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ABSTRACT
Domain adaptation refers to the process of adapting
an extraction model trained in one domain to another
related domain with only unlabeled data. We present a
brief survey of existing methods of retraining models to
best exploit labeled data from a related domain. These
approaches that involve expensive model retraining are
not practical when a large number of new domains have
to be handled in an operational setting. We describe
our approach for adapting record extraction models that
exploits the regularity within a domain to jointly label
records without retraining any model.

1. INTRODUCTION
The construction of models employed by information

extractors is an expensive process requiring tedious ef-
fort either in collecting labeled data or hand coding the
models. In many cases, it is possible to substantially
reduce this effort if a model from a related domain is
available. For example, we might find a model for ex-
tracting people names from news articles, while we are
actually interested in extracting people name mentions
in emails. Or, we find a model to identify the polarity
of sentiment about home appliances and we are inter-
ested in determining the sentiment about audio equip-
ment. In both these cases, although our target domain
is related to the original domain, it has a systematic
difference so that a blind application of the model is
not expected to provide high accuracy. Even within the
same domain, an extraction model often needs to be ap-
plied on unstructured sources that within themselves
display a regularity not foreseeable at the time of model
creation. For example, a model trained to extract fields
of citation records can be improved significantly by ex-
ploiting the regularity of multiple strings from the same
web page.

Such forms of domain adaptation will be essential in
any large scale information extraction system involving
multiple kinds of extraction tasks on evolving and open-
ended sources. While domain adaptation is applicable
both for manually-coded and machine learning mod-
els, in this article we concentrate on machine learning
models. We will present an overview of the main tech-

.

niques that have emerged recently from machine learn-
ing and natural language processing communities, and
then present an overview of our research in the area.

2. BASICS OF LEARNING-BASED IE MOD-
ELS

Many IE tasks, including entity extraction, relation-
ship extraction, and sentiment extraction, are formu-
lated as feature-based prediction models. These models
predict a label y from a space Y given an input x based
on a feature vector f(x,y) ∈ RK that maps any (x,y)
pair to a vector of K reals. The feature vector is de-
fined by the user and provides a convenient abstraction
for capturing many varied kinds of clues known to aid
the extraction task. The model associates a weight vec-
tor w corresponding to the feature vector f and the
predicted label is simply the y with the highest value
of w · f(x,y). We briefly illustrate how this works for
different kind of extraction tasks. More details can be
found in this survey [11].

In sentiment extraction, the space Y of possible pre-
dictions is positive or negative and an entry in the fea-
ture vector is typically the counts of occurrences of a
particular word or frequent word bigram in the input
document x.

In relationship extraction, the input x is a sentence
and two marked entity strings in it. The task is to pre-
dict the kind of relationship that exists between the en-
tity pair. The space Y consists of possible relationship
types as defined by the user and a special label “other”
indicating none of the above. The feature vector entries
capture various syntactic and semantic relationships be-
tween the strings, such as the bag of words between the
two mentions, the parts-of-speech information of words
adjacent to the mention, and so on.

In entity extraction, the task is to label words in a
sentence with one of a fixed set of entity types. The
prediction y is therefore a vector of length n for an in-
put sentence of n words and thus the space Y of possible
labels is mn where m is the number of possible entity
types. Instead of explicitly searching over this exponen-
tial sized space, we assume that feature vector f(x,y)
decomposes as a sum of local features that apply over
label pairs of adjacent words. This decomposition is ex-
ploited for efficient inference over the space of variables
y. The local feature vector entries consist of various



properties of a word and its neighboring words. Typ-
ical properties useful for entity extraction are the case
pattern of the word, its orthographic type, match in a
dictionary of known types, its part of speech, and so on.

2.1 Training the weight vector w
During training we are given a labeled set src =
{(x`,y`)}N`=1 consisting of correct input output pairs
and our goal is to find the value of w that will mini-
mize error on future inputs. This training objective is
expressed as:

min
w

∑
`

loss(x`,y`,w, f) + C||w||γ (1)

where loss(x`,y`,w, f) is a function that measures for
input x` the error in predicting the label ŷ = argmaxyw·
f(x,y) given that its correct label is y`. A popular form
of the loss function is w · f(x`,y`) − log

∑
y exp(w ·

f(x`,y)). This form of the loss function is both efficient
to train and has been found to generalize well to future
instances when they follow the same distribution as the
training data. The second term C||w||γ (with γ usually
1 or 2) prevents the model from overfitting w to the
labeled set.

