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ABSTRACT
Many real-life applications depend on databases automati-
cally curated from unstructured sources through imperfect
structure extraction tools. Such databases are best treated
as imprecise representations of multiple extraction possibili-
ties. State-of-the-art statistical models of extraction provide
a sound probability distribution over extractions but are not
easy to represent and query in a relational framework. In
this paper we address the challenge of approximating such
distributions as imprecise data models. In particular, we in-
vestigate a model that captures both row-level and column-
level uncertainty and show that this representation provides
signi�cantly better approximation compared to models that
use only row or only column level uncertainty. We present ef-
�cient algorithms for �nding the best approximating param-
eters for such a model; our algorithm exploits the structure
of the model to avoid enumerating the exponential number
of extraction possibilities.

1. INTRODUCTION
Large text databases obtained by integrating unstructured
data from multiple sources are central to many real-life ap-
plications, including citation databases like Citeseer, prod-
uct comparison databases, and personal information man-
agement systems (PIM). A key step in the creation of such
databases is the extraction of structured entities from un-
structured sources. Typically such extraction is not a one-
time activity but needs to be performed continuously to
keep the database in sync with the unstructured sources.
For example, in PIM databases, it is important that as new
unstructured documents get added, we extract structured
entities from them and integrate with existing database enti-
ties. Clearly, such synchronous, large-scale extractions can-
not be performed under full user supervision and typically
such systems depend on some automated means of structure
extraction.
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Automatically extracting structured entities from unstruc-
tured text is a challenging problem, and has a long history of
attempts spanning early rule-based systems like Rapier [7]
to the newest statistical methods like Conditional Random
Fields [29]. Unfortunately, it is impossible to guarantee per-
fect extraction accuracy in real-life deployment settings even
with the latest extraction tools. The problem is more severe
when the sources are extremely heterogeneous, making it
impossible to hand tune any extraction tool to perfection.
For example, the extraction of structured entities like author
names, title and journal names from citations has an accu-
racy of close to 90% for individual �elds and only 70{80%
for multi-�eld records [22].

One method of surmounting the problem of extraction er-
rors is to require that each extracted entity be attached with
con�dence scores that correlate with the probability that the
extracted entities are correct. Normally, even this is a hard
goal to achieve and only recently have probabilistic extrac-
tion models like Conditional Random Fields(CRFs) been
found to provide sound con�dence scores. We provide il-
lustrations of this in Section 2.1. In addition, such models
can output not just a single best extraction but a ranked
list of extractions where each extracted record is associated
with a probability of correctness. Such probabilistic results
can be stored in an imprecise data management system [16,
27, 5, 15, 3, 11] for getting probabilistic answers. For ex-
ample, in Figure 3 we show a list of extractions along with
probability scores for an address database. We will denote
each such extraction result by segmentation as it consists of
labeled segments of the unstructured string; and call this
representation the segmentation per row model [14]. While
this representation of uncertainty is natural and allows for
simple query execution semantics, the number of extraction
results can in the worst case be exponentially large as we
show in Section 2.

Thus, we need an alternative model of representing impre-
cision in a database that captures the original distribution,
while being easy to store and query. Our goal is to choose a
generic model of uncertainty so that we can leverage on the
active research on e�cient query processing on these mod-
els [11, 24, 8, 5]. Di�erent representations provide varying
tradeo�s in the exibility they o�er and how complex it is
to process probabilistic queries over them [27]. We consider
two models from the literature. First is the popular col-
umn uncertainty model where the rows of a database table



are independent of each other and the columns of each row
represent uncertainty as independent probability distribu-
tions [21]. An example of such a representation appears
in Figure 5. Each column in the �gure is associated with
an independent multinomial distribution over extracted seg-
ments. We will refer to this model as the one-row model.

The second model is a generalization of the �rst model where
we capture both column and tuple level uncertainty by stor-
ing multiple rows per extracted record. Each row has in-
dependent column distributions and a row-level probability.
We show in the paper that even a two-row model in this
category can signi�cantly improve the accuracy of approxi-
mation compared to the one-row model. Also, the number
of rows required is signi�cantly smaller than the number
of rows required if segmentations are stored explicitly. We
present e�cient algorithms for directly �nding the optimal
parameters of the single-row and multi-row column distri-
butions without requiring the explicit enumeration of the
possibly exponential number of segmentations. Our algo-
rithm directly operates on the model to discover a locally
optimal set of informative variables that form the basis for
each row's distribution.

