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Modeling Multidimensional Databases

Rakesh Agrawal Ashish Gupta� Sunita Sarawagiy
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ABSTRACT: Multidimensional databases have recently gained widespread acceptance in the
commercial world for supporting on-line analytical processing (OLAP) applications. We propose a
hypercube-based data model and a few algebraic operations that provide semantic foundation to
multidimensional databases and extend their current functionality. The distinguishing feature of
the proposed model is the symmetric treatment not only of all dimensions but also measures. The
model also is very exible in that it provides support for multiple hierarchies along each dimension
and support for adhoc aggregates. The proposed operators are composable, reorderable, and closed
in application. These operators are also minimal in the sense that none can be expressed in terms
of others nor can any one be dropped without sacri�cing functionality. They make possible the
declarative speci�cation and optimization of multidimensional database queries that are currently
speci�ed operationally. The operators have been designed to be translated to SQL and can be
implemented either on top of a relational database system or within a special purpose multidi-
mensional database engine. In e�ect, they provide an algebraic application programming interface
(API) that allows the separation of the frontend from the backend. Finally, the proposed model
provides a framework in which to study multidimensional databases and opens several new research
problems.

�Current Address: Oracle Corporation, Redwood City, California.
yCurrent Address: University of California, Berkeley, California.



1. Introduction

Multidimensional database systems have gathered tremendous market momentum as the plat-
form for building new decision-support applications. Codd coined the phrase On-Line Analytical
Processing (OLAP) in 1993 in [CCS93] to characterize the requirements for summarizing, consol-
idating, viewing, applying formulae to, and synthesizing data according to multiple dimensions.
OLAP software enables analysts, managers, and executives to gain insight into the performance
of an enterprise through fast access to a wide variety of views of data organized to reect the
multidimensional nature of the enterprise data [Col95]. It has been said that current relational
database systems have been designed and tuned for On-Line Transaction Processing applications
(OLTP) and are inadequate for OLAP applications [Cod93] [Fin95] [KS94] [Sta93]. In response,
several multidimensional database products have appeared on the market. Examples include Ar-
bor Software's Essbase, Comshare's Commander, Dimensional Insight's CrossTarget, Holistic Sys-
tems' Holos, Information Advantage's Axsys, Kenan Technologies' Accummate ES, MicroStrategy's
DSS/Server, Oracle (IRI)'s Express, Pilot Software's LightShip Server, Planning Sciences' Gen-
tium, Redbrick Systems' Redbrick Warehouse, Sniper's TM/1, and Stanford Technology Group's
MetaCube [Rad95].

The database research community, however, has so far not played a major role in this market
phenomenon. Gray et al. [GBLP95] recently proposed an extension to SQL with a Data Cube
operator that generalizes the groupby construct to support some of the multidimensional analysis.
Techniques for e�ciently computing the data cube operator have attracted considerable research
interest [HRU96] [JS96] [SR96] [SAG96]. The research in multidimensional indexing structures (see,
for example, [Gut94] for an overview) is relevant as well. Lastly, research in statistical databases
(see, for example, [Sho82] for an overview) also addressed some of the same concerns in the early
eighties.

This paper presents a framework for research in multidimensional databases. We �rst re-
view multidimensional database concepts and terminologies in vogue in current multidimensional
database products in Section 2. We also point out some of the de�ciencies in the current products.
We then propose in Section 3 a data model to provide semantic backing to the techniques used by
current multidimensional database products. The salient features of our model are:

� Our data model is a hypercube with a set of basic operations designed to unify the divergent
styles in use today and to extend the current functionality.

� The proposed model provides symmetric treatment to not only all dimensions but also to
measures. The model also is very exible in providing support for multiple hierarchies along
each dimension and support for adhoc aggregates.

� Each of our operators are de�ned on the cube and produce as output a new cube. Thus the
operators are closed and can be freely reordered. This free composition allows a user to form
larger queries, thereby replacing the relatively ine�cient one-operation-at-a-time approach of
many existing products. The algebraic nature of the cube also provides an opportunity for
optimizing multidimensional queries.

� The proposed operators are minimal. None can be expressed in terms of others nor can any
one be dropped without sacri�cing functionality.

� Our modeling framework provides the logical separation of the frontend GUI used by a busi-
ness analyst from the backend storage system used by the corporation. The operators thus
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provide an algebraic application programming interface (API) that allows the interchange of
frontends and backends.

We discuss in Section 4 some of our design choices and show how the current popular mul-
tidimensional database operations can be expressed in terms of the proposed operators. These
operators have been designed to be translated into SQL, albeit with some minor extensions to
SQL. We give these translations in the Appendix. Thus, our data model can be implemented on
either a general-purpose relational system or a specialized engine. We conclude with a summary in
Section 5.

2. Current State of the Art

We begin with a brief overview of the current state of art in multidimensional databases. Readers
familiar with the OLAP literature and current products may skip this review.

Example 2.1. Consider a database that contains point of sale data about the sales price of
products, the date of sale, and the supplier who made the sale. The sales value is functionally
determined by the other three attributes. Intuitively, each of the other three attributes can \vary"
and accordingly determine the sales value. Figure 1 illustrates this \hypercube" view of the world.

Date

Product
p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4
Sales

10

20

15

10

15

20 25

15

15 20

10

Supplier

s1
s2

s3
s4

Figure 1: Example data cube
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2.1. Terminology

Determining attributes like product, date, supplier are referred to as dimensions while the
determined attributes like sales are referred to as measures1. There is no formal way of deciding
which attributes should be made dimensions and which attributes should be made measures. It is
left as a database design decision.

1Dimensions are called categorical attributes and measures are called numerical or summary attributes in the
statistical database literature [Sho82].
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Dimensions usually have associated with them hierarchies that specify aggregation levels and
hence granularity of viewing data. Thus, day ! month ! quarter ! year is a hierarchy on
date that speci�es various aggregation levels. Similarly, product name ! type ! category is a
hierarchy on the product dimension. For instance, \ivory" and \irish spring" both are of type
\soap." Furthermore, \soap" and \shampoo" both are in category \personal hygiene" products.

