed) 20 (0.6,61.8) 13 (0.5,61.5) 18 (0.7,61.8) 10 (0.7,61.4) 11 (0.8,60.8) 7 (0.7,61.2)
Clique 15 (2) 50 (1,2) 50 (13) 50 (1,2) 50 (2) 50 (1,2)
(Attr.) 35 (8.6,54.2) 0 (-,-) 0 (-,-) 0 (-,-) 0 (-,-) 0 (-,-)
Clique 0 (-) 0 (-,-) 0 (-) 0 (-,-) 0 (-) 0 (-,-)

(Mixed) 50 (22.7,8.9) 50 (17.2,11.5) 50 (16.7,9.7) 50 (12.3,12.8) 50 (15.5,10.9) 50 (12.4,13.0)

Table 1. : Comparing rank aggregation with the algorithms of (Wainwright et al., 2005) and (Kolmogorov, 2004) over
synthetic data. In each cell, first row contains number of successes out of 50 (with average number of iterations (I) and
K at which best found) and the second row contains number of failures out of 50 (along with the average gap G and
average MAP score).

the specific case of TRW-Sequential, this improve-
ment comes at an almost negligible price because
the cost of finding the top-K and doing rank-
aggregation is miniscule as compared to the much
more expensive reparameterization step.
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Figure 1. Comparison of Rank Aggregation with TRW-
Sequential on (a) aggregate of 10 grids (b) aggregate of
10 cliques with mixed potentials. The curves plot the av-
erage gap vs the number of iterations. Figures (c) and (d)
plot the gap for one random instance of each family.

To compare the effectiveness of the best reparameteri-
zation algorithm, TRW-Sequential, vis-a-vis Rank Ag-
gregation, we looked at the gap values obtained by the
two approaches. In Figure 1, we plot the gap aver-

TRW-Edge TRW-Sequential
TreeAgree RankAgg TreeAgree RankAgg

48 (18) 61 (13,6) 59 (13) 61 (8,6)
18 (0.5,-0.9) 5 (0.5,-1.1) 7 (2.9,-3.3) 5 (0.5,-1.1)

(1.0,-1.3) (1.6,-1.8)

Table 2. : Rank aggregation over real-life data. The table
should be interpreted like Table 1. The third row for top-1
contains failure statistics only for those cases where top-K
also fails.

aged over ten random instances each of a clique and
a grid-graph with mixed potentials. We plot the evo-
lution of the gap with the number of iterations. For
grid-graphs, TRW-Sequential does not take too long to
converge to the same gap values (in these cases, zero)
as Rank Aggregation, but for cliques, the difference
becomes significant. Here, it suffers from wide oscil-
lations and non-monotonicity, as also depicted in the
case of a random clique instance in Figure 1(d). Since
the bounds returned by TRW-Sequential are always
monotonically decreasing, such anomalous behavior
can only be attributed to the MAP assignment selec-
tion scheme. Rank Aggregation, on the other hand,
smoothes out this behavior by choosing its MAP from
a pool of potentially very good solutions.

Real-life data: We looked at constrained inferenc-
ing in the context of segmenting and labeling biblio-
graphic data. The dataset had 66 records and 24 la-
bels. These labels were obtained via a Begin-Continue-
End-Unique encoding of six labels — TITLE, AU-
THOR, JOURNAL, YEAR, PAGE NUMBER and
OTHER. The record size varied between 4 and 28
words, with an average size of 11. Our aim was to
compute the best segmentation and labeling of each
record, while not repeating the TITLE, JOURNAL,
YEAR and PAGE NUMBER labels inside a record.
We enforced this by adding edge potentials of −∞ for
every label pair begin-label and end-label for each la-
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bel with uniqueness constraints. Consequently, our
linear chain model became a clique in the presence of
constraints and exact inference was thus intractable.
Similar to the synthetic datasets, we report statistics
for TRW-Edge and TRW-Sequential, averaged over all
the records.

Table 2 shows that Rank Aggregation leads to a
marked improvement over using just top-1. Even in
cases where it fails to find the optimum, Rank Ag-
gregation reduces the gap by upto 70% and reports a
much better MAP score than top-1 (ref. third row of
Table 2). In successful cases too, Rank Aggregation
takes much fewer iterations to report the MAP than
top-1.

Tree Selection

As mentioned in (Kolmogorov, 2004) and (Wainwright
et al., 2005), the twin issues of tree-selection and tree-
parameter selection are important problems in them-
selves. Here, we illustrate the effect of tree-selection on
the performance of TRW-Edge and TRW-Sequential
over our synthetic dataset, with and without rank-
aggregation. We tried two tree-selection approaches:
(a) The default set of trees used in the first experiment
and (b) Trees selected by keeping strongly correlated
edges intact. For this, we ran ordinary belief propa-
gation on the graph and computed the pseudo max-
marginals. Using these, the approximate mutual in-
formation (MI) was computed for all pairs of adjacent
vertices. MI was used as edge weights and we con-
structed maximum-weight spanning trees using these
edge weights. The edges that were covered in a tree
had their weights halved and we kept on choosing trees
till all edges were covered by atleast one tree.