Empirical evaluation on two real-life datasets show that our
method of creating tractable database representations of the
imprecision of information extraction models is e�cient and
accurate. To the best of our knowledge, ours is the �rst
paper on transforming the uncertainty of complicated, yet
high performing statistical models of extraction to tractable
models of imprecision that can be easily stored and queried
in a database.

Outline
The rest of the paper is organized as follows. We describe
our problem and present a background of state of the art
probabilistic models of information extraction in Section 2.
In Sections 3.1 and 3.2 we present algorithms for generat-
ing best one row and multi row distributions. In Section 4
we present experimental evaluation of the accuracy and ef-
�ciency of our model. Related work and conclusions appear
in Section 5 and 6 respectively.

2. SETUP
We assume that our unstructured data source is a collec-
tion of independent text records representing entities like
addresses and citations. The process of extraction converts
each unstructured record into a structured record in a ta-
ble in a target database consisting of columns A1; A2 : : : AK .
Examples of entity columns are house number, street names,
city name and state names for addresses and author-list, ti-
tle, journal name and year for citations. One or more of the
columns could be missing in an unstructured record in which
case we assign it a value of NULL. Thus, each entity label
can appear zero or once in each unstructured record. An
unstructured record could contain words that do not belong
to any of the entities. We assign all these words a special
label called \Other".

In such a setting the process of extraction can be viewed as a
segmentation of the word sequence of an unstructured record
where each segment is either one of K entities A1 : : : AK or

part of the \Other" label. We next review existing methods
of automatic extraction.

2.1 Models for automatic extraction
The problem of extracting structured entities from unstruc-
tured data is an extensively researched topic. A number of
models have been proposed ranging from the earliest rule-
learning models to probabilistic approaches based on graph-
ical models like Hidden Markov Machines [28, 4, 1] and max-
ent taggers [23]. A promising recently proposed model for in-
formation extraction is Conditional Random Fields (CRFs).
CRFs have been shown [20, 29] to outperform most prior ap-
proaches. The state-of-the-art methods for extraction called
Semi-CRFs construct a probability distribution over seg-
mentations of the input sequence [26, 10]. We describe this
approach next.

The input unstructured text is treated as a sequence of to-
kens x = x1 : : : xn. A segmentation s of an input sequence
x is a sequence of segments s1 : : : sp such that the last seg-
ment ends at n, the �rst segment starts at 1, and segment
sj+1 begins right after segment sj ends. Each segment sj
consists of a start position tj , an end position uj , and a label
yj 2 Y . In our case Y consists of the K attribute labels
fA1 : : : AKg and a special label \Other". For example, a
segmentation of the record \52-A Goregaon West Mumbai
PIN 400 062" might be (52-A, `House no') (Goregaon West,
`Area') (Mumbai, 'City') (PIN 'Other') (400 062, `Pincode')
(See Figure 3).

A Semi-CRF models the conditional probability distribution
over segmentation s for a given input sequence x as follows:

Pr(sjx;�) =
1

Z(x)
exp(� �

X
j

f(j;x; s)) (1)

where f(j;x; s) is a vector of local feature functions f1 : : : fN
of s at the jth segment and � = (�1; �2; : : : ; �N ) is a weight
vector that encodes the importance of each feature function
in f . Z(x) =

P
s0 exp(� �

P
j f(j;x; s

0)) is a normalization
factor. The label of a segment depends on the label of the
previous segment and the properties of the tokens compris-
ing this segment. Thus a feature for segment sj = (tj ; uj ; yj)
is a function of the form f(yj ; yj�1;x; tj ; uj) that returns a
numeric value. Example of such features are:

f8(yi; yi�1;x; 3; 5) = [[x3x4x5 appears in a journal list]]

�[[yi = journal]]

f12(yi; yi�1;x; 19; 19) = [[x19 is an integer]]

�[[yi = year]] � [[yi�1 = month]]

Thus, Equation 1 in the expanded form is

Pr(s = ((t1; u1; y1); : : : ; (tp; up; yp))jx;�) =

1

Z(x)
exp(

pX
j=1

NX
r=1

�rfr(yj ; yj�1;x; tj ; uj))

The weight vector � is learnt during training via a variety
of methods, such as likelihood maximization [20].