An analyst might want to see only a subset of the data and thus might view some attributes and
within each selected attribute might restrict the values of interest. In multidimensional database
parlance, the operations are called pivoting (rotate the cube to show a particular face) and slicing-
dicing (select some subset of the cube). The multidimensional view allows hierarchies associated
with each dimension also to be viewed in a logical manner. Aggregating the product dimension from
product name to product type is expressed as a roll-up operation in a multidimensional database.
The converse of roll-up is drill-down that displays detail information for each aggregated point.
Thus, drilling-down the product dimension from product category to product type gets the sales
for each product type corresponding to each product category. Further drill down will get sales for
individual products. Drill-down is essential because often users want to see only aggregated data
�rst and selectively see more detailed data.

Example 2.2. We give below some queries to give a avor of multidimensional queries. These
queries use the database from Example 2.1 and other necessary hierarchies on product and time
dimensions.

� Give the total sales for each product in each quarter of 1995. (Note that quarter is a function
of date).

� For supplier \Ace" and for each product, give the fractional increase in the sales in January
1995 relative to the sales in January 1994.

� For each product give its market share in its category today minus its market share in its
category in October 1994.

� Select top 5 suppliers for each product category for last year, based on total sales.

� For each product category, select total sales this month of the product that had highest sales
in that category last month.

� Select suppliers that currently sell the highest selling product of last month.

� Select suppliers for which the total sale of every product increased in each of last 5 years.

� Select suppliers for which the total sale of every product category increased in each of last 5
years.

2

2.2. Implementation Architectures

There are two main approaches currently used to build multidimensional databases. One ap-
proach maintains the data as a k-dimensional cube based on a non-relational specialized storage
structure for storing k-dimensional data. The database designer speci�es all the aggregations they
consider useful. While building the storage structure these aggregations associated with all possible
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roll-ups are precomputed and stored. Thus, roll-ups and drill-downs are answered in interactive
time. Many products have adopted this approach { for instance, Arbor Essbase [Arb] and IRI
Express [IRI].

Another approach uses a relational backend wherein operations on the data cube are translated
to relational queries (posed in a possibly enhanced dialect of SQL). Indexes built on materialized
views are heavily used in such systems. This approach also manifests itself in many products { for
instance, Redbrick [Eri95] and Microstrategy [Mic].

2.3. Additional Desired Functionality

We believe that multidimensional database systems must provide the following additional func-
tionality, which is either missing or poorly supported in current products:

� Symmetric treatment not only of all dimensions but also of measures. That is,
selections and aggregations should be allowed on all dimensions and measures. For example,
consider a query that �nds the total sales for each product for ranges of sales price like 0-999,
1000-9999 and so on. Here the sales price of a product, besides being treated as a measure, is
also the grouping attribute. Such queries that require categorizing on a \measure" are quite
frequent. Non-uniform treatment of dimensions and measures makes such queries very hard
in current products. Codd also emphasized the need for symmetric treatment of dimensions
and measures in his 12 rules of OLAP [CCS93].

� Support for multiple hierarchies along each dimension. For instance, Example 2.1
illustrates the type-category hierarchy on products (of interest to a consumer analyst). An
alternative hierarchy is one based on which company manufactures the product and who owns
that company, namely, product! manufacturer ! parent company (of interest to a stock
market analyst). Roll-ups/drill-downs can be on either of the hierarchies.

� Support for computing ad-hoc aggregates. That is, aggregates other than those origi-
nally prespeci�ed should be computable. For instance, for each product both the total sales
and the average sales are interesting numbers.

� Support for a querymodel in place of one-operation-at-a-time computation model.
Currently, a user operates on a cube once and obtains the resulting cube. Then the user makes
the next operation. However, not all the intermediate cubes are of interest to the user. A set
of basic operators that have well de�ned semantics enable this computation to be replaced
by a query model. Thus, having tools to compose operators allows complex multidimensional
queries to be built and executed faster than having the user specify each step. This approach
is also more declarative and less operational.

2.4. Related Research Work

Data models developed in the context of temporal, spatial and statistical databases also incor-
porate dimensionality and hence have similarities with our work.

In temporal databases [TCG+93], rows and columns of a relational table are viewed as two
dimensions and \time" adds a third dimension forming what is called the \time cube". This cube
is di�erent from a cube in our model where dimensions correspond to arbitrary attributes and all
dimensions are treated uniformly without attaching any �xed connotation with any one of them.
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The modeling e�orts in spatial databases [Gut94] mostly concentrate on representing arbitrary
geometric objects (points, lines, polygons, regions etc.) in multidimensional space. By viewing
OLAP data as points in the multidimensional space of attributes, we could draw analogies between
the twomodels. But the operations central to spatial databases (\overlap", \containment", etc.) are
very di�erent from the common OLAP operations that we are trying to capture (\roll-up", \drill-
down", \joins" etc.). However, the multi-dimensional indexing structures developed for spatial
databases (see [Gut94]) are likely to �gure prominently in developing e�cient implementations of
OLAP databases.

Statistical databases also address some of the same concerns as OLAP databases. However,
models in the statistical database literature [Mic92] [CL94] have been primarily concerned with
extending existing data models (mostly relational) for representing summaries and supporting op-
erations for statistical processing. In contrast, our objective has been to develop a model and a
basic set of operations that closely abstracts the analysts view of enterprise data. In statistical
databases, category (dimensions) and summaries (measures) are treated quite di�erently, whereas
we have strived to treat dimensions and measures uniformly. However, OLAP databases will bene�t
from implementation techniques developed in statistical databases, particularly related to aggrega-
tion views (see [Sho82] [STL89]).

3. Data Model

We now outline our proposed multidimensional data model and operations that capture the
functionality currently provided by multidimensional database products and the additional desired
functionality listed above. Our design was driven by the following key considerations:

� Treat dimensions and measures symmetrically.

