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Abstract
Classification is a well-established operation in text mining.
Given a set of labels A and a set DA of training documents
tagged with these labels, a classifier learns to assign labels
to unlabeled test documents. Suppose we also had available
a different set of labels B, together with a set of documents
DB marked with labels from B. If A and B have
some semantic overlap, can the availability of DB help
us build a better classifier for A, and vice versa? We
answer this question in the affirmative by proposing cross-
training : a new approach to semi-supervised learning in
presence of multiple label sets. We give distributional
and discriminative algorithms for cross-training and show,
through extensive experiments, that cross-training can
discover and exploit probabilistic relations between two
taxonomies for more accurate classification.

Categories and subject descriptors: I.2.6 [Artificial
intelligence]: Learning; I.5.2 [Pattern Recognition]:
Design Methodology - classifier design and evaluation

Keywords: Semi-supervised multi-task learning,
Document classification, EM, Support Vector Machines.

1 Introduction
Document classification is a well-established area of text
mining. A document classifier is first trained using
documents with preassigned labels or classes picked from
a set of labels, which we call the taxonomy or catalog. Once
the classifier is trained, it is offered test documents for
which it must guess the best label/s. Depending on the
application, the label may correspond to a broad topic (e.g.,
a topic in the Yahoo! directory), a product category, or a
user’s personal taste in books, CDs, or Web sites.

Support Vector Machines (SVMs) [8], nearest-neighbor
classifiers [19], maximum entropy classifiers [14], and naive
Bayes (NB) classifiers [13] are some of the commonly used
document classifiers.

If all content creators and users agreed on a single
catalog of universal labels, text classification could also help
tag content with unambiguous semantic annotations. The
Web, however, has evolved without central editorship. It
is unclear if universal standards will emerge outside specific
application segments, and even for those segments, there is
a need to consolidate legacy data into content organized as
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per the agreed-upon standards. These standards, moreover,
are far from static.

A few examples will illustrate the current scenario.
An e-commerce site which consolidates catalogs of goods
and services may want to organize them according to
the (still evolving) codes being developed in cooperation
between ECCMA and UNSPSC (see http://www.eccma.

org/unspsc/). Meanwhile, vendors may have their own
custom/legacy codes which generally evolve over time.

As another example, consider Yahoo! and Dmoz.
Both cover the Web and have evolved to similar
taxonomies, but show non-trivial differences. Among
other artifacts, taxonomy inversion is rampant in the
Regional categories; what one calls Reference.Education.
Colleges_and_Universities.Asia.India, the other might
call Regional.Asia.India.Education; in fact, they some-
times coexist in the same taxonomy! Other relationships
are also common: Dmoz.Recreation.Outdoors.Speleology

overlaps Yahoo.Recreation.Outdoors.Caving, but there
are important non-overlapping sub-topics.

Given that documents are inherently a conglomeration
of concepts, we believe that mappings between content-
based taxonomies will be complex, uncertain and noisy.
Therefore, text searching, ranking, and mining tools must
exploit any available relationships, even probabilistic ones,
between diverse meta-data standards.

Our contributions: We introduce a general semi-
supervised learning framework called cross-training which
can exploit knowledge about label assignments in one
taxonomy B to make better inferences about label
assignments in another taxonomy A. Cross-training
generalizes several existing classification algorithms, while
also comparing favorably with their accuracy on a host of
related applications. Apart from increased classification
accuracy, the benefits include a better understanding of
probabilistic relationships between taxonomies, and more
experience with encoding heterogeneous features for learning
algorithms.

We propose two cross-training algorithms. One uses
Expectation Maximization (EM) [5]. The other uses
Support Vector Machines [16, 7, 8]. Through a detailed
experimental study using real-life and semi-synthetic data
from Yahoo! and Dmoz, we show that cross-training is
decisively better than the best classifier we could induce on
A or B alone. Neither of our approaches dominates the other
across all data sets. Cross-training also compares favorably
with one recent algorithm [1] for mapping taxonomies, as
well as an earlier classification algorithm which could exploit
a pool of unlabeled documents [15].

Cross-training is related to multi-task learning [18, 4],
but quite different from co-training [3]. We will discuss these
and other related work in §6. The connection between cross-
training and supervised learning with discrete/categorical
attributes is discussed in §7.



Outline: We start with a formal definition of the cross-
training problem in §2, and then present the two major
classes of cross-training algorithms in §3 and §4. We conduct
a detailed experimental evaluation of the accuracy of various
algorithms in §5, review related work in §6, and make
concluding remarks in §7.

2 Problem setting and terminology
Like most recent text classifiers, our system models each
document as a bag (multi-set) of words. Term t occurs n(d, t)
times in document d. In contrast with prior work, there
are two sets of class labels A and B. A document can be
associated with a pair of labels (cA, cB) where cA ∈ A and
cB ∈ B. We will also denote these labels, for a specific
document d, as cA(d) and cB(d).

Flat taxonomy assumption: In our setting, a taxonomy
is a flat set of class labels. We apologize for continuing to use
the term “taxonomy” which connotes hierarchical relations
between concepts or topics. Generalizing our approach to
that setting is left for future work.

Owing to the dichotomy of labels, training and testing
processes must be defined more carefully than in standard
document classification. There are two distinct learning
scenarios, which we discuss separately.

2.1 Mapping half-labeled documents

The mapping problem can arise in a e-commerce setting
where catalogs of goods and services of one site need to be
integrated with those of another site. A could represent
the target taxonomy, and B the taxonomy used at the data
source.

A training document has exactly one of cA(d) and cB(d)
known; we call such documents half-labeled. The system
trains on half-labeled documents. During deployment, a new
document comes with exactly one of the labels known, and
the system has to estimate the missing label.