2.2 Domain adaptation
In domain adaptation we are faced with the following

situation: there is labeled dataset src from one or mul-
tiple domains but on the domain on which we need pre-
dictions we only have an unlabeled pool dest. Various
existing domain adaptation techniques tend to retrain
the model after seeing the examples in dest [13, 8, 1,
12, 3, 2]. We first give an overview of these methods in
Section 3. Next, we give a summary of our method for
domain adaptation in record extraction that does not
require retraining. Such methods are more useful in
settings where we need to handle many target domains
and retraining the model for each domain is expensive.

3. CURRENT DOMAIN ADAPTATION TECH-
NIQUES

The key idea in the various methods of adapting the
labeled examples in src to provide high accuracy on
dest is to choose a representation of the src examples
that make them close to the dest distribution. We
discuss three proposed methods of achieving this goal.

3.1 Select relevant examples
One strategy to make the examples in src relevant to

classifying examples in dest is to differentially weight
examples in src such that higher weights are assigned
to examples that are similar to our target examples.
Let βi denote the weight assigned to the ith example
in src. The training objective (Eq. 1) is modified such
that the loss of the i-th example is multiplied by βi. We
now discuss how to set βi.

The ideal weight of each example x in src should be
the ratio of its probability in the target and the source
domains. As shown in [13], this is the optimum way to

align the source distribution to the target distribution.
However, this approach is not practical because we do
not have a probability distribution over the examples
in each domain. Estimating the distribution through
the samples is difficult because in general, x has many
dimensions. Therefore, a number of methods have been
proposed to estimate the β values directly without first
estimating the probability of x in each of the domains.

A mean matching method proposed in [8] assigns weights
βi to the examples in src such that the mean of the
weighted examples in src matches the means of the ex-
amples in dest. In contrast, [1] uses another classifier
to estimate the probability that an example is from the
target distribution as against the source distribution. In
training this classifier, the examples in dest are treated
as positive examples and the ones in src are treated as
negative examples.

3.2 Remove irrelevant features
The above method of weighting entire examples is not

effective when a few features cause the two domains to
differ systematically from each other. For example, if
we have a feature called “Is capitalized word” in the
source domain but in the target domain every letter
is capitalized, then no instance weighting scheme can
align the two distributions. In such kinds of mismatch a
more effective method of domain adaptation is to differ-
entially weight features instead of examples. A method
proposed in [12] is to assign a weight λj to each fea-
ture j that is equal to the difference in the expected
value of the feature in the two domains. The model is
then retrained by adding a third term

∑
j λj |wj | to the

training objective in Equation 1 that penalizes features
with large λj values so that their role in the final classi-
fication is minimized. This method has been shown to
provide significant accuracy gains on entity extraction
tasks with varying training and test domains [12].

3.3 Add related features
A third strategy proposed in [3, 2] is to add new fea-

tures to the target domain by aligning them to anchor
features in the labeled source domain. Anchor features
are those that are frequent in the two domains and are
strongly correlated to the class labels. As an exam-
ple, consider the task of sentiment extraction where
the source domain has labeled book reviews and the
target domain has unlabeled home appliance reviews.
Words like “good”, “dissatisfied” and “excellent” that
are present in both the domains and strongly correlated
with the class labels in the source domain are good can-
didates for such anchor features. Once a set of anchor
features is determined, we find the set of those features
from the target and source domains that are strongly
correlated with each anchor feature. For example, with
the anchor feature “excellent”, in the book domain we
might find words like “engaging” and in the appliance
domain words like “reliable” strongly associated with it.
This establishes a correspondence between features “en-
gaging” and “reliable”. We refer the reader to [3, 2] for
more details on how such a correspondence is quantified



and exploited during model retraining.

4. DOMAIN ADAPTATION FOR RECORD
EXTRACTION

We now present our approach for domain adaptation
which does not do any model retraining. Our approach
uses the key observation that record labelings inside a
domain tend to have regularity in many aspects. For ex-
ample, in a citation labeling task, records in the same
list tend to use the same ordering of labels. They also
tend to use the same font/formatting style for specific
labels, such as bold Titles in one domain, or italicized
Titles in another. Thus, regularities tend to exist in
each domain, although the nature of each such regu-
larity might vary from domain to domain. To illustrate
further, Table 1 lists citation records from two domains.
All labelings in the first domain start with Author, while
those in the second domain start with a Title. All the
titles in the second domain are also hyperlinks to the
paper. We call each such regularity-rich aspect a prop-
erty.

Properties are not confined to citation labeling tasks.
Infact, they exist and can be exploited in any domain
whose records enjoy regularity. Consider the task of ex-
tracting products, where each catalog corresponds to a
domain. In one catalog, each record might end a prod-
uct price with USD (thus showing regularity), while in
another, prices might be listed with EUR. Table 2 lists
more properties for these two tasks. Table 1 illustrates
the regularity of some of the properties on the citation
labeling task.