� Strive for exibility (multiple hierarchies, adhoc aggregates).

� Keep the number of operators small.

� Stay as close to relational algebra as possible. Make operators translatable to SQL.

In our logical model, data is organized in one or more hypercubes. A cube has the following
components:

� k dimensions, and for each dimension a name Di, a domain domi from which values are taken.

� Elements de�ned as a mapping E(C) from dom1 � : : :� domk to either an n-tuple, 0, or 1.
Thus, E(C)(d1; : : : ; dk) refers to the element at \position" d1; : : : ; dk of cube C. Note, the dis
refer to values not positions per se.

� Part of the metadata is an n-tuple of names where each of the names describes one of the
members of a n-tuple element of the cube. Note, if the cube has no n-tuple elements, then
this description is an empty tuple.

The elements of a cube can be either 0, 1, or an n-tuple < X1; : : : ; Xn >. If the element
corresponding to E(C)(d1; : : : ; dk) is 0 then that combination of dimension values does not exist
in the database. A 1 indicates the existence of that particular combination. Finally, an n-tuple
indicates that additional information is available for that combination of dimension values. If any
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of the elements of a cube is a 1 then none of the elements can be a n-tuple and vice-versa. We
represent only those values along a dimension of a cube for which at least one of the elements of the
cube is not 0. If all the elements of a cube are 0 then the cube is empty. Additionally, if domain
domi of dimension Di has no values then too the cube is considered to be empty.

In our model, no distinction is made between measures and dimensions. Thus, in Example 2.1,
sales is just another dimension (unlike existing multidimensional database systems that will treat
sales as a \measure" or \element"). Note that this is a logical model and does not force any storage
mechanism. Thus, a cube in our data model may have more logical dimensions than the number
of dimensions used to physically store the cube in a multidimensional storage system.

3.1. Operators

We now discuss our multidimensional operators. We illustrate the operators using a 2-D
subset of the cube introduced in Example 2.1. We omit the supplier dimension and display in
Figure 2 only the product, date, and sales dimensions. Note, sales is not a measure but another
dimension, albeit only logical, in the model.

Date

Productp1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

Sales

25

15
20

10

Figure 2: Logical cube wherein sales is a dimension (omitting the 1/0's)

To operate on the logical cube, the sales dimension may have to be folded into the cube such
that sales values seem determined by the product and date dimensions. We describe later how
this is achieved. For now, we will use the cube with sales values as the sole member of the elements
of the cube. Thus, the value <15> for \date = mar 4" and \product = p1" in Figure 3 indicates
that in the logical cube of Figure 2 the element corresponding to \date = mar 4", \product = p1",
and \sales = 15" is \1". We show the metadata description of the elements as an annotation in
the cube. Thus, <sales> in Figure 3 indicates that each element in the cube is a sales value.

Notation. We de�ne the operators using a cube C with k dimensions. We refer to the dimensions
as D1; : : : ; Dk. We use Di to refer also to the domain of dimension Di if the context makes the
usage clear; otherwise we refer to the domain of dimension Di as domi(C). We use lower case
letters like a; b; c to refer to constants.

Dimension values in our data model functionally determine elements of the cube. As a result of
an application of an operation, more than one element value may be mapped to the same element
(i.e. the same combination of values of dimension attributes) of the answer cube. These element
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values are combined into one value to maintain functional dependency by specifying what we call
an element combining function, denoted as felem.

We also sometime merge values along a dimension. We call functions used for this purpose
dimension merging functions, denoted as fmerge .

Push. The push operation (see Figure 3) is used to convert dimensions into elements that can then
be manipulated using function felem. This operator is needed to allow dimensions and measures to
be treated uniformly.

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4
<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

product

Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales,Product>

<10,p1>

<20,p1>

<15,p1>

<10,p2>

<10,p3>

<15,p3>

<15,p3>
<15,p2> <20,p4>

<20,p3> <25,p4>

Figure 3: The push operation on dimension product

� Input: C, Di.

� Output: C with each non-0 element extended by an additional member, the value of dimension
Di for that element. If an element is not a n-tuple but a \1", then it is converted to a 1-tuple
that contains the corresponding value of the dimension.

� Mathematically: push(C;Di) = Cans.
E(Cans)(d1; : : : ; dk) = g� < di > where g = E(C)(d1; : : : ; dk). The operator � is de�ned to
be 0 if g = 0, it is < di > if g = 1, and in all other cases it concatenates the two tuples.

Pull. This operation is the converse of the push operator. Pull creates a new dimension for a
speci�ed member of each element. The operator is useful to convert an element into a dimension so
that the element can be used for merging or joining. This operator too is needed for the symmetric
treatment of dimensions and measures.

� Input: C, new dimension name D, integer i.

� Output: Cans with an additional dimension D that is obtained by pulling out the ith element
of each element of the matrix.

� Constraint: all non-0 elements of C are n-tuples because each non-0 element need at least
one member to enable the creation of a new dimension.
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Pull 1st member 
of each element
as the new 
dimension "Sales"

Product

p1 p2 p3

<10,d1> <20,d3> <10,d4>
10

20

Productp1 p2 p3

<d1>

<d3>

<d4>

Sales

Figure 4: Pull �rst member of each element as dimension sales

� Mathematically: pull(C;D; i) = Cans, 1 � i � n.
D becomes the k + 1st dimension of the cube.
domk+1(Cans) = feje is the ith member of some element E(C)(d1; : : : ; dk)g.
E(Cans)(d1; : : : ; dk; ei) =< e1; : : : ; ei�1; ei+1; : : : ; en > if E(C)(d1; : : : ; dk) = < e1; : : : ; ei; : : : ; en >,
otherwise E(Cans)(d1; : : : ; dk; ei) = 0. Note, if the resulting element has no members then it
is replaced by 1

Destroy Dimension. Often the dimensionality of a cube needs to be reduced. This operator
removes a dimension D that has in its domain a single value. The presence of a single value implies
that for the remaining k�1 dimensions, there is a unique k�1 dimensional cube. Thus, if dimension
D is eliminated then the resulting k � 1 dimensional space is occupied by this unique cube.

