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ABSTRACT
In this paper we present an efficient, scalable and general al-
gorithm for performing set joins on predicates involving vari-
ous similarity measures like intersect size, Jaccard-coefficient,
cosine similarity, and edit-distance. This expands the ex-
isting suite of algorithms for set joins on simpler predicates
such as, set containment, equality and non-zero overlap. We
start with a basic inverted index based probing method and
add a sequence of optimizations that result in one to two
orders of magnitude improvement in running time. The al-
gorithm folds in a data partitioning strategy that can work
efficiently with an index compressed to fit in any available
amount of main memory. The optimizations used in our al-
gorithm generalize to several weighted and unweighted mea-
sures of partial word overlap between sets.

1. INTRODUCTION
Modern database systems are increasingly used to store

and handle set-valued attributes. Object relational DBMSs
support sets as a data type and therefore need to process var-
ious kinds of queries on set-valued attributes. Text columns
in a DBMS need to be viewed as sets of words for various
kinds of retrieval and similarity queries. There is increasing
research interest in better and efficient support for text data
in relational databases driven by two emerging trends: inte-
grating information retrieval (IR) functionality in databases
and supporting semi-structured data formats like XML.

Although the storage of set-valued data is now common-
place, efficient support for performing joins on these is lim-
ited. Set joins can involve a variety of interesting predicates,
however previous work has only concentrated on simpler
forms like containment, equality or non-zero overlap [17, 18,
21, 15]. Real-life queries often need to pose more complex
join predicates, such as,

• Overlap or intersect set size > T where the goal is to
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find all sets that overlap in at least T words. We call
this the T -overlap join, a special case of which is the
earlier non-zero overlap join [17] with T = 1.

• Jaccard coefficient > f where the goal is to find all set
pairs where the ratio of the intersect size to union size
is greater than a fraction f .

• Weighted match > T where elements are attached with
arbitrary weights (for example, inverse of their fre-
quency in the database) and the goal is to find all set
pairs where the total weight of the common/overlapping
elements is > T .

• Cosine similarity > f where each element is treated as
a dimension, each set as a vector where the wth co-
ordinate denotes the importance of element w in the
set and the goal is to find all set pairs where the cosine
of the angle between their respective vectors is > f

All of the above joins measure partial overlap between sets
in various ways and select those with high overlap. These
predicates are particularly valuable for text data processing
where stricter predicates like total containment or equality
are almost never useful. Applications like data cleaning and
data integration, extensively rely on such joins for dedupli-
cating records with text fields like names and addresses [22,
2, 16, 20, 11].

To the best of our knowledge ours is the first paper that
presents efficient algorithms for efficiently processing joins
on such predicates. Our goal is to return exact answers to
these join predicates in contrast to previous work [8, 4, 7,
3, 12, 5] that concentrate on returning approximate answers
where most but not all of the matching pairs are returned.

Our contribution. We propose an efficient algorithm called
Probe Cluster for computing similarity joins over set/text
attributes. Normally, such similarity joins are expensive
to compute for arbitrary values of thresholds and can lead
to quadratic complexity of output size and computation
time. We exploit the property that most join predicates
will require records with high value of similarity and use the
threshold to design algorithms that reduce the running time
by as much as two orders of magnitude.

We show how to adapt existing memory intensive algo-
rithms when the amount of available main memory is lim-
ited. Uniform partitioning of data is significantly more diffi-
cult when joins are based on partial overlap of sets as against
complete containment or exact equality. Through experi-
ments on real-life datasets we show that even as the amount



of memory is reduced by a factor of fifty, running time stays
within a factor of 2.5 of the full memory version with our
partitioning strategy.

We present a general framework for optimizing the evalua-
tion of joins based on several kinds of thresholded similarity
functions, including but not limited to, intersect size, Jac-
card coefficient, cosine similarity and their weighted coun-
terparts. We quantify the effectiveness and generalizability
of this framework by showing that the running time for the
same output size stays the same even when produced via
highly varied similarity predicates.

Outline. We first review three existing algorithms from in-
formation retrieval, database and data mining literature,
and show how these can be adapted for overlap-joins (Sec-
tion 2). In Section 3 we propose a series of successive en-
hancements over existing algorithms. For each proposed en-
hancement, we report the reduction in running time. We
prefer this layout to presenting a final algorithm and then
reporting bulk numbers since it enables a better understand-
ing of the reason and benefit of each feature of a new algo-
rithm. None of the proposed algorithms handle arbitrarily
large data set sizes since they rely on large in-memory data-
structures. In Section 4 we adapt our optimized algorithm to
work with limited memory. In presenting these algorithms
we initially considered the weighted T -overlap join. In Sec-
tion 5 we show how these can be extended for other partial
overlap predicates. Related work appears in Section 6.

2. ALGORITHMS FOR SIMILARITY JOINS
We are given a finite universe U of elements or words

w1, w2 . . . wW , and a collection of records or set over U . Each
word is associated with a given weight (default 1). Given
a threshold T , our goal is to find all pairs of sets such that
the total weight of common words between them is greater
≥ T . We call this the T -overlap join. In this paper we will
describe our algorithms assuming self-joins. The extension
to non-self-joins is obvious.

2.1 Probe-Count
The Probe-Count algorithm is derived from the way key-

word queries are answered during Information Retrieval [23]
using an inverted index. The inverted index maps words to
the list of record identifiers that contain that word. Such an
index can be constructed in memory in one sequential scan
of the data by inserting each scanned record into the record
list associated with all words the record contains.

After constructing the inverted index, scan the data again.
For each record r, probe the index using each word in r.
This will yield a set of record lists corresponding to match-
ing words. Each list lw corresponding to word w of r is
associated with a weight(w). Merge the record lists to find
all records that appear in lists whose total weight ≥ the
threshold T .

Merging of lists can be time-consuming since each list can
contain a large number of record identifiers (RIDs). An
established optimization is to create the index in such a way
that the RIDs within a list are sorted. Then during merging
we just need to maintain a frontier of the lists and at each
step advance the frontier to the next RID which appears in
lists whose total weight adds up to more than T . Such an
RID can be found efficiently by using a heap to maintain the
frontiers of all lists being merged. We then repeatedly pop

the minimum RID from the heap, accumulate its weight if
successive popped RIDs are the same, and push in the heap
the next RID from the frontier of the popped list.