The key idea behind using properties for domain adap-
tation is as follows. If we use our error-prone base model
on each record in dest independently, the noisy output
labelings will generally not enjoy regularity simply be-
cause regularity in the domain is not captured at all,
coupled with the errors made by the model. However,
if we jointly label all records in dest together, and pro-
vide an extra incentive for the output labelings to be
regular with respect to the affected set of properties,
many of the errors made earlier will be corrected. As
an example, again consider the property First Label that
returns the first label in a citation record. If under the
base model, a majority but not all records in dest ex-
hibit regularity, then the extra incentive in our scheme
will push the remaining records to conform with the
other records and take on the correct first label.

Keeping this high-level picture in mind, we describe
our approach with the following components:

1. A collection of instance-labeling pairs {(xi,yi)}Ni=1.
Instances and their labelings are usually structured,
e.g. xi can be a citation record and yi its biblio-
graphic segmentation. Each yi is probabilistically
modeled using a feature-based prediction model as
discussed in Section 2. These models are also pop-
ularly known as Markov Random Fields (MRFs)
in machine learning literature [9]. From Section 2
recall that the scoring function for assigning la-
beling yi to xi is w · f(xi,yi), which decomposes

over the parts c of the MRF as w · f(xi,y) =∑
cw · f c(xi,yc). For sentence-like records, a part

c is usually a word or a pair of adjacent words, as
explained in the entity extraction task in Section 2.

2. A set P of properties where each property p ∈ P
includes in its domain a subset Dp of MRFs and
maps each labeling y of an input x ∈ Dp to a
discrete value from its rangeR′p. These properties
predominantly take only one value for records in
a fixed domain. The dominant value however can
vary from domain to domain. For tractability, we
assume that each property decomposes over parts
of the MRF. We discuss decomposable properties
in Section 4.1.

3. A clique potential function Cp({p(xi,yi)}xi∈Dp
)

for each property p. We call it a clique potential
because each property p is thought of as a clique,
and each member MRF in Dp a vertex of that
clique. This potential is maximized when all the
member MRFs get labelings with the same prop-
erty value. By including these potentials in our
objective, we can encourage conformity of prop-
erties across labelings of member MRFs. Various
symmetric potential functions are discussed in Sec-
tion 4.2.

Our aim is now to jointly label the N records so as
to maximize the sum of the individual MRF specific
scores from our trained model, and the clique potentials
coupling these MRFs via their property functions. This
is given by:

max
(y1,...,yN )

N∑
i=1

w · f(xi,yi) +
∑
p∈P

Cp({p(xi,yi)}i∈Dp)

(2)
Equation 2 is NP-hard to optimize even for simple

cases. Hence, we look at an approximate optimiza-
tion method instead. Our method uses the well-known
paradigm of message passing in a cluster graph [5]. Mes-
sage passing breaks the computation into two kinds
of efficient subroutines: one that exploits the decom-
posability of the properties, and the other uses algo-
rithms tailored to the specific symmetric potentials be-
ing used.

In the subsequent sections, we discuss decomposable
properties, symmetric clique potentials, and the joint
labeling computation algorithm.

4.1 Decomposable Properties
A property maps a (x,y) pair to a discrete value in

its range. Table 2 gives examples of some properties for
various record extraction tasks.

For tractability, we consider only decomposable prop-
erties, viz. properties that can be broken over the parts
c of the MRF of labeling y, just like our base model
w · f . We formally describe decomposable properties
as:

Definition 4.1. A decomposable property p(x,y) is
composed out of component level properties p(x,yc, c)



Domain Record p1 p2 p3 p4

1 Bhardwaj, P. (2001). Delegating Pricing Decisions. Marketing Science 20(2).
143-169.

Author ’.’ Venue Volume

1 Balasubramaniam, S. and P. Bhardwaj (2004). When not all conflict is bad:
Manufacturing marketing conflict and strategic incentive design. Management
Science 50(4). 489-502.

Author ’.’ Venue Volume

1 Bhardwaj, P. and S. Balasubramaniam (2005). Managing Channel Profits: The
Role of Managerial Incentives. Forthcoming Quantitative Marketing and Eco-
nomics.

Author ’.’ Venue End

2
A Simulator for estimating Railway Line Capacity. In APORS - 2003.

Title Start Venue Year

2
Scheduling Loosely Connected Task Graphs. Journal of Computer and System
Sciences , August 2003 .

Title Start Venue Month

2
Devanagari Pen-written Character Recognition. In ADCOM - 2001 .

Title Start Venue Year

Table 1: Illustration of properties p1, . . . , p4 applied to records from two bibliographic domains.