For benchmarking, we use a test set which is fully-
labeled, and hide each label in turn, comparing the hidden
label with the system’s guess. The accuracy of the system
is the fraction of documents that it assigns to the correct
hidden label. Thus, mapping is a symmetric scenario.

DA (respectively, DB) is the set of documents with A-
labels (respectively, B-labels), and DA −DB and DB −DA
are the half-labeled instances available to an algorithm.
DA ∩DB is used for testing the algorithm.

Validation and tuning: As in earlier work [1], we will
(sometimes) assume that some fraction of fully-labeled data
can be sampled and made available to the system to help it
tune its parameters and validate its models. This is called
the tuneset. Typically, the available set of fully-labeled
documents is partitioned into a tuneset and a test set,
the tuneset used to fine-tune the system’s models and
parameters, and the test set used to evaluate the system.
This split is done randomly, many times, and the average
accuracy is reported. (The above discussion may hint that
the tuneset ought to be a small portion of the fully-labeled
data, but in earlier work [1] large tunesets have been used.
We report experiments with both choices, to make a fair
comparison.)

2.2 Classifying zero-label documents

Several personal bookmark managers [11, 9] need to train
document classifiers on bookmarks organized into personal

topic directories (say, B) with the intent of mapping
subsequently visited pages to those topics. Because
bookmarking and annotation takes effort, people bookmark
far fewer pages than they visit.

Nigam et al. [15] showed that if training data is scarce,
a pool of unlabeled documents can be used to induce
more accurate classifiers. (We discuss their method in
§3.1.2.) Unlabeled documents are plentiful and easy to
collect. Extending Nigam et al.’s work, we note that
plentiful labeled data is available as well, e.g., from Web
topic taxonomies. The catch is that those taxonomies (say,
A) may differ substantially from the target taxonomy—
exactly the situation we are setting out to address. We wish
to evaluate if the additional label data can be exploited to
improve our accuracy further.

Evaluation: As with mapping, training documents are
half-labeled but one taxonomy, say A, has significantly more
documents than B and the goal is to improve the B classifier
using A-labeled documents. In contrast, each test document
d has only one label (say from B) and even that is hidden
from the system. The system must guess cB(d). Accuracy
is defined as before. We call this the “zero-label” setting.

3 Distributional cross-training
Distributional classifiers fit a generative model to the
training data, and use this model to predict labels for test
cases. E.g., a naive Bayes (NB) classifier posits that a
document is generated by first fixing a label by invoking
a (typically multinomial) prior distribution on labels, and
then creating the document by invoking a term (feature)
distribution conditioned on the label just chosen. In the
next subsection, we discuss two settings with this generative
framework: completely supervised and partially supervised
learning of a single label. Then we propose our main
algorithms for learning label-pairs.

3.1 Preliminaries

3.1.1 Naive Bayes (NB)

In NB classification for a single taxonomy with label set C,

Pr(c|d) =
Pr(c, d)

Pr(d)
=

Pr(c) Pr(d|c)
Pr(d)

(1)

∝ Pr(c) Pr(d|c) ∝ πc
∏
t∈d θ

n(d,t)
c,t ,

where c ∈ C is the label, d is the test document, t occurs
n(d, t) times in d, πc is the fraction of documents tagged
c (also called the prior probability of c), and θc,t are
multinomial probability parameters [13, 1], estimated from
training documents as

θc,t =
λ+
∑

d∈Dc
n(d,t)∑

τ∈T

(
λ+
∑

d∈Dc
n(d,τ)

) , (2)

where T is the vocabulary or feature set, Dc is the set of
training documents marked with label c, and 0 < λ ≤ 1 is
the Lidstone’s smoothing parameter [17] (λ = 1 corresponds
to the well-known Laplace’s smoothing). Having estimated
model parameters from training data, the goal is to find the
best class arg maxc Pr(c) Pr(d|c) for test documents.

3.1.2 Expectation maximization (EM1D)

The NB classifier needs each training document to be
marked with one label. Can we make use of additional
documents with no label information (such as the test



documents themselves) or partial label information (e.g.,
that a document was generated from one among a restricted
subset of labels)?

A classic approach to estimating distributions over
missing values is Expectation Maximization (EM) [5].
Nigam et al. [15] use EM to induce a document classifier
starting from a few labeled and many unlabeled documents
(Figure 1). Because this algorithm is designed for only one
label set, we will call it EM1D.

1: Use labeled documents to induce a naive Bayes classifier
with parameters Θ

2: while model Θ has not stabilized to satisfaction do
3: set up new model parameters Θ′

4: collect contributions from labeled documents to Θ′

5: for each unlabeled document d do
6: E-step: calculate the class probabilities Pr(c|d,Θ)

based on current parameters
7: M-step: if term t occurs n(d, t) times in d, let d

“contribute” a fractional term count of Pr(c|d)n(d, t)
to the next estimate θ′c,t

8: end for
9: Re-estimate new cluster model parameters Θ′

10: Θ← Θ′

11: end while

Figure 1: Using standard EM (“EM1D”) for semi-supervised
learning of document labels.

3.2 EM2D: Cross-trained naive Bayes

We extend Nigam et al.’s EM algorithm to EM2D by
creating a 2d grid of class labels taken from the product
set C = A × B. We assume a standard mixture model [5]
for document generation. First the label pair (cA, cB) is
picked with probability Pr(cA, cB), and then a conditional
term distribution Pr(d|cA, cB) is sampled to generate the
document. Thus,

Pr(d) = Pr(cA, cB) Pr(d|cA, cB). (3)

We assume the term distribution to be multinomial,
extending parameters θc,t to θcA,cB ,t. Likewise, parameters
πcA,cB express the prior probability of a document being
generated from label-pair (cA, cB).