Let nw denote the number of records containing word
w and t denote the average number of words per record.
The Probe count algorithm requires O(

∑
w n2

w log(t)) com-
parisons since a record list lw associated with word w is
selected for merging as many times as there are number of
records in it, that is, nw times. Each merge operation is
roughly over t lists and since we are using a heap the merge
time gets multiplied by log(t). The memory required by
Probe count to store the inverted index is O(

∑
w nw)

2.2 Pair-Count
Another way to use the inverted index to find all T -overlap

record pairs is suggested in [4] where the second step is to
create pairs of RIDs within each record list in the inverted
index. In a list lw with nw records and of weight(w), this
will create nw(nw − 1)/2 items of the form (RID1, RID2,
weight(w)). Aggregate the RID pairs over all lists to sum
the total weight of each RID-pair. Finally, retain only pairs
with total weight above the threshold T .

This will be a natural join plan when a set is expressed
in the unnested representation where for each set-element
pair we have an entry in a table. Then the above can be
expressed as a self-join followed by group-bys to aggregate
counts of each RID pair as show in [11, 12].

The Pair count algorithm aggregates
∑

w n2
w pairs. We

used a hash-function to do the aggregation, thus the time
taken is O(

∑
w n2

wH) where H is the time to hash a record
pair. Estimating H is hard because in practice it does de-
pend on the size of the entries inserted in the hash table
due to collisions and other factors. The biggest problem of
Pair count is the huge amount of memory required to store
all the distinct pairs over all the lists.

2.3 Word Groups

An interesting variant is to map this problem to the well-
known frequent itemset mining algorithms with the word-
ids as the items and the RIDs as the transactions. The
minimum support is two and the maximum itemset weight
set to T . We can then use an efficient frequent itemset
mining algorithm like Apriori [1] and FP-growth [13] to find
all itemsets with total weight no less than T along with the
list of RIDs that contain it. From each such list of RIDs, we
output pairs of RIDs.

The main shortcoming of this method is that the groups
of RIDs associated with an itemset can be overlapping. The
same pair will be generated from all itemsets of weight T
that can be formed out of the common words between the
record pair. This is unnecessary since our goal is met by
having any one group output a T-overlap record. For exam-
ple, if a pair of records have 2T overlapping words they will
appear in C(2T, T ) combinations of itemsets. A number of
tricks can be used to reduce the blowup in the number of
groups.

The first idea is to output small groups early even before
the total weights of the items reaches T . An absolute sup-
port of 2 is otherwise too small for most frequent itemset
mining algorithms. An itemset with support smaller than
M records but greater than 2 is output and pruned from
growing larger itemset. M can be set to a small number like
5.



The second idea is to periodically at each level, merge
itemsets with highly overlapping sets of records. We cannot
afford to compare all possible pairs of itemsets and explicitly
check for overlap in RIDs. Instead we rely on hash functions
that can bucket together sets that have high overlap. One
such is the MinHash function that has already been used
successfully in other applications [7, 4, 6]. The MinHash
function provides a signature for a set of RIDs such that
the probability that the signatures of two sets is equal is
directly proportional to their overlap amount (measured as
the ratio of the size of the intersection and the size of the
union). The basic idea is to define a random order of the
record identifiers (RIDs) and select the minimum index in
the new ordering as the signature. This estimate can be
made more accurate by selecting k signatures instead of one
using k independent hash functions to define the random
ordering. Thus, the fraction of common RIDs between two
lists g1 and g2 is estimated as:

S(g1, g2) =
|{i|hi(g1) = hi(g2)}|

k

where hi(g) is the MinHash on set g using the ith hash
function.

We use the k MinHash signatures of each group to collapse
all overlapping lists using the following algorithm. Treat
each list g as a record associated with k words of the form
{1.h1(g), . . . k.hk(g)}. Merge lists that overlap in more than
kp words where p is a parameter of the compaction algo-
rithm. The Probe Cluster algorithm described in Section 3.4
can be used to efficiently create such clusters in a single pass.

2.4 Experimental comparison
Our first step was to evaluate each of these three variants

of existing algorithms for the purpose of performing the T -
overlap join. We performed experiments on various kinds of
sets obtained from two real-life datasets.

The Citation dataset consists of citation entries down-
loaded from CiteSeer by searching on the lastnames of the
100 most frequently referred authors. This gave us 250,000
citations of size 72 MB. The raw data had no underlying
structure. We segmented the text record into five fields
namely, author, title, year, page number and rest using Cite-
Seer’s scripts.

The Address dataset consists of names and addresses
obtained from various utilities and government offices of the
city of Pune in India. The data had ten attributes: “last-
name, firstname, middlename, Address1, · · · Address6 and
Pin” and a total of 500,000 records of total size 40 MB.

From each of these datasets, we derived various kinds
of sets, corresponding to common similarity functions that
would arise when identifying duplicate entries in these lists.
In Table 1 we show a list of four such functions along with
the average number of elements per set and the total num-
ber of distinct elements (or words). The first function, All-
words treats all words in the entire citation entry as the set
whereas All-3grams forms sets out of each 3grams (sequence
of three letters) in the citation, Similarly, we have two kinds
of sets for the address dataset. Because of space limitation,
in this paper we will only report graphs from experiments on
the first function of each of the datasets, namely All-words
from the citation database and All-3grams from the address
dataset.

The experiments were performed on an IBM X220 server

Function Average set size Number of elements
Citation dataset
All-words 24 70000
All-3grams 127 29000
Address dataset
All-3grams 47 37000
Name-3grams 16 14000

Table 1: Similarity functions along with the average
size of the set over which they are computed and
the total number of distinct elements over all sets in
the data

with 2 GB of main memory and dual Xeon processors rated
at 1.1 GHz.

Summary of experiments with initial algorithms.Our
experiments with the above similarity functions and various
values of threshold ranging from 90% to 20% of the average
set size, showed that none of the three algorithms in the
present form can process the whole of the citation or address
dataset within a reasonable number of hours even for the
highest threshold of 87%.