During extraction, the goal is to �nd a segmentation s =
s1 : : : sp of the input sequence x = x1 : : : xn such that Pr(sjx;�)
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Figure 1: Reliability plots for two datasets. The
diagonal line denotes the ideal ending points of the
bars.
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(b) Address, p=0.9

Figure 2: Histogram of the number of segmentations
required for covering a probability mass p.

(as de�ned by Equation 1) is maximized.

argmax
s

Pr(sjx;�) = argmax
s

� �
X
j
f(yj ; yj�1;x; tj ; uj)

The right hand side can be e�ciently computed using dy-
namic programming. Let L be an upper bound on segment
length. Let si:y denote set of all partial segmentation start-
ing from 1 (the �rst index of the sequence) to i, such that
the last segment has the label y and ending position i. Let
V (i; y) denote the largest value of � �

P
j f(j;x; s

0) for any

s0 2 si:y. The following recursive calculation �nds the best
segmentation:

V (i; y) =

8><>:
maxy0;i0=i�L:::i�1 V (i0; y0)

+� � f(y; y0;x; i0 + 1; i) if i > 0
0 if i = 0
�1 if i < 0

(2)

The best segmentation then corresponds to the path traced
by maxy V (jxj; y). The probability of the best segmentation
can be calculated using Equation 1. The above algorithm
can be easily extended to �nd not just a single highest prob-
ability segmentation but the k highest scoring segmentations
for any given k.

In typical real-life extraction tasks the highest scoring ex-
traction is not necessarily the correct extraction. Fortu-
nately, unlike in earlier generative models like HMMs, the

probability of a segmentation as output by a CRF is sound
in the sense that a probability of p denotes that there is a
100p% chance that the extraction is correct. We illustrate
this via reliability plots in Figure 1 for extraction on two
datasets (descriptions of these datasets appear in Section 4)
where we show binned probabilities as output by the model
against true accuracy calculated as the fraction of cases that
were correct in that bin. We observe that the histograms are
very close to the 45 degree line which con�rms the claim that
the probabilities are sound.

Also, in typical extraction models k might need to be quite
large to cover a signi�cant probability mass. In Figure 2 we
plot the histogram of the number of segmentations needed
to cover a probability mass of 0.9. In both the datasets,
a signi�cant number of strings require more than just the
top-10 segmentations.

These experiments establish that it is important to look be-
yond the topmost segmentation and challenges existing ap-
proaches that treat extraction as a 0/1 process of extracting
just the highest scoring entities.

2.2 Database representation of extraction un-
certainty

We consider three alternatives for representing the uncer-
tainty of extraction in a database system.

In each case we show how to return probabilistic answers to
a project query of the form

select y1; : : : yl from T where source=x

where T is an imprecise table and each yi refers to one of the
K columns A1 : : : AK of T . Probabilistic results for such a
query will return a set of rows where each row r consists of
l segments of x (t1; u1); : : : ; (tl; ul) and a probability value
pr = Pr(y1 = (t1; u1); : : : ; yl = (tl; ul)). We also allow a
segment (ti; ui) to be NULL so as to incorporate missing
labels.

2.2.1 Segmentation per row model
A straightforward representation is to �rst extract from the
original model all segmentations with non-zero probability
and represent each segmentation s as a separate row with a
tuple-level uncertainty value equal to the probability Pr(s)
of that segmentation [14]. Thus, each unstructured source
record r will give rise to a variable number of rows in the
database; all rows of the same record are linked via a shared
key that constraints their probabilities to sum to 1. An
example of such a representation appears in Figure 4.

In this model the probability of a query result is calculated
by summing over all segmentations that match the result
row as follows:

Pr(y1 = (t1; u1); : : : ; yl = (tl; ul)) =
X

s:8i(ti;ui;yi)2s
Pr(s)

The main shortcoming of this approach is that the number of
segmentations could be exponential in the size of the source



House no Area City Pincode Probability
s1
s2
s3
s4

52
52-A
52-A
52

Goregaon West
Goregaon
Goregaon West
Goregaon

Mumbai
West Mumbai
Mumbai
West Mumbai

400 062
400 062
400 062
400 062

0.1
0.2
0.5
0.2

Figure 3: Four segmentations of the address string '52-A Goregaon West Mumbai 400 076' along with their
probabilities.

