
ALIAS∗: An Active Learning led Interactive
Deduplication System

Sunita Sarawagi
sunita@it.iitb.ac.in

Anuradha Bhamidipaty
anu@it.iitb.ac.in

Alok Kirpal
alok@it.iitb.ac.in

Chandra Mouli
mouli@it.iitb.ac.in

Indian Institute of Technology Bombay

Abstract

Deduplication, a key operation in inte-
grating data from multiple sources, is a
time-consuming, labor-intensive and domain-
specific operation. We present our design of
alias that uses a novel approach to ease this
task by limiting the manual effort to input-
ing simple, domain-specific attribute similar-
ity functions and interactively labeling a small
number of record pairs. We describe how ac-
tive learning is useful in selecting informa-
tive examples of duplicates and non-duplicates
that can be used to train a deduplication func-
tion. alias provides mechanism for efficiently
applying the function on large lists of records
using a novel cluster-based execution model.

1 Introduction

Deduplication is a key operation in integrating data
from multiple sources. The goal of the alias dedu-
plication system is to automate the manual, time-
consuming process of removing duplicates in large
semi-structured lists.

The main challenge in this task is defining a ro-
bust deduplication function that can capture when two
records refer to the same entity in spite of the various
inconsistencies and errors in data. alias automates
this task by learning the function from examples of
duplicates and non-duplicates.

Early experience on real-life datasets showed that
the quality of the learnt deduplication function crit-
ically hinges on being able to provide a large cover-

∗Active Learning led Interactive Alias Suppression

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

ing and challenging set of examples that bring out the
subtlety of the deduplication function. Finding such
examples is not easy because real-life data often has
unexpected kinds of inconsistencies between duplicates
hidden apart in large record lists, and spotting them
involves tedious quadratic searches.

alias provides an innovative method of interac-
tively discovering such challenging training pairs in
large lists through the use of active learning [1]. In
contrast to an ordinary learner that trains a classifier
using a fixed set of training instances, an active learner
can actively select from a large pool of unlabeled in-
stances, a subset that when labeled by the user will
provide the highest information gain to the learner.
The challenge in active learning is to pick the small-
est number of examples that the user needs to label to
teach the learner how to separate the duplicates from
the non-duplicates.

Our experience with real-life datasets showed that
alias reduced the number of labeled training pairs
required to reach peak accuracy by two orders of mag-
nitude. After labeling less than 100 pairs selected in-
teractively, the learnt deduplication function achieved
the peak accuracy which a randomly chosen set of pairs
could not achieve even with 7000 pairs. alias is based
on a number of careful design decisions to ensure that
the active learning process is practical and can provide
interactive response to the user. The final deduplica-
tion function output by alias is designed to be easy-
to-interpret and efficient to apply on large datasets.

alias provides a mechanism for optimizing a dedu-
plication function so that it can be applied efficiently
on very large lists without explicitly materializing all
possible pairs of records. alias uses a novel execution
model consisting of operators that group records into
clusters and process the clusters in various ways. This
significantly limits the number of pairs that need to be
materialized for exact evaluation.

2 Description of the system

Figure 1 shows the overall design of our alias system
for deduplication. There are three primary inputs:



1. Input: L, D, F .

2. Create pairs Lp from the labeled data L and F .

3. Create pairs Dp from the unlabeled data D and F .

4. Initial training set T = Lp

5. Loop until user satisfaction

• Train classifier C using T .

• Use C to select a set S of n instances from Dp for
labeling.

• If S is empty, exit loop.

• Collect user feedback on the labels of S.

• Augment S with pairs inferred using transitivity of the
“duplicates” relation.

• Add augmented S to T and remove S from Dp.

6. Output classifier C

Figure 1: Overall design and working of the alias interactive deduplication system.