The Pair count algorithm is not a viable option for even
medium sized datasets. Even at 20,000 records the number
of record pairs it generates does not fit in one gigabyte of
main memory. Converting the algorithm to perform an ex-
ternal sorting/aggregation of the pairs is also not an option
because the large intermittent number of pairs will lead to
high disk read/write overheads. This algorithm was pro-
posed in [4] for finding mirror pages where the special hash
signature on word-grams was such that the number of en-
tries per list was a small fraction of the database size. The
signature used there is not guaranteed to return all possi-
ble predicates that match the threshold criteria. We believe
that in most real-life dataset, where the goal is to find ex-
act matches it will be hard to build hash functions that can
avoid the problem of large lists arising from skewed word
frequencies.

The Probe count algorithm required significantly smaller
memory sizes but it spent too much time in the list merge
operation. Even for 50,000 records and the highest thresh-
old of 80%, it required more than 90 minutes to complete.
When run on the entire 250,000 records, the join did not
complete in 16 hours! A well-known optimization is to re-
move stopwords, we will discuss this in the next section.

The Word Group algorithm is competitive for small datasets
but it suffers in terms of the amount of overlap it generates
across groups resulting in large number of implied pairs.
Although the compaction step reduces the amount of this
overlap, significant time is wasted in unnecessary generation
and compaction of groups. Also, with increasing number of
records the memory requirement shoots up sharply. For ex-
ample, at 50,000 records and a threshold of 73% (T = 17),
the memory consumed was more than 2 GB after three levels
of itemset generation. An FP-growth based implementation
took much less memory but did not complete in two hours.
None of these algorithms are meant to be run on such low
support values.

3. OPTIMIZATIONS ON EXISTING ALGO-
RITHMS



The above experimental evaluation found that all three al-
gorithms are either too slow and/or require too much mem-
ory. We present a number of optimizations to make them
more practical.

3.1 Optimized threshold sensitive list merge
The main bottleneck in the Probe count algorithm is the

time required to merge the RID lists obtained during the
probe of the inverted index. As mentioned in Section 2.1,
the established method of doing the merge is to insert the
frontier of the sorted lists in a heap. Then repeatedly find
the minimum and accumulate its weight if successive mini-
mum values are the same.

We propose a mechanism to improve merge efficiency by
exploiting the threshold T . Most real-life datasets follow an
extremely skewed distribution of the frequency of occurrence
of words and most of the time is spent in merging a few large
lists. A known trick to handle skew in the IR community
is to remove words with very high frequency of occurrence
(these are called stop words). We can easily adapt this idea
in computing T overlap joins using Probe count by mark-
ing the top T − 1 highest frequency words as stopwords and
reducing the threshold for a record T by the number of stop-
words it contains. We call this variant the Probe stopWords
algorithm.

We next propose a more gradual method of exploiting the
threshold parameter T . Given a set of lists to be merged, we
sort the lists in increasing order of size. Scanning from the
large end, we select the largest set L of lists with total weight
less than T . Let the remaining lists be S. A record that
satisfies the threshold condition must appear in at least one
of the lists in S. We therefore use the heap data structure
to merge only the lists in S instead of all the lists. The
advantage is that we do not waste time processing records
that appear only in the lists in L. For each record returned
during the merge, we perform a doubling binary search over
each list in L in increasing order of size to accumulate the
true match count. During this search within L, after each
failed search, we check if the remaining lists are sufficient
to meet the threshold condition for the current minimum
record even if the record were to appear in all of them. If
not, we terminate the search early and repeat for the next
minimum record from the heap.

A sketch of the merge algorithm is given below.
We compare the running time of this optimized algorithm

called Probe optMerge with two baselines: the Probe count
algorithm of the previous section, and the Probe stopWords
algorithm (which is Probe count with stop words removed
as described earlier). In Figure 1 we plot against increas-
ing database size and in Figure 2 we plot against increasing
values of thresholds for a fixed database size. We find that
while Probe stopWords does provide some improvement be-
yond the basic Probe count algorithm, the improvement ob-
tained by Probe optMerge is much higher. Running time
reduces by a factor of five to hundred with the threshold
optimization. For example, at a threshold of 21 (87% of
average set size) on a 50000 record database, the running
time reduced from 3000 seconds to 38 seconds — a factor of
80 reduction from Probe count and a factor of 20 reduction
from Probe stopWords. Even for low values of thresholds
(40% of average set size) the running time reduces by more
than a factor of 5. Interestingly, the shapes of the two curves

Algorithm 1 MergeOpt(r, T, I)

1: Let A = l1, l2, . . . lt be the record lists of index I in
decreasing order of length corresponding to the t words
w1 . . . wt of r

2: Compute cumulativeWt(li) =
∑i

j=1 weight(wj)
3: L = l1, l2, . . . , lk such that k is the largest index for which

cumulativeWt(lk) < T
4: Insert frontiers of lists S = A− L in a heap H.
5: while H not empty do
6: pop from H current minimum record m along with

total weight m.w of all lists in H where m appears
7: push in H next records from lists in S that popped.
8: for i = k down to 1 do
9: if (m.w+ cumulativeWt(li) < T ) exit-for;

10: search for m in li using a doubling binary search
method, and if found,

11: increment m.w with weight(word(li)).

for changing threshold (Figure 2) clearly bring out the dif-
ference of the two algorithms in terms of their sensitivity
to threshold. The running time of the optimized algorithm
drops at a rate much sharper than linear as the threshold is
increased.

Threshold optimization on Paircount. We applied sim-
ilar threshold based pruning to the Pair count algorithms
by not generating pairs from the longest set of lists L with
total weight just less than T . After aggregating counts from
the remaining lists S, we binary search for each record in a
pair into the lists in L, terminating early using cumulative
weights as described in algorithm MergeOpt. The perfor-
mance improvement was not as significant as in Probe count
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and the memory requirement continued to be a problem be-
cause of the large number of pairs materialized. The op-
timized Pair count algorithm could go upto 20,000 records
(less than 10% of the total size of the citation dataset) on
one gigabyte memory whereas the original one stopped at
10,000 records.