Id House no Area City Pincode Prob
1 52 Goregaon West Mumbai 400 062 0.1
1 52-A Goregaon West Mumbai 400 062 0.2
1 52-A Goregaon West Mumbai 400 062 0.5
1 52 Goregaon West Mumbai 400 062 0.2

Figure 4: Segmentation-per-row model for the example in Figure 3.

Id House no Area City Pincode

1
52 (0.3)
52-A (0.7)

Goregaon West (0.6)
Goregaon (0.4)

Mumbai (0.6)
West Mumbai (0.4)

400 062 (1.0)

Figure 5: One-row model for the example in Figure 3.

Id House no Area City Pincode Prob

1
52 (0.167)
52-A (0.833)

Goregaon West (1.0) Mumbai (1.0) 400 062 (1.0) 0.6

1
52 (0.5)
52-A (0.5)

Goregaon (1.0) West Mumbai (1.0) 400 062 (1.0) 0.4

Figure 6: An optimal and exact two-row model for the example in Figure 3.

string. A naive way to deal with this problem is to take
enough top segmentations that cover a big enough probabil-
ity mass (say 0:95), and store these segmentations exactly.
However, as Figure 2 illustrates, for quite a few strings we
may end up retrieving a large number of segmentations.

Hence we are limited by two things - (a) we cannot a�ord
to enumerate the top segmentations and (b) we are only
allowed to populate a small number of rows in the imprecise
database. To tackle these issues, instead of representing the
uncertainty exactly, we will resort to approximate methods.

2.2.2 One-row model
In this representation we allocate one row per unstructured
record but each column instead of being a precise value is
a distribution over possible values it can take [21]. For the
case of discrete text data, a natural choice for the column
distribution is a multinomial distribution which assigns a
probability value for each segment (i; j) of the input x such
that the sum of the probability over all segments is equal to
1. An example of such a distribution appears in Figure 5.

Let Qy(i; j) denote the probability for segment (i; j) for col-
umn y. Then the probability of the query result q = (y1 =
(t1; u1) : : : yl = (tl; ul)) is:

Q(q) =
Y

(ti;ui;yi)2q
Qyi(ti; ui) (3)

In Section 3.1 we show how to compute the best values of
the Qy(i; j) parameters from the original extraction model.

While the one-row representation is storage-wise compact,
it has the potential of grossly violating the true distribution

because it treats the column distributions as being indepen-
dent of each other. For example, the probability of the query
result ((Area='Goregaon West'), (City='Mumbai')) in this
model is 0:6� 0:6 = 0:36 whereas the true probability from
Figure 3 is 0:5 + 0:1 = 0:6.

2.2.3 Multi-row model
We generalize the one-row model to storing multiple rows
per extracted record with each row storing its own set of
independent column distributions. In addition, each row has
a row-level probability and the probability of a segmentation
is obtained via a weighted sum of probability induced by
each row. Let �k denote the row probability of the kth row
and Qk

y(i; j) denote the multinomial parameter for segment

(i; j) for column y of the kth row. We present an example
in Figure 6 where the number of rows m is 2.

In this case, the probability of a query result q is computed
as

Q(q) =
mX
k=1

�k
Y

(ti;ui;yi)2q
Qk
yi(ti; ui) (4)

This model allows the approximate probability of a segmen-
tation s, Q(s) to be broken down into additive components,
with each component being a product of marginals rather
than an unwieldy joint distribution.

2.3 Quantifying approximation quality
Since the one-row and multi-row models are approximations
of the true distribution P (s), we need a measure of the di-
vergence between the two. A popular metric from statistics
for measuring the gap between a true distribution P (s) and



its approximation Q(s) is KL-divergence.

KL(P jjQ) =
X
s

P (s) log
P (s)

Q(s)
(5)

KL-divergence achieves its minima of zero i� Q = P . This
measure has been found to provide more robust and mean-
ingful values of distances between distributions than generic
vector measures like L2 and L1. Further, it can be shown

that L1(P jjQ) � (KL(P jjQ)2 log 2)
1
2 . Another advantage

of this measure is that it is continuous and allows the use of
numerical optimization methods to choose the best approx-
imation.