1. Database of records (D) The original set D of
records in which duplicates need to be detected. The
data has d attributes a1, . . . ad, each of which could be
textual or numeric. The goal of the system is to find
the subset of pairs in the cross-product D × D that
can be labeled as duplicates.
2. Initial training pairs (L) An optional small(less
than five) seed L of training records arranged in pairs
of duplicates or non-duplicates.
3. Similarity functions (F) A set F of nf functions
each of which computes a similarity match between
two records r1, r2 based on any subset of d attributes.
Examples of such functions are edit-distance, soundex,
abbreviation-match on text fields, and absolute differ-
ence for integer fields. Many of the common functions
could be inbuilt and added by default based on the
data type. However, it is impossible to totally obvi-
ate an expert’s domain knowledge in designing specific
matching functions. These functions can be coded in
the native language of the system (C++ in our case)
and loaded dynamically. The functions in the set can
be highly redundant and unrelated to each other be-
cause finally our automated learner wil perform the
non-trivial task of finding the right way of combining
them to get the final deduplication function.

A rough outline of the main steps is given in Fig-
ure 1.

The first step is to map the initial training records
in L into a pair format via a mapper module. The
mapper module takes as input a pair of records r1, r2,
computes the nf similarity functions F and returns
the result as a new record with nf attributes. For
each duplicate pair we assign a class-label of “1” and
for all the other pairs in L×L we assign a class label of
“0”. At the end of this step we get a mapped training
dataset Lp with nf real-valued attributes and a class-
label of either “0” or “1”. These Lp instances are used
to initialize a committee of N base classifiers to be
used later for active learning.

The next step is to map the unlabeled record list
D. The mapper is invoked on each pair of records in
D×D to generate an unlabeled list of mapped records
Dp. If the size of D is large the quadratic size of the
cross-product could be intolerable. We support three
ways of reducing the number of pairs to be generated.

• Grouping: Sometimes it is possible to find an
easy grouping/windowing function guaranteed to
match all duplicates. For example, for citation
data the year of publication could be one such
grouping function or the first letter of the last
name for address lists. Pairs are formed only
within records of a group.

• Sampling: When we are trying to learn a dedupli-
cation function, we may not need to work on the
entire set of records. Simple random sampling will
not work here because in most cases the number of
duplicates will be few and sampling might further
diminish such duplicate pairs. We support an al-
ternative grouped sampling approach that hinges
on being able to find a grouping function such as
above.

• Indexing: Another option we support is to index
the fields of D such that predicates on the simi-
larity function of the attribute can be evaluated
efficiently. For example, a predicate on a simi-
larity function of the form “fraction of common
words between two text attributes ≥ 0.4” can be
evaluated efficiently by creating an inverted index
on the words of the text attribute. Clearly, this
cannot be done easily for all possible similarity
functions. Edit distance is an example of such a
hard to index similarity function. In most cases,
however, it is possible to approximate a similarity
function f with another function g that is always
less than or equal to f . So, a predicate that re-
trieves all records r with f(r) ≥ C can be trans-
formed to a looser predicate of the form g(r) ≥ C



without loosing out on any qualifying record. This
predicate can be evaluated via the index and later
filtered for exact match.

However, we cannot exploit such similarity func-
tions unless we modify our active learning mech-
anism that takes as input the materialized pairs
Dp = D ×D and chooses a subset n for labeling.
We need to modify it to not require all of D ×D
at a time. It is possible to design active learners
that can first output predicates that characterize
the pairs likely to be selected by the learner.

The predicates can be evaluated using the indices
and only the qualifying pairs will be materialized
and passed to the learner for further subseting to
the n instances. alias has an elaborate evaluation
engine (described later) to efficiently process such
predicates.

We next describe the interactive active learning ses-
sion on Dp with the user as the tutor. The learner
chooses from the set Dp a subset S of n (a user-
configurable parameter) instances that it would most
benefit from labeling. This is the responsibility of the
active learner. The key insight here is to simultane-
ously build a few redundant classifiers using the avail-
able training dataset. The instances on which there
is maximum disagreement amongst the predictions of
the classifiers are the ones to be selected for labeling
next. A sketch of the algorithm is given in Figure 2.
More details can be found in [2].

The user is shown the set of instances S along with
the current prediction of the learner. The user cor-
rects any mistakes of the learner. This yields an addi-
tional set of n labeled instances. Since deduplication
is a transitive relationship, these newly labeled pairs
can be used to infer duplicate and not-duplicate rela-
tionship between other pairs of records. The augment
set is added to the training dataset Lp and the active
learner is retrained.

The user can inspect the trained classifier and/or
evaluate its performance on a known test dataset. If
(s)he is not happy with the learner trained so far, the
active learner can select another set of n instances.
This process continues in a loop until the user is happy
with the learnt model. In each iteration, the user aids
the learner by providing new labeled data.