Threshold optimization on WordGroup. We exploit the
threshold-based optimization in Word Group as follows: us-
ing the set of large lists L as defined earlier, we modify the
candidate generation phase so as to not generate wordgroups
which only contains words in the list L. This is justified be-
cause the total weight of these words is < T . The average
improvement in running time was only 20% with this opti-
mization.

3.1.1 Experimental Evaluation
In Figures 3, 4, 5, and 6 we show a comparison of the

threshold optimized Pair count, Probe count, and Word Group
algorithms for the citation and address datasets for chang-
ing threshold and database sizes. We found the optimized
Probe count algorithm to be superior by almost an order
of magnitude to the other two algorithms. For example,
at 150,000 records and T = 21 Probe count took 5 min-
utes whereas Word Group took 90 minutes. The only re-
gion where Word Group is better than Probe count is when
the threshold T is equal to 5, which is 20% of the average
record size. We do not expect joins with such low thresh-
olds to be commonly deployed. For large absolute values of
thresholds, for example T = 45 in the address dataset, the
gap between Word Group and Probe count is higher because
larger number of possible combinations implies more redun-
dancy amongst the itemsets. The plots for the Pair count
algorithm are not visible in the graph because they only
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completed for very small dataset sizes (20,000) records.
These experiments clearly show that the only practical

option for set overlap joins is Probe count, both in terms
of its memory and processing requirements. We propose a
sequence of three further enhancements to the Probe count
algorithm. For each new enhancements we establish empir-
ically how much it improves running time given all prior
enhancement.

3.2 Single pass build and probe
The Probe count algorithm decouples the process of in-

dex creation and probing performing each of these over two
different passes. When performing self-joins these can be
integrated so that in a single scan of the data as each record
is scanned we first probe into the index, merge matching
record lists and output record pairs. Finally, we insert the
record in the inverted index. In addition to reducing data
passes, a key advantage of this approach is that each probe
step will be performed on the partial list rather than the
full list. This simple optimization reduces the running time
by a factor of two to three on an average as shown in the
graphs in Figures 7 and 8 where ProbeCount optMerge and
ProbeCount online denote the methods without and with
online probe respectively. Joins on the full citation data
which previously took three hours, now completed in a little
over an hour. This range of improvement is also explained
analytically since now the merge cost becomes proportional
to

∑
w nw(nw − 1)/2 instead of

∑
w n2

w.

3.3 Pre-sorting data
The merge time can be reduced even further by pre-sorting

the records in decreasing order of the number of words in
the record. This ensures that records with a large number
of words get processed faster. Since the running time has



a log t factor, it helps to process long records (with large t)
when the size of each RID-list in the index is smaller.

The sorting increases the number of scans but even after
including this cost, we achieve upto a factor of two reduction
in running time as shown in the graphs in Figures 7, 9, 8,
and 10 where ProbeCount-sort indicates the method with
the sort optimization. Previously, processing the 250,000
records took slightly over an hour. This time reduces by
half even after including the time to do the sort.

3.4 Clustering related records
Another strategy to reduce the size of the record lists in

the index, is to cluster together records with highly overlap-
ping words and store in the index pointers to these clusters
of records instead of individual records. The clusters are dy-
namically discovered and maintained in the same sequential
pass that updates the index. Each cluster c is associated
with a disjoint set of records and appears in the inverted
index corresponding to all words that appear in any of the
records in c. When a new record r arrives, we perform the
usual probe-merge operation over the index and get back a
list of clusters C(r) each of whose union of words have T
overlap with r. We need to follow this with a finer grained
join over each record in the cluster. Each cluster maintains
its own “word to record” inverted index. The record r then
probes the indices of each cluster in C(r) and outputs match-
ing record pairs. The next step is to assign r to one of the
existing clusters if there is sufficient similarity or, create a
new cluster. Finally, the inverted index is updated so that
all new words in r correctly point to the cluster of r. In
Section 4 we will discuss details of the exact criteria used
for assigning a record to a cluster.

The final algorithm that includes all four of the optimiza-
tions on Probe count is called Probe Cluster. Figures 7, 9,
8, and 10 show the running time of the final Probe Cluster
algorithm. The improvement obtained by this optimization
will be highly sensitive to the number of high-overlap sets
in the data. The citation dataset had lot more high-overlap
sets than the address dataset. Hence we observe a greater
improvement there.

The final Probe Cluster algorithm is almost two orders of
magnitude faster than the original Probe count algorithm
and more than an order of magnitude faster than the im-
prove Probe stopWords algorithm.

4. LIMITED MEMORY ALGORITHM
The inverted index used in Probe count is of size propor-

tional to the total words occurrences over all records. A
wealth of techniques exist in IR [23, 19] for compressing an
inverted index. These would contribute to pushing the limit
upto which we can hold the index in memory. However, for
large enough data sizes, the available memory will be inca-
pable of holding even the compressed index. Then the only
viable option left is to partition the data. We propose how
in such cases we can effectively and efficiently partition data
into groups of related records.

Unlike in equality joins using partitioned hashing where a
record can be assigned to just one partition, for set overlap
joins a record would typically have to be assigned to multiple
other partitions. The partitioning method used in [21, 18]
for handling set containment joins, is not applicable to our
case since they heavily rely on the fact that every word in a
joining record has to appear in the other record in a join.
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Figure 9: Running time versus threshold for dataset
size = 50000 (Citation data)
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Figure 10: Running time versus threshold for
dataset size = 100000 (Address data)



A good partitioning strategy should minimize the number
of partitions per record without making any one partition
large. Designing such an efficient partitioning strategy can
be extremely challenging. Simple approaches like creating a
different partition for each word, gave terrible performance
for two reasons. First, partitions of frequent words could
be almost as large as the size of the original data. Second,
the amount of work repeated across partitions could be high
since a record would appear in as many partitions as there
are words in it. We can address the first problem by par-
titioning large lists further on words until each list is small
enough. We can address the second problem by compacting
together highly overlapping partitions. Both of these opti-
mizations are available by doing the partitioning using the
Word Group algorithm of Section 2.3 with a minimum sup-
port of S where S is the largest number of records that can
be held in memory. However, experiments showed that even
this advanced method of partitioning gave bad performance.