� Input: C, dimension name Di.

� Output: Cans with dimension Di absent.

� Constraint: Di has only one value.

� Mathematically: destroy(C;Di)
Cans has k � 1 dimensions.

A dimension that has multiple values cannot be directly destroyed because then elements would no
longer be functionally determined by dimension values. A multi-valued dimension is destroyed by
�rst applying a merge operation (described later) and then applying the above operation.

Restriction. The restrict operator operates on a dimension of a cube and removes the cube
values of the dimension that do not satisfy a stated condition. Figure 5 illustrates an application of
restriction. Note that this operator realizes slicing/dicing of a cube in multidimensional database
terminology.

� Input: Cube C and predicate P de�ned on Di.

� Output: New cube Cans obtained by removing from C those values of dimension Di that do
not satisfy the predicate P . Note, P is evaluated on a set of values and not on just a single
value. Thus, P takes as input the entire domain Di and could output a set of values like the
\top 5 values". If no element of dimension Di satis�es P then Cans is an empty cube.
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Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>
prod in {p1,p3}

Product

Date

p1 p3

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<20>

<15>

<15>

<10>

Figure 5: The restriction operation

� Mathematically: restrict(C;Di; P ) = Cans.
domj(Cans) = domj(C) if 1 � j � k & j 6= i else domj(Cans) = P (domj(C)).
E(Cans)(d1; : : : ; dk) = E(C)(d1; : : : ; dk).

Join. The join operation is used to relate information in two cubes. The result of joining a m-
dimensional cube C with an n-dimensional cube C1 on k dimensions, called joining dimensions,
is cube Cans with m + n � k dimensions. Each joining dimension Di of C combines with exactly
one dimension Dxi of C1; the corresponding result dimension will have values that are union of the
values on Di and Dxi . Transformations can optionally be applied to the values of dimensions Di

and Dxi before they are mapped to the result dimension. The elements of the resulting cube Cans

are obtained by combining via a function felem all elements of C and C1 that get mapped to the
same element of Cans.

Figure 6 illustrates cube C joining with cube C1 on dimension D1 (no transformation is used).
Dimension D1 of the resulting cube has only two values. The function felem divides the element
value from cube C by the element value from C1; if either element is 0 then the resulting element is
also 0. Values of result dimension that have only 0 elements corresponding to them are eliminated
from Cans (like values 0 and 3 for dimension D1). This elimination is a consequence of representing
in the cube only those values along a dimension that have at least one non-0 element.

� Input: C with dimensions D1 : : :Dm and C1 with dimensions Dm�k : : :Dn. Without loss
of generality, dimensions Dm�k ; : : : ; Dm are the join dimensions. 2k mapping functions,
fm�k ; : : : ; fm de�ned over values of dimensions Dm�k ; : : : ; Dm of C and f 0m�k ; : : : ; f

0
m de�ned

over dimensions Dm�k ; : : : ; Dm of C1. Mapping fi applied to value v 2 domi(C) produces
values for dimension Di in Cans. Similarly f 0i applied to v0 2 domi(C1) produces values for
dimension Di in Cans. Also needed is a function felem that combines sets of elements from C
and C1 to output elements of Cans.

� Output: Cans with n dimensions, D1 : : :Dn. Multiple elements in C and C1 could get mapped
to the same element in Cans. All elements of C and C1 that get mapped to the same point
in Cans are combined by function felem to produce the output element of Cans. If for some
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D1
1 2 4 5

<3> <2>

D1

D2

0 1 2 3

d

c

b

a <4>

<8>

<6>

<12>

<14>

<8>

<7>

<9>

<9>

D1

D2

d

c

b

a

1 2

<3>

<2>

<7>

<6>

C

map dimension
D   using the
identify mapping

f         divideselem
the element from
C by the element
from C1 if both 
elements exist. Else
it returns 0

C1

1

Figure 6: Joining two cubes

value v of dimension Di, the elements E(Cans)(x1; : : : ; v; xi+1; : : : ; xn) is 0 for all values of
the other dimensions, then v is not included in dimension Di of Cans.

� Mathematically: join(C;C1; [fm�k; : : : ; fm; f
0
m�k; : : : ; f

0
m]; felem) = Cans.

domi(Cans) = domi(C) if 1 � i � m� k � 1.
domi(Cans) = domi(C1) if m � i � n.
domi(Cans) = fdajda 2 fi(d); d 2 domi(C) OR da 2 f 0i(d

0); d0 2 domi(C1)g:
E(Cans)(d1; : : : ; dam�k; : : : ; d

a
m; : : : ; dn) = felem(ft1g; ft2g) such that

t1 = E(C)(d1; : : : ; dm�k; : : : ; dm), t2 = E(C1)(d0m�k; : : : ; d
0
m; dm+1; : : : ; dn), and

dai 2 fi(di) OR dai 2 f 0i(d
0
i) for m� k � i � m.

The join operator has two notable special cases: cartesian product and associate. In the case
of cartesian product, the two cubes have no common joining dimension.

Associate is especially useful in OLAP applications for computations like \express each month's
sale as a percentage of the quarterly sale." Associate is asymmetric and requires that each dimension
of C1 be joined with some dimension of C. Figure 7 illustrates associating cube C1 with C where
month dimension of C1 and date dimension of C are joined by mapping them to the date dimension
of Cans. Similarly, category and product are joined by mapping them to product of Cans. For
dimension month, each month is mapped to all the dates in that month. For dimension category,
value cat1 is mapped to products p1 and p2, and cat2 is mapped to p3 and p4. For dimensions date
and product the identity mapping is used. Function felem divides the element value from cube C by
the element value from C1; if either element is 0 then the resulting element is also 0. Note, value
mar4 is eliminated from Cans because all its corresponding elements are 0.