Id Property p(x,y) Range Decomposable?
p1 First non-Other label in y Y \ {Other} Yes
p2 Token before Title in y All seen tokens ∪ {Start,NoTitle} Yes
p3 First non-Other label after Title in y Y \ {Other} ∪ {End,NoTitle} Yes
p4 First non-Other label after Venue in y Y \ {Other} ∪ {End,NoVenue} Yes
p5 Does Title appear after Author in y? Boolean ∪ {NoAuthor,NoTitle} No
p6 Number of Titles in y N ∪ {0} No
p7 Label of fixed token t in y Y Yes

p8 HTML tag containing ProductName in y All HTML tags Yes
p9 Token after Price in y? USD,GBP,EUR,CAD etc. Yes
p10 Lowest common ancestor of ProductName and Price Seen DOM XPaths No

Table 2: Examples of properties for Bibliographic record extraction and Product extraction. Y is the
set of all labels.

defined over parts c of y. p : (x,yc, c) 7→ Rp ∪ {∅}
where the special symbol ∅ means that the property is
not applicable to (x,yc, c). p(x,y) is composed as:

p(x,y) ,

{ ∅ if ∀c : p(x,yc, c) = ∅
v if ∀c : p(x,yc, c) ∈ {v, ∅}
⊥ otherwise.

(3)

The first case occurs when the property does not fire
over any of the parts of y. The last case occurs when y
has more than one parts where the property has a valid
value but the values are different. The new range R′p
now consists of Rp and the two special symbols ⊥ and
∅.

We show that even with decomposable properties we
can express many useful types of regularities in labeling
multiple MRFs arising in domain adaptation.

Example 1. Consider a property that expresses regular-
ity in the order of labels in a collection of bibliography
records. Let x be a bibliographic record and y its la-
beling. Define property p3, which returns the first non-
Other label in y after a Title. A label ’End’ marks the
end of y. So Rp contains ’End’ and all labels except
Other. So when p3 is applied to a part c labeled Title,
it returns the first non-Other label in y after c. Thus,

p3(x, yc, c) ,


β (yc = Title) and (yc+i = β) and

(yc+j = Other, j = 1, . . . , i− 1)
End (yc = Title) and (y ends at c)
∅ yc 6= Title

Therefore,

p3(x,y) ,


∅ y has no Title
β β is the first non-Other label after each

Title in y
⊥ otherwise

Example 2. Consider a property, denoted by p2, whose
range is the space of tokens. This property returns the
identity of the token before a Title in y. So,

p2(x, yc, c) ,

{
xc−1 yc = Title and (c > 0)
’Start’ yc = Title and (c = 0)
∅ yc 6= Title

Therefore,

p2(x,y) ,


∅ No Title in y
’Start’ The only Title in y is at the start
t All Titles in y preceded by token t
⊥ y has multiple Titles with different

preceding tokens

4.2 Symmetric Clique Potentials
A symmetric clique potential depends only on the

number of clique vertices taking a property value v, de-
noted by nv, and not on the identity of those vertices.
In other words, such a potential is invariant under any
permutation of its arguments and the potential’s value



separator on property value

p1

p2

Figure 1: Cluster graph for a toy example
with three chain-shaped MRF instances and two
properties.

is derived from the histogram of counts {nv|∀v ∈ V },
where V is the set of possible property values. We de-
note this histogram by the vector n. An associative
potential is maximized when nv = n for some v, i.e. one
value is given to all the clique vertices.

Three popular associative clique potential families are
listed in Table 3. We specifically discuss a very promi-
nent symmetric clique potential — Potts potential, which
we also use in our experiments.

Potts Potential
The Potts potential corresponds to the negative Gini
index of the property values at the clique vertices:

CPotts = C(n1, . . . , n|V |) =
λ

n

∑
v∈V

n2
v (4)

where n is the number of vertices. Potts potential counts
(upto a constant) the number of clique edges, both
of whose end vertices have the same property value.
Potts potential have been extensively used in statistical
physics in the garb of Ising models, in image pixel la-
beling tasks e.g. [4], in associative Markov networks [15]
to model associative labeling tasks, and in skip-chain
MRFs [14] to model non-local associative dependencies
between repeated occurrences of a word.

4.3 Joint Record Labeling
The individual MRFs coupled with symmetric clique

potentials form a natural cluster graphical model, such
as the toy model shown in Figure 1. To compute the la-
belings of all MRFs jointly, we perform message passing
on this cluster graph.