3. APPROXIMATIONS
In this section we show how to compute the parameters of
the one-row and multi-row model so as to minimize the di-
vergence with the true extraction model P (s). Our goal is
to design methods that do not require the explicit enumer-
ation of all possible segmentations from the model because
there can be an exponentially (in the length of the input)
large number of them.

3.1 One row model
The multinomial parameters of a one-row model can be eas-
ily computed by directly optimizing on the KL function.

min
Q

KL(P jjQ) � max
Q

X
s

P (s) logQ(s)

=
X
s

P (s)
X

(t;u;y)2s
logQy(t; u) (from Eq 3)

=
X

(t;u;y)

X
s:(t;u;y)2s

P (s) logQy(t; u)

=
X

(t;u;y)
P ((t; u; y)) logQy(t; u) (6)

where P ((t; u; y)) denotes the marginal probability of seg-
ment (t; u; y) in our extraction model P . Now, for each y,
the inner sum is the KL distance of Qy from P (:; :; y) (up
to a constant involving only P ). Thus, we can minimize the
overall objective by setting

Qy(t; u) = P ((t; u; y)) (7)

Figure 5 contains an example of optimal one-row parame-
ters for the given segmentation set. P ((t; u; y)) can be di-
rectly computed without enumerating any segmentations as
we show next.

3.1.1 Computing marginals from modelP (s)
In this section we show how to compute the marginal prob-
abilities P ((t; u; y)) of a segment from the original model.

Recall from Section 2 that the probability of a segmentation
s in P is given as

Pr(sjx) =
1

Z(x)
exp(� �

X
j

f(j;x; s))

The marginal probability of a segment (t; u; y) is the sum of
the probability P (s) of all segmentation s that contain this

segment. Thus,

P ((t; u; y)) =
X

s:(t;u;y)2s

1

Z(x)
exp(� �

X
j

f(x; s))

The outer summation could be over exponential number of
segmentations that contain a segment (t; u; y). Fortunately,
the form of the distribution P can be exploited to compute
this summation e�ciently through a linear time forward pass
followed by a backward pass. This is a standard forward-
backward message passing algorithm [26] and can be skipped
on �rst reading.

Forward pass:
De�ne �i(y) as the value of

P
s02si:y exp(� �

P
j f(j; s

0;x))

where si:y denotes all segmentations from 1 to i ending at
i and labeled y. The value of �i(y) is computed recursively
as

�i(y) =
iX

i0=i�L+1

X
y02Y

�i0�1(y
0)exp(� � f(y; y0;x; i0; i))

where L = maximum segment length and the base case
value �1(y) = 1 for all y. This gives, Z(x) =

P
y �jxj(y).

Backward pass:
In this pass we compute a set of n beta terms recursively as
follows

�i(y) =
min(i+L;n)X
i0=i+1

X
y02Y

�i0 (y
0)exp(� � f(y0; y;x; i+ 1; i0))

The base case value �n(y) = 1 for all y. Thus we need to
compute nK � and � terms one for each position,label com-
bination and the entire computation takes O(nLK2) time.

Computing marginals:
Once the �i and �i terms are available for each position of
the sequence, we can compute the marginal probability of
any segment (t; u; y) as follows:

P ((t; u; y)) =
�u(y)

Z(x)

X
y0

�t�1(y0)exp(� � f(y; y0;x; t; u)) (8)

The marginals as computed above however have one lim-
itation; they do not enforce the constraint we have in our
extraction task that a label y can appear only once in an en-
tire segmentation. It can be shown that any algorithm that
exactly enforces such a constraint would be exponential in
the number of labels. A number of algorithms exist in the
graphical modeling literature for approximating the calcu-
lation of marginals in complex models [30, 9, 19]. We skip
details of the approximate method in this paper because it
is not crucial to the scope of this paper and the details are
somewhat involved.