Merge. The merge operation is an aggregation operation. We illustrate it in Figure 8. The �gure
shows how hierarchies in a multidimensional database are implemented using the merge operator.
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Date

Product

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

Category

Month

cat1 cat2

jan 

feb

<Total Sales>

<10>

<45>

<45>

<50>

Date

Product

p1 p2 p3 p4

jan 1

feb 2

feb 3

<Fraction
  of total>

<1>

<4/9>

<2/9>

<1/3>

<4/9> <5/9>

<0.3>

<0.3>
<0.4>

p1 p2 p3 p4

C1

C

map month to
each date in that
month 

map category to 
each product in 
that category

from C by the element from
C1 if both exist. Else it 
returns 0

elemf        divides the element

Figure 7: Associating two cubes

Intuitively, a dimension merging function is used to map multiple product names into one or more
categories and another function is used to map individual dates into their corresponding month.
Thus, multiple elements on each dimension are merged to produce a dimension with a possibly
smaller domain. As a result of merging each dimension, multiple elements in the original cube get
mapped to the same element in the new cube. An element combining function is used to specify
how these multiple elements are aggregated into one. In the example in Figure 8, the aggregation
function felem is sum.

In general, the dimension merging function might be a one-to-many mapping that takes an
element in the lower level into multiple elements in the higher level of hierarchies. For instance,
a 1 ! n mapping can be used to merge a product belonging to n categories to handle multiple
hierarchies.

� Input: C, function felem for merging elements and m (dimension, function) pairs. Without
loss of generality, assume that the m pairs are [D1; fmerge1

]; : : : ; [Dm; fmergem
]

� Output: Cube Cans of same dimensionality as C. Dimension Di is merged as per function
fmergei

. An element corresponding to the merged elements is aggregated as per felem .

� Mathematically: merge(C; f[D1; fmerge1
]; : : : ; [Dm; fmergem

]g; felem) =Cans .
domi(Cans) = ffmergei

(e)je 2 domi(C)g if 1 � i � m, else domi(Cans) = domi(C).
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Product

Date

p1 p2 p3 p4

jan 1

feb 2

feb 3

mar 4

<Sales>

<10>

<20>

<15>

<10>

<15>

<20> <25>

<15>

<15> <20>

<10>

f           :
   {p1,p2} in cat1
   {p3,p4} in cat2

f           :
    date  by  month

Category

Month

cat1 cat2

jan

feb 

mar 

<Total Sales>

<10>

<45>

<15>

<45>

<50>

<10>

f         :  SUM

merge1

merge2

elem

Figure 8: Merging dimensions date and product using felem = sum

E(Cans)(d1; : : : ; dk) = felem(ftjt = E(C)(d01; : : : ; d
0
k) where fmergei

(d0i) = di if 1 � i � m else
d0i = dig).

A special case of the merge operator is when all the merging functions are identity. In this case,
the merge operator can be used to apply a function felem to each element of a cube.

Remark. The merge operator is strictly not part of our basic set of operators. It can be expressed
as a special case of the self-join of a cube using fmerge transformation functions on dimensions being
merged and identity transformation functions for other dimensions. We chose to separately de�ne
merge because it is a unary operator unlike the binary join and also for performance reasons.

4. Discussion

The reader may have noticed similarities in the operators proposed and relational algebra
[Cod70]. It is by design. One of our goals was to explore how much of the functionality of
current multidimensional products can be abstracted in terms of relational algebra. By developing
operators that can be translated into SQL (see Appendix), our hope was to create a fast path for
providing OLAP capability on top of relational database systems. We must hasten to add that we
are not arguing against specialized OLAP engines|we believe the design and prototyping of such
engines is a fruitful research direction. We are also not suggesting that simply translating these
operators into SQL would be su�cient for providing OLAP capabilities in relational database sys-
tems. However, it does point to directions in which optimization techniques and storage structures
in relational database systems need to evolve.

The goal of treating dimensions and measures symmetrically had a permeating inuence in
our design. It is a functionality either not present or poorly supported in current multidimensional
database products. Its absence causes expensive schema redesign when an unanticipated need arises
for aggregation along an attribute that was initially thought to be a measure. In hindsight, the
push and pull operations may appear trivial. However, their introduction was the key that made
the symmetric treatment of dimensions and measures possible.

The reader may argue with the way we have chosen to incorporate order-based information

12



into our algebra. We rely on functions for this purpose, which implies that the system may not be
able to use this information in optimizing queries. We debated about allowing a native order to
be speci�ed with each dimension and providing ordering operators. We decided against it because
of the large number of such operators and because the semantics gets quite complex when there
are multiple hierarchies along a dimension. In a practical implementation of our model, it will be
worthwhile to allow a default order to be speci�ed with each dimension and make system aware of
some built-in ordering functions such as \�rst n". The same holds for providing the knowledge of
some built-in aggregate functions.

The reader may also notice the absence of direct analogs of relational projection, union, inter-
section, and di�erence. These operations can be expressed in terms of our proposed operators as
follows:

Projection. The projection of a cube is computed by merging each dimension not included in the
projection and then destroying the dimension. A felem function specifying how multiple elements
are combined is needed as part of the speci�cation of the projection.

Union. Two cubes are union-compatible if (i) they have the same number of dimensions; and (ii)
for each dimension Di in C, dimension Di in C1 is of the same domain type. Union is computed
by joining the two cubes using the identity transformation functions for each dimension of each
cube and by choosing a function felem that produces a non-empty element for element e in Cans

whenever an element from either of the two cubes is mapped into e. Dimension Di in the resulting
cube has as its values the union of the values in domi(C) and in domi(C1).

Intersect. The intersection of two union-compatible cubes is computed by joining the cubes
through the identity mapping that e�ectively retains only those dimension values that are present
in both cubes. Thus, function felem makes non-0 an element for point p in Cans only if elements
from both cubes are mapped into p.