Thus, each document belongs to exactly one cell of this
grid1. However, in the mapping scenario (§2.1) each training
document comes with exactly one label, which determines
either the row or the column where the training document
belongs, but not both. Thus, each document d identifies
a subset Cd ⊂ C to which it potentially belongs, and for
γ 6∈ Cd, we are given that Pr(γ|d) = 0. We force this
constraint in the E-step shown in Figure 1, limiting the
contributions from a training document to its correct row
or column, and scaling the E-variables to add up to 1 over
the row or column.

3.2.1 Initialization

The EM algorithm [5] guarantees only a locally optimum
solution to the E and M variables. It is important to start
the iterations from a reasonably good initial estimate of Θ.
In EM2D, we have two resources at our disposal to achieve
good initialization.

The first option is to train two naive Bayes classifiers on
DA −DB and DB −DA (see §2.1 for their definition), and

1It is possible that a document belongs to more than one class in
a single taxonomy; handling such cases is left to future work.
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Figure 2: Design and evaluation of EM2D.

derive guessed B-labels for DA −DB and guessed A-labels
for DB − DA. The basic naive Bayes classifiers also help
us (via random 70%/30% train/validate splits) to choose an
initial number of features (in decreasing order of information
gain) and an initial value of the Lidstone parameter λ in
equation (2). These initial steps are shown near the top of
Figure 2.

The second option is to use the tuneset of fully-labeled
documents to seed the initial Θ distribution. However, the
tuneset is generally rather small. Using only the tuneset
would generally fail to populate all the cells of the label grid
adequately. It is probably best to use both options in the
rare case that fully-labeled data is available.

3.2.2 Update rules

Suppose a training document d has α = cA(d) known but
cB(d) unknown. Then

∑
cB

Pr(α, cB |d,Θ) = 1. Using the

standard multinomial model in equation (1), we can write

Pr(α, cB |d,Θ) =
πα,cB

∏
t∈d

θ
n(d,t)
α,cB,t∑

β
πα,β

∏
t∈d

θ
n(d,t)
α,β,t

. (4)

This completes the specification of the E-step, although
some care is required to preserve numerical precision. For
the M-step, we set

π′α,β =
1

|D|

[ ∑
d:cA(d)=α

Pr(α, β|d,Θ)

+
∑

d:cB(d)=β
Pr(α, β|d,Θ)

]
, (5)

which is simply the expected fraction of documents
occupying label cell (α, β). Likewise, we set

θ′α,β,t =

[
λ+

∑
d:cA(d)=α

n(d, t) Pr(α, β|d,Θ)

+
∑

d:cB(d)=β
n(d, t) Pr(α, β|d,Θ)

]
∑

τ

[
λ+

∑
d:cA(d)=α

n(d, τ) Pr(α, β|d,Θ)

+
∑

d:cB(d)=β
n(d, τ) Pr(α, β|d,Θ)

]
(6)

This expression closely resembles equation (2), except that
again, contributions to term counts are weighted by the



probability of each document occupying label cell (α, β), like
in step 7 of Figure 1.

Damping: In the EM2D setup, different documents
have different quality and extent of label information.
Tuneset documents plug into exactly one known (α, β) slot
and presumably have the most reliable label information.
Training documents have one label pinned by human input,
which is assumed to be reliable, but the other label is not as
reliable. In the zero-label setting (§2.2), test documents have
neither label known, but may still help the classifier gain
accuracy by participating in the EM iterations “completely
floating” over the label grid.

In the update equations above, we have given one vote
to each document. However, it is common [15] to use a
damping factor L ≤ 1 to scale down the contribution of
documents whose labels we consider less reliable. It is as
though a fully-labeled document is worth one vote, but a
singly labeled document is worth only L = 0.5, say. Thus,
L can be thought of as an instance scaling mechanism like
in boosting. It does not invalidate the theory of EM in any
way. The best value of L can be set by cross-validation.

Early stopping: The NB generative model is a very
crude approximation to reality. Therefore, maximizing
data likelihood using EM may not improve classification
accuracy in all cases. It is common to use a tuneset to stop
EM iterations in case classification accuracy over (cross-)
validation data is found to drop [15].

3.2.3 Deployment

The half-label setting is simple. Given a test document
d with cA = α known, we simply find Pr(α, cB |d) for all
candidates cB , and report the best. The zero-label setting
gives us at least two distinct options: EM2D with guesses
and EM2D with model aggregation.

EM2D with guesses (EM2D-G): To classify to target
taxonomy B, we first apply an A-classifier to the test
document. The guessed A-label now lets us deal with the
zero-label test instance as if it were a mapping problem.
Obviously, we should use the best possible A-classifier.

EM2D model aggregation (EM2D-D): After EM2D
iterations are over, we use the final values of the E-variables
to prepare a new classifier for target taxonomy B. More
specifically, each training document d ∈ DA − DB has
associated E-values Pr(cB |d, cA). Just like in EM, we let d
“contribute” its term counts in proportion to this probability
to label cB . Documents in DB contribute fully to their
respective labels in B. The resulting “aggregated” classifier
for B is used to classify test instances.

3.3 Stratified EM1D

If EM2D improves upon the accuracy of single-taxonomy
learners, that could be attributed to multiple reasons. Let
B be the target taxonomy in this discussion. The mapping
of A-labeled documents to B may improve simply because
of the extra documents in DA − DB , not because these
documents are A-labeled. Whether this is the case can be
easily determined by calibrating EM2D against EM1D (run
with B as target labels) with the documents in DA − DB
thrown in as unlabeled documents.

Between EM1D and EM2D there are options which let
us use the A-labels, but in ways simpler than EM2D. E.g.,
we can set up an EM1D instance for each α ∈ A. The

B-labeled documents are shared across all such instances.
A-labeled documents bearing the label α become unlabeled
documents for the instance corresponding to α. The pseudo-
code is shown in Figure 3. We call this Stratified-EM.

1: for each label α ∈ A do
2: train a B classifier Θα using EM1D with DB −DA

as the labeled set and {d ∈ DA −DB |cA(d) = α} as
the unlabeled set.