3.2 Multi-row model
In the multi-row model, we will consider multiple, but �xed
(say m) number of rows, each one of which is a one-row
model. The parameters of this model are the m row proba-
bilities �k and for each row k, the multinomial distribution
parametersQk

y(t; u) for each label y. We need to �nd the val-
ues of these parameters to minimize KL distance with P (s)



which is equivalent to maximizing the following objective.

max
�k;Qk

X
s

P (s) log
mX
k=1

�kQ
k(s) (9)

where Qk(s) =
Q

(t;u;y)2sQ
k
y(t; u). Unlike in the one-row

model, we cannot obtain the optimal parameter values in
closed form because of the summation within the log. How-
ever, for the case where we can enumerate individual seg-
mentations s, this objective reduces to a well-known problem
in statistics of learning a mixture model [13]. We will �rst
discuss this enumeration-based approach and then present
our algorithm that works directly on the model.

3.3 Enumeration-based approach
Let S = s1; : : : sD be an enumeration of all segmentations
produced from our original model P (s). Our objective is

max
�k;Qk

DX
d=1

P (sd) log
mX
k=1

�kQ
k(sd)

This is a well-known problem of learning the parameters of a
mixture model and is solved using the classical Expectation-
Maximization (EM) algorithm [13]. The algorithm starts
with an initial guess of the parameter values and then iter-
atively performs the following two steps:

E step where for each sd we �nd the probability R(kjsd) of
its belonging to component k given the current set of
parameters

R(kjsd) =
�kQ

k(sd)P
i �iQ

i(sd)

This step can be thought of as a soft assignment of
segmentations to each of the m components.

M step where we update model parameters using the above
soft assignments to calculate the most likely values of
parameters as follows:

Qk
y(t; u) =

P
sd2S:(t;u;y)2sd P (sd)R(kjsd)P

sd2S P (sd)R(kjsd)

�k =
X
sd2S

P (sd)R(kjsd)

The algorithm iteratively updates parameters as above until
convergence. It can be proved that in each iteration the EM
algorithm improves the value of the objective and at conver-
gence �nds a locally optimal value of the parameters [13].
Although the algorithm can get stuck at local optima and
is sensitive to the initial seeds, we have empirically found
that for low dimensional data (e.g. jY j = 3��7 dimensions
in our case) and with multiple randomly seeded values of
the initial soft assignment R(kjs), the EM algorithm almost
always reaches the global optimum in a few number of itera-
tions. Since each iteration of the EM algorithm improves (a
lower bound of) the objective function, so modulo any local
optima, this scheme provides a good yardstick to benchmark
any other algorithm.

s2 s 3

s s1 4
,

A

B’West’,_

’52−A’,House_no

Figure 7: Example of a three-way partitioning using
informative variables.

3.4 Structural approach
We now present our approach to generate multi-row mod-
els that does not entail enumeration of segmentations. The
components corresponding to the rows in this case are as-
sumed to cover disjoint sets of segmentations. We will show
in Section 3.5 how to remove this limitation. Thus, for any
segmentation exactly one of the rows has a non-zero prob-
ability. We achieve this disjointness by choosing a set C of
boolean variables that form a binary decision tree with m
leaves. Each segmentation satis�es exactly one of the paths
in the tree. Our revised objective (Equation 10) with dis-
joint Qk components can be written as

max
mX
k=1

Pr(Ck)
X
s

P (sjCk) log �kQ
k(s)

where we have removed the summation within the log by
using the fact that a segmentation s that satis�es condition
Ck will have a non-zero probability of generation only from
Qk.

Since each Qk is equivalent to our one-row model, we can
use Equation 6 to rewrite our objective as:

max
mX
k=1

Pr(Ck)(log �k +
X

(t;u;y)
P (t; u; yjCk) logQ

k
y(t; u)) (10)

For a given choice of C, this is maximized by choosing
Qk
y(t; u) = P (t; u; yjCk) and �k = Pr(Ck). Thus, our re-

maining goal is to choose a partitioning C so as to maximize
the objective.

mX
k=1

Pr(Ck)(logP (Ck) +
X

(t;u;y)
P (t; u; yjCk) logP (t; u; yjCk)) (11)

We achieve the m-way partitioning by sequentially choos-
ing binary split variables to grow a tree of variables until
we reach m leaves, each of which corresponds to our de-
sired partition. Our variables correspond to various kinds
of conditions on segmentations. We consider three kinds of
boolean variables:

� A = fAtuyjt � u; y 2 Y [ f0 0gg: Variable Atuy is one
if a non-NULL segment (t; u) is present and has a label
y. If y =0 0 then the segment's label is not conditioned
on.