Di�erence. The di�erence of two union-compatible cubes C1 and C2 is expressed as an inter-
section of C1 and C2 followed by a union of the result with C1. The felem function for combining
two elements for the intersection steps discards the value of the element for C1 and retains C2's
element. The felem function for combining two elements for the union step saves the value of C1's
element if the two elements are di�erent and makes the result 0 if they are identical2.

4.1. Expressive Power

It is easy to see that our algebra is at least as powerful as relational algebra [Cod70]. A pre-
cise circumscription of the expressive power of the proposed data model is an open problem. A
related interesting open question pertains to de�ning a formal notion of completeness for multidi-
mensional database queries and evaluating how complete our algebra is with respect to that metric.
Formalisms developed in the context of relational databases, for example, in [AU79] [CH82] may
provide starting point for pursuing this direction.

2This implementation corresponds to the following semantics for C1 � C2: E(Cans)(d1; : : : ; dk) equals 0 if
E(C2)(d1; : : : ; dk) = E(C1)(d1; : : : ; dk); it is E(C1)(d1; : : : ; dk) otherwise. Another alternative semantics could be
that E(Cans)(d1; : : : ; dk) equals 0 if E(C2)(d1; : : : ; dk) 6= 0, and E(C1)(d1; : : : ; dk) otherwise. This semantics can be
implemented by a small change in the felem function used in the union step.
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We take an empirical approach and discuss below how the current high-level multidimensional
operations can be built using our proposed operators.

Roll-up. Roll-up is a merge operation that needs one dimension merging function and one element
combining function. If a hierarchy is speci�ed on a dimension then the dimension merging function is
de�ned implicitly by the hierarchy. The elements corresponding to merged values on the dimension
are combined using the user-speci�ed element combining function like SUM.

Drill-down. This operator is actually a binary operation even though most current multidimen-
sional database products make it seem like a unary operation. Consider computing the sum X of
10 values. Drill-down from X to the underlying 10 values is possible in in�nite ways. Thus, the
underlying 10 values have to be known. That is, the aggregate cube has to be joined (actually
associated) with the cube that has detailed information. Continuing with our analogy, to drill
down from X to its constituents the database has to keep track of how X was obtained and then
associate X with these values. Thus, if users merge cubes along stored paths and there are unique
path down the merging tree, then drill down is uniquely speci�ed. By storing hierarchy information
and by restricting single element merging functions to be used along each hierarchy, drill-down can
be provided as a high-level operation on top of associate.

Star Join. In a star join [Eri95], a large detail \mother" table M is joined with several small
\daughter" tables that describe join keys in the mother table. A star join denormalizes the mother
table by joining it with its daughter tables after applying selection conditions to their descriptive
attributes. We describe how our operators capture a star join when M has one daughter table F1
that describes the join key �eld D of M . Table F1 can be viewed as a one-dimensional cube, C1

with the join key �eld D as the dimension and all the description �elds pulled in as elements. A
restriction on a description attribute A of table F1 corresponds to a function application to the
elements of C1. Restrictions on the join key attribute translate to restrictions on dimension D of
C1. The join between M and F1 is achieved by associating the mother cube with the daughter cube
on the key dimension D using the identity mapping function. The description of each key value is
pulled in from the daughter cube into the mother cube via the felem function.

Expressing a dimension as a function of other dimensions. This functionality is basic in
spread sheets. We can create a new dimension D expressed as a function, f of another dimension D0

by �rst pushing D0 into the cube elements, then modifying the cube elements by applying function
f and �nally pulling out the corresponding member of the cube element as a new dimension D.

4.2. Example queries

This section illustrates how to express some of the queries of Example 2.2 using our operators.
Assume we have a cube C with dimensions product, month, supplier and element sales.

� For supplier \Ace" and for each product, give the fractional increase in the sales in January
1995 relative to the sales in January 1994.

Restrict supplier to \Ace" and dates to \January 1994 or January 1995". Merge date
dimension using an felem that combines sales as (B � A)=A where A is the sale in Jan 1994
and B is the sale in Jan 1995.
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� For each product give its market share in its category this month minus its market share in
its category in October 1994.

Restrict date to \October 1994 or current month". Merge supplier to a single point using
sum of sales as the felem function to get C1. Merge product dimension to category using sum
as the felem function to get in C2 the total sale for the two months of interest. Associate
C1 and C2, mapping a category in C2 to each of its products in C1. The identity mapping
is used for the Month dimension. Function felem divides the element from C1 by the element
from C2 to get the market share. For the resulting cube, Merge dimension month to a single
point using a felem function (A�B) where A is the market share for \this" month and B is
the market share in October 1994.

� For each product category, select total sales this month of the product that had highest sales
in that category last month.

Restrict dimension month to \last" month. Merge supplier to a single point using sum of
sales as the felem function. Push product dimension resulting in 2-tuple elements with <Sale
and product>. Merge product to category using felem function that retains an element
if it has the \maximum" sales. Pull product into the category dimension (over-riding the
category dimension, this can be easily done using our basic operators). Let the resulting cube
be C1. This cube has the highest sales value for each element for \last" month. Restrict C
on dimension date to \this" month, Merge supplier to a single point using sum of sales as
the felem function and associate it with C1 on the product dimension using felem function
that only outputs the element of C when it is the same as the corresponding elements from
C1 (otherwise returns 0).

� Select suppliers for which the total sale of every product increased in each of last 5 years.

Restrict to months of last 6 years. Merge month to year. Merge years to a single point
using a felem function that maps the six sales values to \1" if sales values are increasing,
\0" otherwise. Merge product to a point where felem function is \1" if and only if all its
arguments are \1".

5. Conclusions and Future Work

This paper introduced a data model and a set of algebraic operations that unify and extend the
functionality provided by current multidimensional database products. As illustrated in Section 4.1
the proposed operators can be composed to build OLAP operators like roll-up, drill-down, star-
join and many others. In addition, the model provides symmetric treatment to dimensions and
measures. The model also provides support for multiple hierarchies along each dimension and
support for adhoc aggregates. Absence of these features in current products results in expensive
schema redesign when an unanticipated need arises for a new aggregation or aggregation along an
attribute that was initially thought to be a measure.