We now present a method that avoids these problems by
partitioning data on as large a set of words as possible. In
the first phase, a compressed form of the inverted index is
used to create these partitions of highly related records. The
index can be compressed to fit in any available amount of
memory, so that when sufficient memory is available, the
method just reduces to the Probe Cluster method discussed
in section 3.4. Then, in the second phase we create finer
grained indices over subsets of partitions that fit in memory
and perform the joins. We elaborate on the two phases of
the algorithm next.

4.1 First phase: data partitioning
Assume that in a preprocessing sequential pass over the

data we have estimated various statistics like the total num-
ber of records N and the size of the full record-level inverted
index in terms of the number of word occurrences W . Let
the available memory be capable of holding only an index
of size M and M < W .

In the first phase we construct a compressed inverted in-
dex of size no more than M . This index is simultaneously
used to create partitions of the data. The inverted index
can be compressed to fit in the available main memory in
one of two ways:

1. Grouping together words with several overlapping records
so that the number of word entries is reduced

2. Grouping together records with several overlapping words
so that the length of the record list attached with a
word is reduced

The first kind of groups on words can be created in one
pass of the data by storing with each word a MinHash sig-
nature of the RIDs in that word (as discussed in Section 2.3)
and then merging together related words. We observed that
in most data sets although the number of words reduces suf-
ficiently, this does not result in significant reduction in index
size because the larger lists did not overlap enough. The er-
ror in merging unrelated large word lists, leads to bad parti-
tioning decisions causing overall performance to deteriorate.
We will therefore not discuss this method of compressing an
index any further.

In contrast, the second kind of groups on records proved
much more effective in compressing the index at varying lev-
els of detail while retaining enough information to do good

partitioning. We next elaborate on how these record clusters
are created in an online manner.

Based on the statistics collected from the preprocessing
step, we determine Ng the maximum number of clusters that
the first pass inverted index can hold and NR the maximum
number of records that can be held per cluster. We estimate
Ng as N×M

W
. Also, we fix NR = Ng under the assumption

that M ≥
√

W . If this is violated, we can easily extend the
algorithm to do recursive partitioning.

Now we scan the data sequentially. For each record r
currently scanned we perform the following steps:

1. Find all clusters J(r) with which word overlap is ≥ T .
This is the normal probe step of the Probe Cluster al-
gorithm. Record r needs to be joined with each cluster
in J(r) in the second stage.

2. Choose a home cluster h(r) to which r should belong.
The home cluster could be either an existing cluster
with high enough word overlap and size ≤ NR or, a
new cluster provided the number of clusters is ≤ NG.
Section 4.1.1 provides details of how this search for
the home cluster is done efficiently without comparing
a record explicitly to each existing cluster.

3. Insert in the index all new words in h(r) due to the
inclusion of r to h(r).

4. Append to a disk store this record’s partitioning infor-
mation consisting of r, J(r), h(r).

In this phase the only information maintained in memory is
the compressed inverted index and a count of the number of
records in each cluster. The output of this step is a file con-
taining for each record, the set of other clusters with which
it needs to be joined and a cluster to which it is assigned.

4.1.1 Finding the most similar cluster using the op-
timized inverted index

We define a similarity value between a record and a cluster
and attempt to assign r to the most similar cluster. The
challenge here is to find the best cluster without explicitly
computing similarity with each of the existing clusters. We
can define the similarity between a record r and a cluster
c in a number of ways. Consider a simple definition as the
number of common words between r and c.

We first show how with this definition we can efficiently
adapt the probe-merge step of the inverted index to find the
most similar record. The MergeOpt algorithm for merging
strongly exploits the fact that we do not need to ever pro-
duce record pairs with overlap less than T . When memory
is limited we might need to assign a record to a cluster even
when the overlap is less than T . We show how to adapt the
probe method without sacrificing its huge gain.

Initially, we start the probe with a very low threshold
(say 20% of T ), then as we find a matching cluster c of size
< NR and overlap O ≤ T , we increase the threshold to O.
Dynamic increases of thresholds can be efficiently handled
in MergeOpt because that just implies that some lists would
be removed from the heap and put in the direct search list.
Thus, each subsequent cluster returned by MergeOpt will
have an overlap either greater than T or no less than the
threshold of all previous clusters.

We showed how a single index probe can return all clusters
with which r has to be joined and find the most similar
cluster even if its overlap is < T .



We use a similarity function that is slightly better than
overlapping word count. We compute similarity as the ratio
of the overlap size to the union size in the two sets. This
prevents large clusters from getting too large too fast. For
this measure, we update the threshold to be the average of
the previous threshold and the current overlap O when it is
≤ T .

If the highest similarity of a record to the available clusters
is lower than a similarity threshold value and the maximum
number of clusters is still not reached, we create a new clus-
ter. We fix the similarity threshold using a probability cal-
culation derived from the average number of records desired
per cluster and the average number of words per record.
However, we do not go over the details of this estimation
because of lack of space.

Algorithm 2 ClusterMem(D, T )

Estimate Ng, NR in one sequential pass of data D
(optional) External sort data D by decreasing record
length
Initialize index I and the cluster set Cs to be empty
{First stage: data partitioning}
for each record r in D scanned sequentially do

Probe I to find clusters with increasing similarity to r
and clusters J(r) with ≥ T overlap. Choose from these
the highest similarity cluster of size < NR as the home
cluster h(r).
if similarity(r, h(r)) < similarity threshold and |Cs| <
Ng then

create a new cluster h(r) with r.
Insert new words in h(r) in I
Append identifier of r, h(r), J(r) to disk store pInfo.

{Second stage: Finer joins}
Partition Cs into batches Cs1 . . . Csk such that full index
of clusters in each batch will fit in memory.
Divide entries in pInfo based on the k different partitions
pInfo1. . . pInfok on disk
for each partition Csi do

Initialize index Ic for each cluster c ∈ Csi

for each record entry r in pInfoi do
read record r from the database D
join r with each c ∈ J(r)∩Csi by probing index of c
if h(r) ∈ Csi, insert r in index of h(r)

4.2 Second phase: finer grained joins
In the second phase, we go over the partitioning informa-

tion present on disk to efficiently perform the finer grained
joins between records and clusters. For each cluster we need
to create an in-memory inverted index over all records in this
cluster and simultaneously probe it using all records with
which it is supposed to join. We perform this in batches of
clusters whose indices can fit together in memory.