3: end for
4: for each test document labeled (cA, ?) do
5: use the EM1D model ΘcA to predict cB
6: end for

Figure 3: Stratified EM to exploit A-labels while classifying
for B.

If EM2D beats both EM1D and Stratified-EM, we can
conclude that the mutual “corrections” of term distributions
in EM2D are somehow vital to its higher accuracy.

4 Discriminative cross-training
The classifiers discussed thus far aim to fit a class-
conditional generative distribution Pr(d|c) (or Pr(d|cA, cB)),
and use Bayes rule to estimate Pr(c|d) (or Pr(cA|d, cB) etc.).
In contrast, discriminative classifiers seek to directly fit a
regression function from the document to scores for label(s).

In this section we will discuss cross-training using two
discriminative classifiers. The first (new) approach uses
Support Vector Machines (SVMs), which have been reported
to do well for text data [7]. The second (prior) approach [1]
combines distributional and discriminative aspects.

4.1 SVM-based cross-training

Linear SVMs: Suppose we are given a vector represen-
tation of n documents. Each vector has a component for
each feature (in our case, a term) which is proportional
to the number of times the term occurs in the document2.
Document vectors are usually scaled to unit L2 norm. Each
document vector is associated with one of two labels, +1
or −1. The training data is thus {(di, ci), i = 1, . . . , n}, c ∈
{−1,+1}.

A linear SVM finds a vector w and a scalar constant b
such that for all i, ci(w · di + b) ≥ 1, and ‖w‖ is minimized.
This optimization corresponds to fitting the thickest possible
slab between the positive (c = +1) and negative (c = −1)
documents. In case the training samples are not linearly
separable, it is possible to trade off the slab width for the
number of misclassified training instances.

If the data has more than two labels, it is common to
create an ensemble of yes/no SVMs, one for each label.
During training, a document marked c is a positive example
for the SVM associated with c, and a negative example for
all other SVMs. This is called the “one-vs-rest” ensemble
approach. During testing, for a test document d, each SVM
evaluates its regression function; the SVM corresponding
to label c evaluates wc · d + bc. The label chosen is
arg maxc(wc · d+ bc) (other policies can also be used).

Inducing a SVM classifier involves a complex, iterative
numerical optimization. Several implementations of SVM
are publicly available, including Sequential Minimum
Optimization (SMO) [16, 7] and SVMlight [8].

2SVMs have been commonly used on the standard TFIDF
representation. We used both TF and TFIDF representations scaled
to unit norm and found similar results.



Cross-training SVMs: If A-labels are good predictors
of B-labels, one way to enhance a purely text-based SVM
learner for B is to allocate, over and above a column for each
token in the training vocabulary, |A| extra columns, one for
each label in A. A document d ∈ DB − DA is submitted
to a text-based SVM ensemble for A, called S(A, 0), which
gives it a score wcA · d+ bcA for each class cA ∈ A.

These scores can be inserted into the |A| new columns,
either as-is, or after some simple transformation, such as
taking the sign of the score, or converting the largest score
to +1 and the rest to 0 or −1 (we use the latter option in
our experiments), and scaling ordinary term attributes by a
factor of f(0 ≤ f ≤ 1) and scaling these label attributes by a
factor of 1− f . Document vectors are always scaled to unit
L2 norm.

The parameter f , which can be chosen through cross-
validation on a tuneset, decides the relative importance of
label and term attributes. We evaluated f from 0 to 1 in
steps of 0.05 and set f = 0.95. These cross-trained SVMs
are denoted by SVM-CT.
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Figure 4: Data flow diagram for cross-training SVMs.

Documents in DB − DA thus get a new vector
representation with |T | + |A| columns where |T | is the
number of term features. They also have a supervised B
label. These are now used to train a new SVM ensemble
S(B, 1). The document tables and how they are used
to train and test SVMs are shown in Figure 4. We can
obviously repeat the process iteratively in a ping-pong
manner, each classifier providing synthetic columns for the
other. The complete pseudo-code is shown in Figure 5.

Our experiments show that SVM-CT does outperform
SVM, making effective use of the label attributes (although
there is little improvement beyond the first ping-pong
round). SVM-CT is also better than the distributional cross-
training methods in about half the cases. SVM (which uses
text alone), in turn, is much better than the baseline NB
classifier. Moreover, inspecting the components of w along
the label dimensions derived by SVM-CT gives us some
interesting insights into various kinds of mappings between
the label sets A and B. We will return to these observations
in §5.

1: Represent each document as a vector d in term space and
‖d‖ = 1

2: Build one-vs-rest SVM classifiers S(A, 0) and S(B, 0) for
DA −DB and DB −DA using text tokens only

3: for i = 1, 2, . . . do
4: for each document d ∈ DB −DA do
5: Apply S(A, i− 1) to d, getting a vector γA(d) of |A|

scores (see text)
6: Concatenate vectors d and γA(d) into a single training

vector with label cB(d), with relative term-label
weight determined by f and maintaining ‖d‖ = 1

7: Add this vector into the training set for a one-vs-rest
SVM classifier S(B, i)

8: end for
9: Similarly, use S(B, i− 1) to get γB(d) and induce a new

one-vs-rest SVM classifier S(A, i) for all d ∈ DA −DB
10: end for

Figure 5: Cross-training SVMs.

4.2 The A&S mapping algorithm

Agrawal and Srikant (A&S) [1] proposed a hybrid distribu-
tional/discriminative classification algorithm by enhancing
the prior estimation of NB (equation 1). Let the target label-
set be C and the source label set be S (to be consistent
with their notation). In the mapping setting, classifying
document d entails finding arg maxc Pr(c|d, s), where the
source label s ∈ S is supplied and the target label c is sought.