The proposed operators have several desirable properties. They have well-de�ned semantics.
They are minimal in the sense that none can be expressed in terms of others nor can any one
be dropped without sacri�cing functionality. Every operator is de�ned on cubes and produces as
output a cube. That is, the operators are closed and can be freely composed and reordered. This
allows the ine�cient one-operation-at-a-time approach currently in vogue to be replaced by a query
model and makes multidimensional queries amenable to optimization.
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The proposed operators enable the logical separation of the frontend user interface from the
backend that stores and executes queries. They thus provide an algebraic API that allows the
interchange of frontends and backends. The operators are designed to be translated into SQL.
Thus, they can be implemented on either a relational system or a specialized engine.

For future, on the modeling side, work is needed to incorporate duplicates and NULL values
in our model. We believe that the duplicates can be handled by treating elements of the cube as
pairs consisting of an arity and a tuple of values. The arity gives the number of occurrences of
the corresponding combination of dimensional values. NULLs can be represented by allowing for a
NULL value for each dimension. Details of these extensions and other possible alternatives require
further investigation.

On the implementation side, there are interesting research problems for implementing our model
on top of a relational system as well as within a specialized engine. Although each of the proposed
operators can be translated into a SQL query, simply executing this translated SQL on a relational
engine is likely to be quite ine�cient (see the translation of the join operation in Appendix). Corre-
sponding to a multidimensional query composed of several of these operators, we will get a sequence
of SQL queries that o�ers opportunity for multi-query optimization. It needs to be investigated
whether the known techniques (e.g. [SG90]) will su�ce or do we need to develop new techniques.
Similarly, there is opportunity for research in storage and access structures and materialized views.
We believe that multidimensional databases o�er interesting technical challenges and at the same
time have large commercial importance.

Acknowledgments. We wish to thank Mike Carey, Piyush Goel, Bala Iyer, and Eugene Shekita
for stimulating discussions and probing questions.
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A. Translation to SQL

We describe in this appendix3 how to translate the proposed operators to corresponding SQL
queries, if the cube is represented as a table R. Note, a k-dimensional logical cube C that has
1/0 as its elements can be represented as a table that has k attributes and has (d1; : : : ; dk) as a
tuple if E(C)(d1; : : : ; dk) = 1. If the elements of a cube are n-tuples, then the relation has n extra
attributes; with one attribute for each member of the element. Information about which attribute
in R corresponds to a member of an element in cube C is kept as meta-data.

To enable this translation, we need to extend SQL to allow functions in the groupby clause
and user-de�ned aggregate functions that could return sets in the select clause. The details of the
proposed extensions are given in Section A.2. It is also shown there how functions in the groupby
clause can be emulated, albeit ine�ciently, in SQL with user-de�ned functions (e.g. DB2/CS
[Cha96]).

A.1. Translations

Push. Causes another attribute to be added to the relation. The new attribute is a copy of some
other attribute in the original relation.

Pull. The element-member attribute that is pulled into a dimension, namely the ith member, is
renamed to be a dimension name. Note, this operation is an update to the meta-data associated
with the relation.

Destroy Dimension. If dimension Di is destroyed, then the corresponding relational operation
involves removing the attribute in R corresponding to dimension Di. This operation does not
introduce any duplicates in R because Di is restricted to have only one value.

Restriction. First consider the translation of an e�cient special case of the restriction operator.
If predicate P is evaluable on individual values of dimension Di, for instanceX > 20, then restriction
translates to a simple select clause on relation R. Namely:

select � from R where P (Di).

In the more general case, P is evaluated on the set of values of dimension Di. SQL does not support
such queries. Thus, we need to extend SQL to allow user-de�ned aggregate functions in the select
clause where the function may return a set of values. Thus, the following query returns all the
values of dimension Di that satisfy predicate P :

select � from R where Di in (select P (Di) from R ) .

Function P is an aggregate function like \max", \top-5". The function P is applied to the set of
values for dimension Di and the satisfying values are picked. Note, we abuse notation and use the
term P to refer to a predicate and also to an aggregate function.

3The paper is self-contained without this Appendix. Should space become a constraint, the conference version of
the paper will not include the Appendix, but will refer to an IBM Research Report.
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Join. Intuitively cube join is de�ned as a combination of relational join and groupby. First we
de�ne two views that capture each cube after applying the mappings to the relevant dimentions.

De�ne view Vr as
select D1; : : : ; Dm�k�1; f1(Dm�k); : : : ; fm(Dm); A1; : : : ; Ar

from R .

De�ne view Vs as
select f 01(Dm�k); : : : ; f 0k(Dm); Dm+1; : : : ; Dn; B1; : : : ; Bp

from S.

In both the above views the fi and f 0i are mappings and the result of the select is a cross
product of all the values for every attribute. Also, the attributes of view Vr are named the same
as the attributes of R, namely D1; : : : ; Dm; A1; : : : ; Ak. Similarly the attributes of Vs are named
Dm�k ; : : : ; Dn; B1; : : : ; Bp.

We then do the following relational join:

select R:D1; : : : ; R:Dm; S:Dm+1; : : :S:Dn; felem(R:A1; : : : ; R:Ar; S:B1; : : : ; S:Bp)
from Vr R, Vs S
where (R:Dm�k = S:Dm�k

. . .
R:Dm = S:Dm)

groupby R:D1; : : : ; R:Dm; S:Dm+1; : : :S:Dn .

The above result does not include the tuples of Vr that do not match with any tuple of Vs and
vice-versa. To include those values we �rst take a di�erence of the two views (Vr � Vs) based on
the join attributes Dm�k : : :Dm; call this di�erence Ur. We now union the result of the above
relational join with the following to get those tuples of Vr that do not match with any tuple of Vs:

select R:D1; : : : ; R:Dm; S:Dm+1; : : :S:Dn; felem(R:A1; : : : ; R:Ar; NULL; : : :; NULL)
from Ur R, Vs S
groupby R:D1; : : : ; R:Dm; S:Dm+1; : : :S:Dn .