A useful side effect of the user inspecting the
model’s prediction at each iteration is that, he can
discover newer sources of discrepancies and errors in
the data and decide to modify his similarity functions
or add new ones.

The output of our system is a deduplication func-
tion I that when given a new list of records A can iden-
tify which subset of pairs in the cross-product A × A
are duplicates.

Although, alias is general enough to train any kind
of classifier (Naive Bayes, Support Vector Machines,

1. Input: Lp: current training data, N number of commit-
tees, Dp unlabeled instances

2. Train N classifiers C1, C2, . . . CN on Lp by randomizing
the choice of the parameters for all but the first classifier.

3. P = predicate capturing the region where the N classifiers
will likely disagree

4. Ip = subset of Dp that satisfies predicate P .

5. For each unlabeled instance x in Ip,

(a) Find prediction y1 . . . yN from the N members.

(b) Compute uncertainty or disagreement U(x) as the
fraction of the N predictions different from the ma-
jority prediction.

6. Return n instances by (weighted) sampling on the in-
stances with the weight as U(x).

Figure 2: Algorithm used by the active learning for
selecting n instances for labeling

Decision trees and so on), we recommend using de-
cision trees for their ease of interpretation and high
accuracy. The output of a decision tree classifier is
a set of if-then-else predicates on the similarity func-
tions. alias supports an elaborate evaluation engine
for efficiently evaluating such functions on large lists of
records. The evaluation engine uses several optimiza-
tions including,

• reordering the similarity functions such that the
less expensive ones are evaluated earlier than the
expensive ones,

• delaying the explicit materialization of the carte-
sian product of large lists by operating on clusters
of records

• using easy to evaluate filters before expensive sim-
ilarity functions

More details of the execution model will appear in a
paper in preparation.

3 Example sessions with alias

We demonstrate the mechanism of interactively learn-
ing the deduplication function on data from examples
of citation entries. We show how starting from a com-
mittee of single node decision trees learnt from a small
number of initial training pairs, we progressively refine
the tree as more pairs get labeled by the user to form
the final deduplication function.

We start with two training pairs, one duplicate and
another non-duplicate. In Figure 3 we show the first
committee of three decision trees formed by the active
learner using these two examples. The set of 14 input
similarity functions are shown on the top left corner
of the figure. The data has four fields: Author, Ti-
tle, Year, Page number and All (the entire bib entry).
The similarity functions are application of functions
like ngrams match, word match and edit distance on



Figure 3: Initial stage of active learning after training on just two instances

Figure 4: The tree af-
ter training on 100 in-
stances

a single text field or a concatenation of two or more
of the text fields and, integer equality on the numeric
fields like page number and year.

The three different trees use thresholds on three of
these similarity functions to define the deduplication
function. This shows the redundancy captured by the
decision trees in the committee. The unlabeled in-
stances that get conflicting predictions from these trees
are selected by the active learner for labeling.

The bottom half of the figure shows two pairs of du-
plicates selected based on disagreement amongst the
three trees. For the first pair, the figure shows the val-
ues of the similarity functions and highlights its po-
sition in the three trees. This pair is predicted as a
non-duplicate by the first and third tree and duplicate
by the second. The last column shows the predicted
label. The user can correct these labels if they are
wrong and submit them for inclusion in the training
set.

As more and more examples get added to the train-
ing set, the trees gets refined. In Figure 4 we show an
example refined tree obtained after about 100 tuples
have been fedback through active learning. The user
can edit the tree if he so chooses and save it for later
use. Experimental results on the number of pairs to
be labeled to converge to a peak accuracy appear in
[2].

Acknowledgments

This project was funded by the Ministry of Infor-
mation Technology, India under the project “Mo-
bile agents for collaborative distributed applications”,
2001-2002.

References

[1] Yoav Freund, H. Sebastian Seung, Eli Shamir, and
Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine Learning, 28(2-
3):133–168, 1997.

[2] Sunita Sarawagi and Anuradha Bhamidipaty. In-
teractive deduplication using active learning. In
Proc. of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining(KDD-2002), 2002.


	Introduction
	Description of the system
	Example sessions with alias