Given d and s are fixed, arg maxc Pr(c|d, s) =
arg maxc Pr(c|s)Pr(d|c, s), which A&S approximate as

Pr(c|s)Pr(d|c), using the conditional independence assump-

tion shown underlined (which is theoretically debatable, but
seems to work in practice). All that remains is to propose
parametric forms for Pr(c|s) and Pr(d|c). Pr(d|c) is modeled

exactly as in equation (1), i.e., Pr(d|c) ∝
∏
t∈d θ

n(d,t)
c,t . All

θc,t are pre-estimated by a C-trained classifier which has no
knowledge of S-labels. (This is the distributional/generative
part.)

The key innovation of A&S is to propose a parametric
form for Pr(c|s) depending on inter-label relations. Let Nc
be the number of C-labeled documents in the training set
for C. As in EM2D, A&S use a C-trained classifier to guess
classes of S-labeled documents; let G(s, c) be the number
of documents with source label s that this classifier assigns
to target label c. The overall score uses a tuning parameter
R ≥ 0 and is given by

Pr(c|d, s) ∝ Nc G(s, c)R
∏
t∈d θ

n(d,t)
c,t , or (7)

log Pr(c|d, s) = constant + logNc +R logG(s, c) +∑
t∈d n(d, t) log θc,t.

Note that (once the θc,ts are fixed) R is the only tunable
parameter here. R = 0 coincides with standard NB on the
master labels. Taking logs, we see that (like SVM) A&S is
also a linear discriminant learner. A&S use a tuneset to set
the best value of R, which can be chosen in two ways.

Random sampling: A fraction (varying between 10%
and 90% in our experiments) of the fully-labeled documents
is sampled to create a tuneset. The remaining documents
are used as the test set. A range of choices for R ∈
{0, 1, 3, 10, 30, 100, . . .} is evaluated against the tuneset.
Average of the accuracy is reported over dozens of such
samples.



Active learning: The system repeatedly samples the
fully-labeled documents. For each sample d, it varies R to
see if R makes any difference to the estimated C-label. If it
does, d is placed in the tuneset; otherwise it is put in the
test/calibration set. A&S report that 5–10 actively chosen
samples are adequate to pick a suitable R.

5 Experiments
All our algorithms were coded in a few thousand lines of
simple C++. A&S, EM2D, and variants were run on (over
1GHz) Pentium3 servers with 1–3GB of RAM. The models
fit easily in tens of megabytes of RAM. We scanned the
documents sequentially and did not need to hold document
vectors in memory. The SVM implementation we used did
load document vectors into memory. A&S, EM2D and its
variants generally trained faster than SVM and SVM-CT.

5.1 Data collection and preparation

We collected example URLs from Dmoz and Yahoo!. Their
intersection has 110926 documents, less than 10% of either’s
total size. This supports our claim that double-labeled
documents are hard to find. Like A&S [1] we selected five
data sets: Autos, Movies, Outdoors, Photo, and Software.
However, their sub-topics and training examples were not
available to us. Therefore, for each data set, in each of the
two taxonomies, we picked immediate children as labels such
that there were at least 10 URLs in common with a label
of the other taxonomy. We then added in a few additional
labels from each taxonomy. Finally we went back to the
original Dmoz and Yahoo! sources to collect all URLs within
the chosen label sets; some 70–80% of the fetches succeeded.

Data set |D
A
−
D
B
|

|A
|

|D
B
−
D
A
|

|B
|

|D
A
∩
D
B
|

Autos 3589 31 3138 24 184
Movies 8003 33 11420 27 1222
Outdoors 8739 26 1540 39 181
Photo 2895 8 438 22 95
Software 9851 51 2383 25 264
Bookmarks 47247 154 365 7 1289

Figure 6: Sizes of various document and label sets in our
collected data. The first five benchmarks Autos to Software
are used primarily for studying the half-labeled mapping
scenario, and Bookmarks is used for studying the zero-label
scenario.

Figure 6 shows various properties of our main data
sets. We felt uncomfortable about the small test sets,
but A&S reported intersections of similar small sizes, and
we also found human labeling (based on page text alone) to
systematically reject pages with relatively unreliable text,
exactly those cases where A&S and cross-training are likely
to shine.

The Bookmarks data set was created mainly to study
zero-labeled classification. We collected and inspected a
dozen or so bookmark files published on the Web. We
found it very common for bookmark authors to collect
URLs into coherent topics. Usually, these topics had strong
correspondence with one or few topics in Yahoo!/Dmoz.
However, the number of URLs per topic was small (say
3–20), exactly the scenario we painted at the outset. We
derived sample bookmark topics B from these bookmark

collections, and populated them from Yahoo! (A) URLs, and
removed them from DA.

5.2 The naive Bayes baseline

We used naive Bayes (NB) classifier in the Rainbow package
[12]. We created two Rainbow classifiers, one for A labels
using DA −DB , the other for B labels using DB −DA.

Apart from providing a strawman, NB runs are used to
set the Lidstone parameters and the feature sets for A and
B. Consider the classifier for A. We first created a random
70%/30% train-test split of DA−DB . Rainbow ingested the
70% training subset and listed features in decreasing order
of information gain (w.r.t. the labels). In an outer loop,
we chose from λA between 0.1 and 1 in steps of 0.1. In an
inner loop, we chose a prefix TA of the feature list of size
10% through 90% in steps of 10% (similarly for B). We
then used the 30% validation data to pick the best values
for λA, λB , TA, TB . Finally, the NB baseline is obtained by
subjecting the held-outDA∩DB to these optimized Rainbow
classifiers. Figure 7 shows various accuracy statistics.