Similarly, we union the above result include tuples of Vs not matching any tuple of Vr. Finally, we
select only those tuples from the result where the function felem is not zero.

Merge. To translate merge into SQL, we need to extend SQL to include user-de�ned aggregate
functions (e.g. [Mon94]). The translation process also needs to know the arity of the output of
function felem so that the correct number of attributes can be created in the resulting tuple. This
information is needed to correctly store the output of a merge operation even if the underlying
store is multidimensional. Thus, the form of the output of felem is required as a part of the the
function's speci�cation. Merge is translated as follows (assuming felem outputs a p-tuple):

select fmerge1
(D1); : : : ; fmergem

(Dm); Dm+1; : : : ; Dk; felem(A1; : : : ; An)
from R
where felem(A1; : : : ; An) 6= NULL

groupby fmerge1
(D1); : : : ; fmergem

(Dm).
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where attributes A1; : : : ; An comprise the element of the cube. To conform to SQL we can
rewrite the select clause to be of the form B1 as �rst element of(felem(A1; : : : ; An)), B2 as sec-
ond element of(felem(A1; : : : ; An)), etc., whereby attributes B1; B2; : : : are the new members of the
elements.

A.2. Proposed Extensions to SQL

We propose an extension to the groupby construct of SQL to allow translation of the proposed
multidimensional operators to SQL. Currently grouping in relational systems is restricted to be
attribute based. That is, groups are formed on the basis of the values of a (set of) attribute and
then an aggregate is computed using the tuples in each group.

Example A.1. Consider a database with the following tables:

sales(S; P; A;D) supplier S supplied product P on date D for amount A.
region(S;R) supplier S is in region R.
category(P; C) product P is in product category C.

Consider a query that computes for each product the total sales in each region. This query is
expressed as:

select R; sum(A) from sales; region where sales:S = region:S groupby region:R.

However, note that the relation region represents a function that maps each supplier name to a
unique region. We propose the following more intuitive rewrite of the above query:

select region(S); sum(A) from sales groupby region(S).

where region is a function that maps each supplier name to the corresponding region. Strictly
speaking, there is no reason why region needs to be a function. It could well map the same
supplier to multiple regions (thereby no longer being a function but a 1-n mapping). We abuse the
term function to actually refer to a mapping.

Consider another query that is not easily expressible in SQL. The query computes for each
product the total sales in each quarter. This query can be represented in extended SQL as:

select quarter(D); sum(A) from sales groupby quarter(D).

where function quarter maps each date into one of four quarters. There is no straightforward way
of relationally expressing the above query. 2

The above query represents a \roll-up" of the supplier attribute (or dimension) to the region
attribute (or dimension). Gray et al. [GBLP95] also propose introducing functions in the groupby
clause for implementing the \data-cube" operator. We think it appropriate to go even one step
further and allow a 1-n mapping in the groupby clause because then the relational model can
incorporate the equivalent of multiple levels of hierarchies. We refer to 1-n mappings as multi-
valued functions. The use of multi-valued functions is illustrated below:

Example A.2. For the schema of Example A.1, consider another query that computes the
running average of the sales made by each supplier for a particular year. In the extended notation
using user de�ned functions, we can easily write this query as follows:
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select S; f(D); avg(A) from sales groupby f(D).

Function (mapping) f(D) maps each date into one or more groups as required by the running
average intervals. For instance, if the running average was over 3 months, taken every month, then
every month's sales �gures would be mapped into three groups. Note, the query cannot currently
be computed using SQL. 2

The main point being made in the above examples is that grouping needs to be based on
multi-valued functions of attributes and not just on single (or more) attributes.

Semantics. Unlike conventional grouping, a groupby clause now can increase the size of a relation
if the function is a 1! n mapping and not a 1! 1 function. The following example illustrates the
kind of grouping that could arise:

Example A.3. Consider a relation R de�ned on three attributes A;B; C. Let mapping f be
de�ned on A, and mapping g be de�ned on B. Let us see the groups to which tuple t(a; b; c) might
contribute if the query of interest is:

select sum(C) from R groupby f(A); g(B).

Let f(a) = f1; 2g and g(b) = f�; �g. Then tuple t contributes to the groups f(1; �); (1; �); (2; �); (2; �)g.
For each of these groups, c contributes to the sum. 2

Thus, the semantics are that a tuple t contributes to as many groups as the number of elements
in the cross product of the result of applying the grouping functions to the attributes of t. Thus,
even for multi-valued functions the semantics are well de�ned. In general, the groupby clause may
use user-de�ned functions that may be multi-valued and that may be de�ned over an arbitrary
number of attributes.

Function based grouping can be incorporated easily in hash based implementations of grouping.

Expressing the SQL Extensions in Current Systems. Some of the above suggested exten-
sions of SQL can be simulated in current systems in somewhat round-about ways. We illustrate
this for DB2/CS that allows user-de�ned functions in the select clause [Cha96].

Example A.4. Consider the query:

select S; f(D); avg(A) from sales groupby f(D).

We can replace the function f(D) in the groupby clause by an occurrence of f(D) in the select
clause (of a di�erent but equivalent) query as follows:

de�ne view mapping as select distinct D; f(D) from sales.

The above view contains the mapping from D to f(D). This view can be joined with relation sales
to obtain the original query as follows:

select S; FD; avg(A) from sales; mapping(D;FD)where supp:D = mapping:D groupby FD.
2
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The basic idea is that the function computation can be captured as a table via a separate select
query. The resulting table can be joined with the original query to generate the necessary grouping
attribute.

The above method of implementing functions in the grouping clause is not attractive because
it introduces an extra join and also is not intuitive. Also, the workaround does not allow us to
emulate mappings (multi-valued \functions") in the grouping clause or aggregate functions in the
select clause.
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