After the first phase, we use the clustering information in
memory to define these batches based purely on the total
number of records in that cluster. Next we go over the
partitioning file and break it up into batches that will be
handled together. We go over each batch in turn, as a new
record key is encountered we fetch the corresponding record
from the database. For all clusters in the current batch
with which it joins, we probe the index, perform the join
and return the record pairs. Finally, if its home cluster is in
the current batch, we insert it into the respective index.

We call this ClusterMem and is described in Algorithm 2.

Efficient disk I/O.The various file I/Os performed in the
partitioning algorithm are optimized for sequential perfor-
mance. When creating the partitions in the first phase, we
perform only appends on the partition file pInfo. We store in
pInfo only identifiers for records and clusters rather than the
entire record. So, the file is not expected to be very large.
In the second phase, this single file is partitioned across
batches. Finally, for each batch the data records within a
batch are fetched in the order in which they were scanned in
the first phase. This makes the database probe efficient. We
do not recommend storing the entire record in the partition-
ing file of each batch because unlike in normal hashing, the
same record could still be spread across multiple batches.
This might cause the database to be replicated across dif-
ferent batches.

4.3 Experimental evaluation
We use the datasets of Section 2.4 to show how our limited

memory algorithm adapts to varying amounts of available
main memory for the index. In Figure 11 we show the run-
ning time of ClusterMem with increasing amount of avail-
able memory M . For the citation dataset, as we decrease the
amount of available memory by a factor of 5, running time
increases only by a factor of 1.5. Further reducing memory
by a factor of 50, increases running time only by a factor
of 2. Similar behaviour is observed for the address dataset.
For example, the full address dataset with 500,000 records
and a threshold of 40 required storage of 20 million word
occurrences in the inverted index and consumed about 2 gi-
gabytes of memory when computed in a single pass. In the
limited memory version with partitioning and the wordpairs
restricted to 2% of the total word pairs, the memory con-
sumed was less than 100 megabytes and the running time
slightly over two times the one-pass version.

5. EXTENDING TO OTHER JOIN PREDI-
CATES

We show how our final Probe Cluster algorithm can be ex-
tended to handle join predicates other than those of the form
“weighted set overlap > a fixed threshold T”. Examples of
such functions are, Jaccard coefficient, cosine similarity on
TF-IDF scores, and edit distance. The basic Probe count al-
gorithm without any of the optimizations is easily adapted
to each case. The challenge is in making sure the various
optimizations that lead upto the final Probe Cluster algo-
rithm can be exploited equally effectively for these other join
predicates. In addition, we want to explore any new opti-
mizations that are possible for these similarity predicates.

We cast the Probe Cluster algorithm in a general frame-
work that can be customized to the various similarity func-
tions arising out of various ways of measuring partial over-
lap between the two sets. We present the general framework
first and in Section 5.2 show how to customize these for dif-
ferent similarity functions. The framework can be defined
in terms of the following three subroutines that will be spe-
cialized differently for each similarity predicate.

Word match score.The score that a match of a word con-
tributes to the overall similarity of a record pair, is some-
times a function of the record instead of being a constant for
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Figure 11: Running time versus index size for different data sizes and thresholds. The first two graphs are
on the citation dataset and the last on the Address data.

each word. So in the general framework we have a scoring
function of the form score(w, r) for each word w, and record
r. When a record pair (r, s) match on a word wi we incre-
ment match amount by score(wi, r) × score(wi, s). Instead
of a product of the scores any other function can also be
easily supported. We assume a product for simplicity.

Threshold.In the general framework the threshold is a
function of the scores attached with a record pair r, s in-
stead of being restricted to be a constant value. We define
the score of a record r as

||r|| =
∑
w∈r

score(wi, r)
2. (1)

We allow the threshold function (denoted by T(r, s)) to be
any non-decreasing function of ||r|| and ||s||. Our goal then
is to return all record pairs such that∑

w∈(r∩s)

score(w, r)× score(w, s) ≥ T(r, s) (2)

Additional Filters. Based on the form of the threshold and
score functions above, specific similarity joins can identify
additional filter predicates filter(r, s) that can help eliminate
pairs of records r, s before finding the set of words that are
common between them. These filters can be applied in a
number of ways. The simplest option is to apply the filter
in the MergeOpt algorithm (Section 3.1) at the time a record
is inserted in the heap H. We discuss other alternatives in
Section 5.3.

5.1 Optimized Probecount in the general frame-
work

In this section we cast the optimizations that led up to
the Probe Cluster algorithm in terms of the above general
framework.

5.1.1 Optimized list merging
We first show how we can adapt the MergeOpt algorithm

of Section 3.1 to perform the threshold sensitive merge even
when the threshold and word weights are not constants. The
inverted index I now stores the score(w, r) with each RID
r in the list lw corresponding to word w. The first step of
MergeOpt that is affected is the splitting of the RID-lists
into sets L and S such that any record s that meets the join
condition of Equation 2 with r will appear in S and L will
be as large as possible. For this we associate with each list

lw a score(wi, I) precomputed as:

score(wi, I) = max
s∈I

(score(wi, s)) (3)

This score of each list can be maintained incrementally as
the index is constructed since it does not depend on the
probe record r.

We estimate the smallest possible threshold value with r
on the current set of records in the index I as

T(r, I) = min
s∈I

T(r, s)

We can exploit the monotonic nature of T() and maintain
with each index just a single minimum record score defined
as minS = mins∈I ||s||. Thus, T(r, I) = T(r, minS). Now,
we can choose L as the largest set of lists which meet the
condition

∑
w∈L score(w, r) × score(w, I) < T (r, I). The

modified MergeOpt algorithm in terms of these generalized
parameters is given next. Note that in the early termination
step 9, we use the more accurate threshold T(r, m) instead
of T(r, I).