Data set |T | λ 70/30 DA ∩DB
Autos A 10000 0.1 39.3 46.5

B 10000 0.2 59.2 65.6
Movies A 8385 0.5 44.6 43.0

B 64434 0.2 50.9 41.0
Outdoors A 2142 0.2 79.8 77.1

B 813 0.5 68.0 78.0
Photo A 27969 0.5 68.7 40.9

B 325 1.0 49.6 35.5
Software A 40000 0.1 40.0 47.8

B 17000 0.1 58.4 54.3
Figure 7: Naive Bayes baseline accuracy with optimized
choices of |T |, the number of features, and λ, the smoothing
parameter. A is Dmoz and B is Yahoo!. Percent accuracy
is shown for 70/30 cross validation and the unseen DA∩DB
test set.

All other distributional cross-training algorithms used
these optimized values of λ and T . In particular, EM2D
used TA ∪ TB as the feature set, and the average of λA
and λB .

Feature selection and the choice of λ matters a great deal
for most data sets. Given high-dimensional data like text,
feature selection would likely be helpful for any learning
method, but the benefit from tuning λ is large mainly
because the naive Bayes model results in terrible estimates
of the joint distribution, and any “fix” to the innumerable
θs is likely to help. Whereas the two classifiers can each
optimize TA, TB , λA and λB in an unconstrained manner,
EM2D is stuck with a single feature set and a single value
of λ, which puts it at a disadvantage.

5.3 SVM and cross-training

We used SVMlight [8] in one-vs-rest ensemble mode, with
a linear kernel and default settings for all parameters.
Documents were represented as unit vectors (§4.1). f was
set to 0.95 as explained earlier in §4.1.

Figure 8 compares the accuracy of SVM and SVM-CT
with the NB baseline. In most cases, SVM beats NB. This
is consistent with folk wisdom that SVMs generally perform
better than NB on text classification tasks. More interesting
is the observation that SVM-CT has higher accuracy than
SVM, which shows that it is possible for SVM-CT to exploit
additional information from label-derived columns.



Figure 8: Comparative evaluation of NB, SVM and SVM-
CT (cross-trained SVM).

We made two additional studies of SVM-CT. First, we
checked that the average magnitude of w for ordinary term
features was always lower than the average magnitude of w
for label-derived features. Recall that |wt| is a measure of
how strongly the feature t can influence the decision of the
SVM, i.e., the sensitivity of the SVM to feature t.

Second, we tabulated the B (respectively, A) labels
corresponding to the highest and lowest w values of various
A (respectively, B) classifiers. We wanted to observe the
mappings learned between the classes in the two taxonomies
using cross-trained SVMs3. During cross-training, the label
information was transformed into a vector of 1 and−1 values
as mentioned in §4.1. In addition, a new dimension called
none-of-the-above (NOTA) was introduced, whose value was
set to 1 when all label scores obtained from B (respectively,
A) were negative and all label dimensions were set to −1.
The purpose of NOTA is explained shortly.

Dataset Dmoz. Maps to Yahoo. Weight
Autos News&Magazines News&Media 0.147

Volkswagen −0.156
Movies Genres/Western Titles/Western 0.242

Titles/Horror −0.052
Outdoors Scuba Diving Scuba 5.878

Snowmobiling −0.647
Photo Techs&Styles Pinhole Ph’graphy 2.796

3D 0.964
Panoramic 0.921
Organizations −1.184

Software Accounting NOTA 0.156
Screen Savers 0.103
OS/Unix −0.171

Dataset Yahoo. Maps to Dmoz. Weight
Autos Corvette Chevrolet 0.981

Parts&Accessories −0.266
Movies SciFi&Fantasy Series/Star-Wars 1.123

Reviews −0.824
Outdoors Scuba Scuba Diving 4.822

Wildlife −0.437
Photo Pinhole Ph’graphy Techs&Styles 0.4842

Photographers −0.270
Software OS/MSWindows OS/MSWindows 0.018

NOTA −0.001
OS/Unix −0.008

Figure 9: Dmoz and Yahoo topic mappings learned with
cross-trained SVMs

The results are shown in Figure 9. We show some Dmoz
(respectively, Yahoo!) class labels along with the Yahoo!
(respectively, Dmoz) class labels which had the greatest
positive and negative influence in predicting the said Dmoz

3See http://www.cse.iitb.ac.in/~soumen/doc/kdd2003/svmct.html
for examples

(respectively, Yahoo!) class. All positive couplings are very
meaningful; some negative couplings are fairly intriguing
too.

The Outdoors dataset for both taxonomies contains the
class ScubaDiving which maps to it’s namesake class in
the other taxonomy with a large positive component along
w. Such one-to-one mappings are symmetric and expected.
Even when there is no direct one-to-one correspondence
between the labels, or there is a containment relationship, as
between Yahoo.Movies.Genres.SciFi-Fantasy and Dmoz.

Movies.Series.StarWars, SVM-CT seems capable of
extracting that information. On the other hand when
the Dmoz.Software.Accounting class really has no relevant
class in the Yahoo! taxonomy, the synthetic NOTA class
indicates this by the high value of |wNOTA|.

One interesting case is the mapping of Dmoz.Photo.

Techniques&Styles. Yahoo.Photo, on the other hand
contains separate classes for each technique like Pinhole
Photography, 3D Photography, Panoramic Photography,
etc. The Dmoz to Yahoo! mapping in this case gives
high positive weights to most of these child classes as seen
in the Figure. This parent-child, or one-to-many mapping
emerges inspite of our assumption of flat taxonomies and is
instructive.

Another interesting mapping is from Yahoo.Software.

OS.MSWindows to multiple high positive weights to classes
in the Dmoz taxonomy. Here, the NOTA class can be
interpreted as clearly separating all the Windows related
classes above it from the Unix related classes below it within
Dmoz.Software.

5.4 EM2D for mapping

Figure 10 shows the accuracy of EM2D in comparison with
NB. EM2D is significantly better than NB with a maximum
gap of 30% for the Movies dataset and average gap of 10%.
This is reassuring, but in this section we wish to analyze
carefully why this is the case.