Message passing on the cluster graph can be seen as
an optimization-by-parts heuristic to solve Equation 2.
In a single iteration of this heuristic, each cluster com-
putes its own belief of what its own labeling should
be and passes this message to the neighboring clusters,
which in turn compute their beliefs about the labels
of their member nodes. These computations are inter-
dependent because the clusters have overlapping mem-
bers.

In our setup, this leads to computing messages from
MRFs to property cliques and vice versa. Complete
message computation details are provided in [7]. We
only provide the outline here. First, to compute a mes-
sage from an MRF to a property clique, we look at the

message computation algorithm inside the MRF and
fold-in the property. Folding is possible because the
properties are decomposable in the same way as the
MRF model. Second, to compute the reverse message,
we invoke highly efficient potential-specific combinato-
rial algorithms at the clique. Some such algorithms are
presented in [6] and [7] for a variety of potentials.

After sufficient rounds of interaction via message pass-
ing, each MRF reports its best labeling independently.

5. EXPERIMENTAL RESULTS
We demonstrate the domain adaptability of our ap-

proach and show that using a good set of properties can
bring down the test error significantly.

We focus on the bibliographic information extraction
task, where the aim is to adapt a base model across
widely varying publications pages of authors. Our dataset
consists of 433 bibliographic entries from the webpages
of 31 authors, hand-labeled with 14 labels such as Ti-
tle, Author, Venue, Location and Year. Bibliographic
entries across different authors differ in various aspects
like label-ordering, missing labels, punctuation, HTML
formatting and bibliographic style.

Varying fractions of 31 domains were used to train a
base model. We used standard extraction features in a
window around each token, along with label transition
features [10].

For our collective labeling framework, we use proper-
ties p1, . . . , p4 from Table 2. We use Potts potential
for each property, with λ = 1. Some of these proper-
ties, e.g. p3, operate on non-adjacent labels, and thus
are not Markovian. This can be easily rectified by mak-
ing ’Other’ an extension of its predecessor label, e.g. an
’Other’ segment after ’Title’ can be relabeled as ’After-
Title’.

The performance results of the collective model with
the above properties versus the baseline model are pre-
sented in Table 4. For the test domains, we report token
F1 accuracy of the important labels — Title, Author
and Venue. F1 accuracy of a label l is the harmonic
mean of the precision and recall of l, defined as:

Prec(l) =
# tokens correctly marked l by the model

# tokens marked l by the model

Recall(l) =
# tokens correctly marked l by the model

# tokens with true label l

F1 accuracies reported in Table 4 are averaged over
five trials. The collective model leads to up to 25%
reduction in the test error for Venue and Title, labels
for which we had defined related properties. Figure 2
shows the error reduction on individual test domains
for one particular split when five domains were used for
training and 26 for testing. The errors are computed
from the combined token F1 scores of Title, Venue and
Author. For some domains the errors are reduced by
more than 50%. Collective inference increases errors
in only two domains. In those domains, a majority of
the labelings output by the base model take on wrong
property values. Thus by encouraging conformity, the



Name Form Remarks
max maxv fv(nv) fv is a non-decreasing function
sum

∑
v fv(nv) fv non-decreasing. Includes the Potts potential = λ

n

∑
v n

2
v

majority fa(n), where a = argmaxvnv fa is typically linear

Table 3: Various families of symmetric clique potentials. n = (n1, . . . , n|V |) is the histogram of property
values in the clique.

Title Venue Author
Train % Base CI Base CI Base CI

5 70.7 74.8 58.8 62.5 74.1 74.3
10 78.0 82.1 69.2 72.2 75.6 75.9
20 85.8 88.6 76.7 78.9 80.7 80.7
30 91.7 93.0 81.5 82.6 87.7 88.0
50 92.3 94.2 83.5 84.5 89.4 90.0

Table 4: Token-F1 of the Collective and Base
Models on the Bibliographic Extraction Task

0
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Figure 2: Per-domain error for the base and col-
lective inference (CI) model

remaining labelings also take on the wrong value causing
a slight dip in accuracy.

6. CONCLUSION
We presented a mini-survey of domain adaptation ap-

proaches for information extraction. We summarized
our proposed approach that jointly labels records in
a target domain without retraining any model. Our
framework encourages records to jointly take labelings
that are conformant with respect to a set of domain-
independent properties. We also presented the joint-
labeling algorithm for the new graphical model that
results from our setup. Finally, we demonstrated our
framework on a bibliographic task, where we showed
significant gains by exploiting intra-domain regularity.
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