Algorithm 3 MergeOptGen(r, T(), I, score())

1: Let A = l1, l2, . . . lt be the record lists of index I in
decreasing order of length corresponding to the t words
w1 . . . wt of r

2: cumulativeWt(li) =
∑i

j=1 score(wj , r)score(wj , I)
3: L = l1, l2, . . . , lk such that k is the largest index for which

cumulativeWt(lk) < T(r, I)
4: Insert frontiers of lists S = A− L in a heap H.
5: while H not empty do
6: pop from H current minimum record m along with

total score m.w of all lists in H where m appears
7: apply filter(r, n) before pushing in H a next record n

from lists in S that popped.
8: for i = k down to 1 do
9: if (m.w+ cumulativeWt(li) < T(r, m)) exit-for;

10: search for m in li using a doubling binary search
method, and if found,

11: increment m.w with score(wi, r)score(wi, s).

5.1.2 Sorting criteria
In Section 3.3 we showed the benefits of pre-sorting records

before insertion in the index such that longer records are pro-
cessed earlier. In the general framework, the corresponding
trick is to sort records in decreasing order of their score as
defined in Eq 1. This order becomes all the more important



in the general case of non-constant thresholds because it im-
plies that the threshold T(r, I) will remain high for a longer
duration resulting in even better performance of MergeOpt.

5.1.3 Cluster summary when clustering related records
In Section 3.4 and Section 4 we proposed storing clusters

of records in the inverted index. In the general case, we
need to store additional statistics with each cluster so that
if a record r joins with any record in a cluster C, then r
will satisfy the join condition with C. With each cluster we
store an overall score to be used for calculating thresholds
as ||C|| = mins∈C ||s|| and with each cluster-word pair, we
store a value of score calculated over records in the cluster
as

score(w, C) = max
s∈C

score(w, s).

5.2 Example predicates
We proceed by going over a list of alternative join pred-

icates and for each discussing how to fit in the above opti-
mization framework.

5.2.1 Jaccard coefficient
The Jaccard-coefficient expresses the similarity between

two sets r and s as the ratio between the number of words
in the intersection of r and s and the number of words in the
union of r and s. The join predicate is of the form Jaccard-
coefficient(r, s) ≥ f where f is a fractional value. We show
how this predicate fits in the framework above.

Word match score.score(w, s) = 1.

Threshold.We need to find the largest T (r, s) such that

if Jaccard(r, s) = |r∩s|
|r|+|s|−|r∩s| ≥ f , then T (r, s) ≤ |r ∩ s|.

Rewriting we get

|r ∩ s| ≥ |r|+ |s|
1 + 1/f

= T (r, s)

Additional Filters. A filter condition that is applicable in
this case is that the ratio of the number of words between
the two sets should be ≥ f , that is, we can filter all pairs r, s

where min( |r||s| ,
|s|
|r| ) < f before checking for common words

between the two.
We can easily extend this to the weighted case where each

word is associated with a weight and the intersection and
union is on the weighted words.

5.2.2 Cosine similarity on TF-IDF scores
In this case, each word w in a record r has a weight that

is inversely proportional to w’s frequency in the input data
corpus and directly proportional to its frequency in r. The
exact function can take various forms: one popular variant
is to express the TF-IDF score of a word w in a set r as

TF-IDF(w, r) = (1 + log fr(w, r)) log(1 +
N

fr(w)
)

where N is the number of records, fr(w) indicates the total
frequency of the word over all sets. The motivation is to
give more weightage to terms that occur rarely in the entire
dataset but frequently in a set. This measure is popularly
used in information retrieval for measuring the relevance of a

document (viewed as a multiset of words) to a query (viewed
as a set of words). Each document is then represented as a
vector on words with the weight of the word forming the co-
ordinate. The cosine of the angle between the two vectors is
the similarity. Thus, the similarity between two documents
s and r is defined as the dot product of the TF-IDF vectors
divided by the norm of the vector for each set.

cosine(r, s) =

∑
w TF-IDF(w, r).TF-IDF(w, s)

||r|| ||s||

where norm of a vector

||s|| =
√∑

w

TF-IDF(w, s)2

The join predicate is of the form cosine(r, s) ≥ f where f is
a fraction.

Word match score.In this case, the weight of each word
is also dependent on the record in which it appears and is
defined as

score(w, s) =
TF-IDF(w, s)

||s||

Threshold.The threshold T (r, s) = T (r, I) = f is indepen-
dent of record pair.

For this function L will consist of lists that are both large
and have low weightage. This is because the IDF scores of
each word is inversely proportional to the number of records
that contain it. Therefore, this optimization will be even
more effective for TF-IDF matches than unweighted record
match.

5.2.3 Edit-distance
Edit distance is hard to evaluate exactly without a quadratic

comparison of pairs. However, as pointed in [11] there are
several simpler conditions that all pairs within k edit dis-
tance should satisfy. For two strings r, s if edit-distance(r, s) <
k then, |length(r) − length(s)| ≤ k, and if n12 denotes the
number of matching q-grams between the two strings, then
n12 ≥ max(length(r), length(s))− 1− q(k − 1).

The q-grams match predicate can be easily computed by
treating each string as the set of q-qgrams in it and then
performing a set-join.

Word match score.score(w, s) = 1.

Threshold.T (r, s) = max(length(r), length(s))−1−q(k−
1) and T (r, I) = T (r, m) where m = argmins∈I length(s),
the shortest record.

Additional Filters. The filter condition that is applicable
between two records r and s is that |length(r)−length(s)| ≤
k.

5.3 Efficient evaluation of filters
All the filter conditions we presented above can be ex-

pressed as range conditions of the form |l(r) − l(s)| ≤ k
where l() is any ordered property of the record. In the case
of Jaccard coefficient, l(r) was log of the number of words
in r and k was log(f). In the case of edit-distance, l(r) was
the length of the string.



The simplest option is to apply the filter in the MergeOpt
algorithm (Section 3.1) at the time a record is inserted in the
heap H. A second option is to range partition the records
into possibly overlapping sets of records such that all record
pairs that satisfy |l(r)− l(s)| ≤ k are together in at least one
partition. Then invoke the Probe Cluster algorithm on each
partition. This option is only useful when the spread of l
values is such that it is possible to create partitions without
too much overlap.