Figure 10: EM2D vis-a-vis Stratified-EM1D, EM1D, and
NB. For EM1D we used its best damping parameter, L =
0.01.

There are two potential sources of information from
DA − DB which may improve the accuracy of classifying
into B given d and cA. The first is simply the addition of
a bunch of documents, even if they are not labeled with
B-labels and even if we ignore their A-labels. If this were
the only source of extra information, EM1D should be able
to match EM2D, which is clearly not the case. Therefore,
knowledge of A-labels of specific documents is vital.

As we discussed in §3.3, A-labels can be used by
Stratified-EM, which simply creates one instance of EM1D
for each distinct label α ∈ A. Figure 10 also shows that



with only two minor exceptions, EM2D beats both EM1D
and Stratified-EM. This despite the fact that each EM1D
has denser data, lowering the variance of the parameter
estimates compared to EM2D. These measurements help us
establish that

• There is information available in cross-training which
EM1D cannot exploit, and

• A relatively straight-forward extension to EM1D,
Stratified-EM, does not work as well as EM2D.

5.5 Sensitivity to initial guesses of labels

EM2D, like EM1D, finds locally optimum values of the total
data likelihood. Hence the final accuracy is sensitive to the
initial assignment of half-labeled data in the 2D label grid.

Given the baseline classifiers trained on A (using
documents in DA − DB) and B (using documents in
DB − DA), it is natural to initialize EM2D by submitting
documents in DA − DB to the B-classifier and vice versa.
We may use a “hard” assignment to the best guess, or a
“soft” or fractional assignment based on the probabilities
emitted by the baseline classifiers.

However, these are not the only options. How will EM2D
behave if each document in DA −DB is assigned uniformly
over each label in B? In general, how sensitive is EM2D to
perturbations and errors in the initial E-estimates?

To test EM2D’s resilience, we randomly picked a fraction
q of documents (with A-labels, say) and replaced their
guessed scores for B-labels with a uniform distribution
smeared over all B-labels. The remaining fraction 1 − q of
documents are added to the EM2D system as before. Thus,
q = 1 corresponds to full uniform assignment.

Obviously, the effect of smearing a fraction q depends
on the accuracy of the guesses in the first place. Therefore
we repeat the smearing experiments for varying level of
starting guess accuracy. (We fake different guess accuracies
by random flips in guesses. Note that these “flips” are
distinct from the “smear.”)

Figure 11: The effect on EM2D of smearing the initial
guesses of a fraction of half-labeled training documents. The
y-axis shows final EM2D accuracy.

In Figure 11 we show the change in accuracy with
increasing fraction of smeared guesses on the Movie dataset,
with two different settings of guess accuracy: the default as
shown in Figure 7 and a second setting where 70% of the
guesses have been pre-flipped to a random label (this results
in guesses of very poor quality). These plots show that

• When the guesses are reasonably accurate, uniform
assignment is worse than assignment based on guessed
probabilities, which makes eminent sense.

• EM2D can handle limited (q = 0.15 to q = 0.20 for
this data) smearing, beyond which accuracy starts to
drop.

• When the accuracy of guesses is too poor, smearing
a fraction of the guesses (q = 0.10 in this case) can
improve accuracy. This was somewhat unexpected,
and made sense only in hindsight.

5.6 Highly asymmetric scenarios

All the data sets we collected have relatively balanced sizes
of DA−DB and DB−DA. How well can EM2D do in highly
unbalanced settings, especially w.r.t. the sparsely-populated
taxonomy?

To answer this question, we (arbitrarily) picked B as the
taxonomy to be decimated, and sampled DB −DA down to
300 documents. (Actually, we decimated to 200, 300, and
5% of the original. Results were similar.) DA−DB was left
unchanged.

The small size of DB − DA led to a poor baseline B-
classifier. Therefore, the guessed B-labels for the documents
in DA−DB had a large error rate. Because information flow
is bidirectional in EM2D, poor B guesses reduced overall
accuracy. We propose three fixes for this problem:

• Taking our cue from Figure 11, we smear documents
in DA−DB over all B-labels. Documents in DB−DA
continue to use the A guesses.

• Like A&S, we use a tuneset sampled from DA ∩
DB . Specifically, we sampled 5% of fully-labeled
documents.

• We set the damping factor L (§3.2.2) so as to restore
the relative weights of DA − DB and DB − DA to
the same ratio as in the original dataset. This would
mean L ≈ 0.05 on documents in DA −DB .

Figure 12: EM2D on a small sample of 300 documents from
DB −DA.

Figure 12 shows that the accuracy gain of EM2D over
NB in highly asymmetric settings can in fact be higher
(average 11.4%) than in more balanced data (average 10%
in Figure 10), provided EM2D is initialized properly. Nigam
et al.’s experience [15] seems to corroborate that the gains
from semi-supervised learning are larger when labeled data
is limited.

5.7 Comparison with the A&S algorithm

For our A&S implementation, we fixed the feature set to
TA∪TB as found by Rainbow, and also fixed the λ parameter
to one that gave the best accuracy for Rainbow for each of
A and B prediction.



Making a fair comparison between A&S and EM2D
involves exposing to EM2D at least the fully-labeled tuneset
that A&S uses. In fact, it is very difficult to compare the
active-learning version of A&S with EM2D in a principled
way, because A&S inspects fully-labeled documents (not the
labels, but the text) outside the tuneset as well. (EM2D is
not designed for active learning.) Therefore, we focused on
the randomly sampled tuneset paradigm only, because that
could be used with both A&S and EM2D.

In addition, given the large skew between half-labeled
and fully-labeled populations, we used damping to re-scale
them to the same effective size (see §3.2.2 for more details).

Figure 13: Accuracy of the A&S algorithm compared with
EM2D for 10% and 90% tuneset (T) and A&S active
learning (AL).