� B = fBtyjy 2 Y [ f0 0gg: Variable Bty is one if a
segment starts at position t with label y or with no
condition on label when y =0 0. In this case the end
boundary of the segment is not conditioned on.

� C = fCuyjy 2 Y [ f0 0gg Variable Cuy is one if a seg-
ment ends at position u. The start boundary of the
segment is not conditioned on. The segment label is
ignored if y =0 0.

Figure 7 illustrates a three-way tree on the example string
in Figure 3, created using these variables. The root vari-
able A52�A;House no is true i� the segment `52-A' is labeled
`House no'. Similarly BWest; is true if any segment starts
with the word `West'. Here, a label is not part of the con-
dition.

Let c denote a sequence of decision tree nodes from root to
leaf, For a given condition c, let

H(c) = Pr(c)(logP (c) +
X

(t;u;y)
P (t; u; yjc) logP (t; u; yjc))

Thus our objective from Equation 11 is
P

kH(Ck). At any
stage when we choose to split node c using another variable
v 2 A [ B [ C we pick v so as to maximize the gain I(v; c)
of v given condition c as de�ned below

I(v; c) = H(c; v = 1) +H(c; v = 0)�H(c) (12)

At each stage we pick the leaf node c from the tree and a
corresponding variable v so as to get the highest gain. We
stop when we have obtained the desired m number of leaf
nodes.

H(c) can be computed directly from model P (s) without
any enumeration using a slight variant of the algorithm
presented in 3.1.1 for computing the conditional marginals
P (t; u; yjc) and P (c). The only change is that in the forward
and backward pass we disallow any segments that violate
condition c. From these we can compute the conditional
marginals P (t; u; yjc) and the value of Z(xjc) analogously
to the unconditional case as Z(xjc) =

P
y �(jxj; yjc). From

these P (c) is available as

P (c) =
Z(xjc)

Z(x)
(13)

The above algorithm achieves the maximum gain in objec-
tive at each stage, and thus can be considered a greedy
algorithm like most decision tree construction algorithms.
It is possible to design an optimal algorithm that runs in
O(n3m2K4) time where n is the length of the sequence and
K is the number of labels. In contrast the greedy algorithm
here is O(mn2K) which is practical since typically n, the
number of words in an unstructured record, is no more than
100.

3.5 Merging structures
The structural approach makes a disjoint partitioning of seg-
mentations whereas the EM algorithm in the enumeration-
based approach of Section 3.3 allows a segmentation to over-
lap with arbitrary number of mixtures; thus the structured

approach is likely to be worse than the enumeration ap-
proach in terms of approximation quality.

In this section, we present a �x to this problem. In the struc-
tural approach we generate many more than the required m
partitions. In practice, we can go on making partitions till
the gain obtained by a partition split is negligible. Let m0
denote the number of initial partitions obtained in this man-
ner.

We view the one-row model of each partition as a compound
segmentation. Now we can apply the EM-based approach to
cluster these m0 compound segmentations into m rows. Us-
ing the notation of Section 3.3, we will have jSj = m0 with
s denoting a compound segmentation whose distribution we
denote by P (). Each compound segmentation s output by
the structural approach is associated with a condition cs
which is used to calculate a total probability P (s) (using
Equation 13), and, for each label y a multinomial distribu-
tion P s

y (t; u) (using Equation 8 after conditioning the �, �
and Z terms on cs). We will merge these m0 P () distribu-
tions to m Q() distributions using the EM algorithm.