Table 3 shows the effect of tree selection. It is clear
that no single tree-selection scheme can perform well
for all kinds of graphs. For example, in the TRW-
Edge scenario, the default tree selection scheme pro-
vides better gaps for cliques and better MAP-scores
for grids. The MI-based scheme behaves in the com-
plementary manner and also leads to more successes
for grids.

Thus it remains an open issue to dynamically choose
a set of relevant tree-selection criteria by looking at
graph properties like sparsity, associativity, correlation
between labels etc.

5. Discussion

The framework of the rank aggregation algorithm does
not require individual sets Si to be trees. We just
require that each set of edges Si return (1) a list Ri of

high scoring assignments, and (2) an upper bound on
the scores of assignments not in the list. For improving
the final bounds our goal is to make each set the largest
possible for which it is still possible to efficiently find
the above quantities. We discuss one important case
where this is possible.

When potentials on all edges are associative and la-
bels are binary, MAP estimation corresponds to the
optimization of a submodular function. Such func-
tions can be optimized in polynomial time over arbi-
trary graphs with cycles, for example using the mincut
algorithm (Kolmogorov & Zabih, 2004). In applica-
tions like collective inference for information extrac-
tion (Bunescu & Mooney, 2004; Finkel et al., 2005),
image co-segmentation (Rother et al., 2006) and cre-
ation of digital tapestries (Rother et al., 2005) often
there is a large collection of such associative edges
mixed with other non-associative edges. We create a
set Si of the associative edges and use trees to cover
the non-associative edges possibly mixed with associa-
tive edges. If the best mincut solution appears in the
ranked lists from the trees then we are guaranteed to
find an optimal solution based on Corollary 3.1, al-
though not necessarily the one returned by mincut.
Since it is not expensive to find top K assignments in
trees, we can afford to choose a relatively large value
of K.

We list other areas for further discussion and investi-
gation

• Deciding how to distribute the graph potentials
over the individual sets: Since we can detect op-
timality without requiring the trees to agree on
an assignment it is unclear if tree-based reparam-
eterization is the best method of distributing po-
tentials of the graph over the trees.

• Choosing an order of exploring sets so as to reduce
the number of assignments evaluated: This issue
will be particularly important when finding the
next highest scoring assignment is not cheap, for
example when using mincuts of graphs.

• Extending the rank aggregation framework to
constrained inference: In applications like infor-
mation extraction, the basic MRF is a simple
chain, but in the presence of constraints (for ex-
ample, constraints on the cardinality of labels) the
graph becomes complete. In such cases, we are in-
vestigating methods of dynamically choosing trees
out of constrained edges only when violations are
detected.

Note that constraints can also be handled via the
Integer Linear Programming (ILP) framework,
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TRW-Edge TRW-Sequential
Graph TreeSelection TreeAgree RankAgg TreeAgree RankAgg

Default 32 (13) 40 (10,6) 39 (8) 43 (6,6)
Grid 18 (0.7,61.8) 10 (0.7,61.4) 11 (0.8,60.8) 7 (0.7,61.2)

(Mixed) MI-based 37 (13) 44 (7,5) 39 (4) 44 (3,4)
13 (0.6,61.4) 6 (0.7,61.0) 11 (1.0,60.7) 6 (0.4,61.2)

Default 0 (-) 0 (-,-) 0 (-) 0 (-,-)
Clique 50 (16.7,9.7) 50 (12.3,12.8) 50 (15.5,10.9) 50 (12.4,13.0)

(Mixed) MI-based 0 (-) 0 (-,-) 0 (-) 0 (-,-)
50 (18.3,10.5) 50 (12.2,13.3) 50 (15.2,11.2) 50 (10.3,14.1)

Table 3. : Comparing tree selection schemes and their effects on rank-aggregation. The cell entries should be interpreted
in the same way as Table 1.

such as illustrated in (Roth & tau Yih, 2005).
However, the quality of the ILP solution is heav-
ily dependent on the LP relaxation and rounding
mechanism, which in turn are sensitive to the na-
ture of constraints. Also, the Rank-aggregation
naturally generalizes to retrieving the top-K so-
lutions rather than the top-1, which is not possible
to do within the ILP framework. Lastly, the ILP
machinery may be too expensive in the scenario
where we are only interested in quickly computing
a bound on the optimum and not the MAP itself.
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