In Figure 13 we present the accuracy of A&S with 10%
and 90% randomly sampled tuneset as well as a tuneset of
size 10 picked by active learning (AL) from the entire test
set of fully-labeled documents. Broadly, A&S and EM2D
are comparable, but EM2D edges over A&S by a maximum
of 20% and an average of 4% for the 10% tuneset and 2%
for the 90% tuneset. When EM2D loses to A&S, the gap is
very small.

5.8 EM2D for classifying zero-label documents

In this scenario, we are required to finally produce a classifier
for B which does not depend on the test instances being
labeled with A labels. In §3 we discussed two methods
for deploying EM2D in this setting: EM2D-D, a model
aggregation method, and EM2D-G which is essentially
EM2D, except that the A-labels are supplied as guesses from
an A-classifier.

Figure 14 shows the accuracy for EM2D-D, EM2D-G,
EM1D and NB, for various sizes of labeled training sets,
and two choices of the damping factor L discussed at the end
of §3. These numbers are for the Bookmark data set. The
accuracy values were averaged over three random choices of
the training set for each choice of training set size.

As the fraction of training data is increased, the benefit
of semi-supervised learning reduces, which is obvious. The
damping factor does essential damage control when there are
many labeled documents, but can hurt when the labeled set
is very small. These observations corroborate with earlier
EM1D results by Nigam et al. [15].

Unlike Nigam et al., EM1D could improve beyond
NB only for the smallest training sets in our case. One
possible reason is that the unlabeled Yahoo! dataset, from
which EM1D adds instances, is significantly different, and

Figure 14: EM2D with guessing is the best methods for
classifying zero-label documents. NB accuracy is shown only
once for each size of the training set, because it does not
change with L.

has many more irrelevant classes, compared to the initial
labeled data in our Bookmark dataset. Nigam et al.’s
experiments drew unlabeled and labeled documents from
the same distribution.

Finally, we were surprised to see that EM2D-G
performed better than EM2D-D. Recall that EM2D-D is
really a 1d classifier, which should reduce data sparsity and
improve the reliability of its parameter estimates compared
to EM2D. Despite this benefit, model aggregation appears
to hurt. Even a noisy guess at the A-label, followed by a
row-conditioned classification, outperforms the aggregated
model.

6 Related work
In recent years, EM-like semi-supervised learning has been
enhanced in several ways and applied to a number of
settings.

Extending beyond EM1D, Liu et al. [10] and Yu
et al. [20] consider the realistic situation where, apart from
labeling only a few samples, the user is also unlikely to
spend the effort to mark negative samples. Their EM-like
algorithms can work on a set of positive examples P and a
mixed pool of samples M which may contain both positive
and negative instances.

Cross-training is related to multi-task learning or life-
long learning, in which information (features, models, etc.)
from one learning task is used for another. Thrun [18]
discusses how to cluster learning tasks (not instances) and
pick, for a given task, those other tasks that are likely to
be related to the current one. Information from those tasks
are then used to influence the distance function in a nearest-
neighbor classifier. Caruana [4] discusses how to use multi-
task learning in neural networks, and Baxter [2] provides a
PAC analysis. Cross-training is a two-task setting with no
instance submitted to more than one task. The similarity
between tasks falls out naturally as we estimate πα,β .

A recent approach to semi-supervised learning (which
might appear superficially similar to cross-training) is co-
training, proposed by Blum and Mitchell [3]. In co-training,
too, there are two learners, but, unlike cross-training, the
learners have to use disjoint subsets of attributes, and
assign labels from only one taxonomy. Each learner picks
unlabeled training instances that it is most confident about
classifying correctly, and makes it a labeled training instance
for the other learner. Co-training and cross-training are
quite different things: two label sets are central to our



formulation, and our approach depends on modeling a single
term distribution conditioned on a pair of labels.

Doan et al. [6] study a related problem of identifying
mapping between labels of two taxonomies (called ontologies
in the paper). Their goal is to find for each label in
one taxonomy, the label most similar to it in the other
taxonomy. In contrast, our goal is to assist classification
in one catalog without necessarily committing on a specific
mapping relation with another catalog.

7 Discussion and future work
We have presented cross-training, a new technique for
using sample documents from one taxonomy to improve
classification tasks for another taxonomy. We have
presented two algorithms for cross-training: a probabilistic
algorithm based on EM and a discriminative algorithm
based on SVMs.

Extensive experiments with real-life Web data show that
our approach definitely beats baseline classifiers in each
taxonomy, which is not very surprising. More reassuring
are the observations that show our approach to compare
favorably with the best existing approach, while providing
a more sound foundation.

In principle, a sufficiently powerful supervised learner
that can handle discrete categorical attributes can be used
directly for cross-training. In practice, specifically for text
data, the large number of dimensions and the heterogeneity
across term and label attributes pose challenges. Luckily, in
cross-training, the label attribute can take only a few values.
Therefore (in decision tree terms) we can first stratify the
data on the label attribute and then build distributions for
each label value.

Our work suggests several natural research directions.
Might it be possible to improve EM2D using a better
generative model whose E-scores are not as close to 0/1 as
NB? Might tempering or annealing let EM2D reach better
local optima? Are we estimating the number of clusters in
EM properly? The “correct” number of EM clusters may be
as high as |A| |B| (if the taxonomies are truly “orthogonal”),
but is generally much smaller (perhaps even smaller than
|A| and |B| for poorly separated labels). Can SVM-CT
be improved further by designing better kernels? Is it an
accident that neither of EM2D and SVM-CT dominates the
other in accuracy? If not, can we predict which is likely to
do better for a given problem? Can we design cross-trained
classifiers which combine the strengths of the distributional
and discriminative approaches? Finally, it would be useful
to extend the algorithm for real taxonomies (as against flat
sets of classes).
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