The range filter can be thought of as a band join for which
efficient algorithms exist in the database literature [10, 16,
20]. However, these methods produce as output pairs of
records whereas our goal is to create large partitions on
which we can invoke the T overlap join algorithms. We
next present three algorithms for creating such partitions.

Simple.A simple algorithm is to first sort the records on
l(). Then scan the sorted data to grow a window of records
as long as the first record in the window is within range k
of the current record scanned. If not, output the current
window as a partition and mark the start of a new window
by finding the next record in the window that is within range
r of the current record.

This method outputs a huge number of overlapping records
between adjacent windows. Often merging adjacent win-
dows that have significant overlap is better even if it intro-
duces some extra pairs that are outside the range constraint.
We propose a greedy algorithm for this merge.

Greedy.In the above algorithm delay the output of a win-
dow wprev until the following window wcurr is found. Then,
merge the two adjacent window-groups wprev and wcurr if
that will lead to a smaller total join cost than leaving them
as two separate partitions. This algorithm is not guaranteed
to find the most compact partitioning.

Optimal. The optimal grouping can be found using a dy-
namic programming algorithm on the windows of the sim-
ple algorithm as follows: Let w1 . . . wn denote n adjacent
overlapping windows. Draw a weighted graph with nodes
consisting of each window and a start node w0. The weight
of edge (i, j) between wi and wj is the join cost of the parti-
tion formed by merging windows wi+1 . . . wj . The shortest
path between nodes w0 and wn corresponds to the most effi-
cient partitioning. This algorithm is computationally more
expensive than the previous two but the better quality clus-
ters lead to significantly reduced aggregation time.

In none of our datasets and similarity predicates did the
partitioning option prove to be better than the simpler op-
tion of evaluating the filter at the time of list merging. How-
ever, this could be useful when the spread in the l() values
of records is very large.

5.4 Experimental evaluation
We establish that our generalization of the various join

predicates is effective by performing the following experi-
ments. We compare the running time of the different join
predicates as a function of the number of matched pairs out-
put for a fixed input database size. If the running time for a
fixed size of output pairs is the same, irrespective of the join
predicate used to produce it, then we have evidence that we
are able to optimize these more complicated join predicates
at least at the same level as the simpler fixed overlap predi-
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Figure 12: Running time as a fraction of output size
for two different input data sizes: 50,000 (top) and
20,000 rows (bottom).

cate. Figures 12 show such graphs for three join predicates:
intersect-size, Jaccard coefficient, and TF-IDF based cosine
scores. Each graph was generated for a fixed size of the
dataset and with changing values of threshold giving rise to
different number of output pairs. We observe from the graph
that the running times of the three functions are within a
factor 20-30% of each other.

6. RELATED WORK
Existing algorithms for set joins in the database litera-

ture are limited to strict containment [21, 15, 18, 17], equal-
ity [17] and non-zero overlap joins [17]. The main techniques
proposed in earlier work: signatures [15], partitioning [21]
and adaptive partitioning [18] critically depend on the exact
containment property and do not extend to partial overlap
predicates.

There is extensive related work in the IR community on
designing efficient methods for indexing and compressing
text data [23] viewed as a set. The primary focus there
is to efficiently answer keyword queries using optimized in-
verted indices. Our best performing algorithms are based on
the same indexing method. Our contribution is in adapt-
ing these for joins for which related work is limited. For
instance, the idea used in our MergeOpt algorithm for pro-
cessing lists in increasing order of length is also deployed in
IR when intersecting lists for answering conjunctive queries.
Our contribution is in extending these to do list merging for
T overlap matches, a problem harder than list intersection.
The extensive techniques developed in IR for compressing an
in-memory inverted index would be useful in our case too.
The partitioning method we have developed are orthogonal
to these compression techniques. There is also work in IR
for constructing disk-resident inverted indices under limited



memory conditions [23, 14]. Some of these are based on data
partitioning. However, the partitions in this case are very
different from ours which are meant to group related records
together for similarity joins.

In this paper we have concentrated on returning exact join
results. Several previous work [8, 4, 7, 3, 12, 5], have con-
centrated on the problem of returning approximate answers
to such similarity functions. Approximate methods make it
easy to apply various sampling (as in [8] and [12]) and signa-
ture techniques (like MinHash in [4, 7, 3]). These are not ap-
plicable directly to the exact case. Signature-based methods
have been evaluated vis-a-vis indexing methods for simpler
exact joins like containment, equality and non-zero overlap
joins in [17] and have not been found to be effective. In ad-
dition, signatures are harder to design for exact T overlap
joins of the variety we address in this paper. Another form of
similarity join is addressed in [9] where the goal is to return
the top r most similar record pairs based on TF-IDF match.
The idea there is to use an A∗ search driven by bounds on
scores derived from TF-IDFs weights. Although the details
are different, the early termination and split strategies used
in MergeOpt algorithm bear resemblance to the A∗ search.

7. CONCLUSION
In this paper we presented an efficient algorithm for join-

ing sets based on various similarity predicates. Starting from
existing indexing methods in the IR literature we have de-
veloped a practical algorithm by incorporating a number of
optimizations. Each optimization is individually analyzed
for its usefulness in improving running time. The most sig-
nificant of these was the threshold sensitive list merge pro-
cedure. This optimization alone was responsible for one to
two orders of magnitude improvement in running time.

We propose a method of clustering records online so as
to make the algorithm adapt to limited amount of memory.
There are two interesting ideas in this part: (1) the way
the index is searched with increasing threshold to efficiently
return the most similar cluster, and, (2) the partitioning
method that avoids the problems of data skew and redun-
dant computation while creating clusters based on similarity
along multiple words rather than single words. Even as the
amount of memory is reduced by a factor of 50 running time
stays within a factor of 2.5 with our method

We cast the algorithm in a general framework that makes
it possible to easily exploit all of these optimizations to sev-
eral other non-trivial joins like Jaccard coefficient and cosine
similarity.
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