We now show how to apply the EM-algorithm for compound
segmentations without enumerating the constituents of any
one of them. For the M-step, to compute Qk

y(t; u), instead of
summing over only those s that contain the segment (t; u; y),
we probabilistically sum over all the s, because the mem-
bership of a segment in a compound segmentation is now
probabilistic instead of being hard. Thus,

Qk
y(t; u) =

P
sd2S P (sd)P

sdy (t; u)R(kjsd)P
sd2S P (sd)R(kjsd)

However, the E-step is challenging because it involves com-
puting Qk(s), which is the probability of generating the dis-
tribution of the compound segmentation s from the distri-
bution represented by the kth row. Here we exploit two
insights: (a) The columns of the row are independent, so
the probability of generation can be decomposed over la-
bels. (b) Each label de�nes a multinomial distribution over
its possible segments, in both P (s) as well as Qk(s). This al-
lows us to use the method proposed in [2] which reduces the
problem of �nding the probability of generating one multi-
nomial distribution from another to a measure of divergence
between the two. This distance, which turns out to be KL
divergence for our scenario, is a special case of the general
Bregman divergence framework of [2]. In our case, the prob-
ability of generation, Qk(s), can be seen to be ([2]):

Qk(s) / exp(�
X
y
KL(Py(s)jjQ

k
y)) (14)

where Py(s) is the multinomial distribution for the label y
in the compound segmentation s and Qk

y is its counterpart

in the kth component of the multi-row model.

Thus, it is possible to soft-merge the m0 partitions into m
clusters using the EM algorithm without any enumeration.
Since each of the original m0 partitions was represented by
a conjunction of hidden variables, every component in the
�nal m-row model is now a weighted disjunction of such
conjunctions. This representation is clearly richer and more
expressive than the original conjunctive form.



We will also present empirical evidence to show that this
merging step causes a signi�cant increase in our objective
value and also compares favorably with the ideal EM solu-
tion that uses enumeration to estimate its model parameters.
We will also show that in practice, m0 is not large. In fact,
we will show that m0 is much smaller than the number of
segmentations we would have retrieved, had we gone for an
enumeration of the top-k segmentations.

Our �nal algorithm for �nding the best m-row model with-
out enumerating segmentations is outlined in Algorithm 1.

Algorithm 1 StructMerge(m, gainCutO�)

fCreate partitions until gain < gainCutO�g
Initialize partition tree with a single node.
while tree has unvisited leaves do
c unvisited leaf.
Mark c visited.
Find variable v 2 A [ B [ C with largest gain I(c; v)
if (gain > gainCutO�) then
Split c on v = 1 and v = 0 to create two leaves.

fMerge partitions using EM to get m rowsg
paths path to all leaves each of which de�nes a partition

for all s < paths.size() do
8u; y : Compute �u(yjs) and �u(yjs) via forward-
backward algorithm restricted to segments that satisfy
the condition of s
P [s] Z(xjs)

Z(x) where Z(xjs) 
P

y �jxj(yjs)

8t; u; y : Compute P s
y [t; u] via Equation 8

8k < m; 8s < paths:size() :
Seed(R[k; s]);

loop fUntil convergenceg
M step
8k < m : �k  

P
s P [s]R[k; s];

8k < m; y; t; u : Qk
y [t; u] 

P
s P [s]R[k;s]Ps

y [t;u]P
s P [s]R[k;s] ;

E step
8k < m; s < paths:size() :

R[k; s] 
�k exp (�P

y KL(P
s
y jjQ

k
y))P

l �l exp (�
P

y KL(Psy jjQly))

4. EXPERIMENTS
We now present an empirical evaluation of our method of cu-
rating imprecise databases from statistical models of struc-
ture extraction. Since ours is the �rst work on this topic, we
�rst present in Section 4.2 experiments to demonstrate that
representing the imprecision of extraction is indeed useful in
improving the quality of answers returned by the database.
In other words, we show that the current practice of storing
the topmost extraction in a conventional database can incur
higher error than a database that captures extraction un-
certainty. We next go on to evaluate in Section 4.3 the two
primary methods of representing imprecision via row uncer-
tainty and column uncertainty and show that the multi-row
representation that combines both forms of uncertainty pro-
vides better approximation for a �xed number of stored pa-
rameters. Finally we present results of evaluating our core
contribution in the paper | the multi-row parameter ap-
proximation algorithm. We evaluate the algorithm both in

Number of labels in query
Dataset Model 1 2 3 4
Address Top-1 0.31 0.48 0.59 0.66
(Weak) Top-k 0.22 0.32 0.35 0.37
Address Top-1 0.10 0.17 0.22 0.26
(Strong) Top-k 0.08 0.14 0.17 0.19
Cora Top-1 0.16 0.29 0.38 0.45
(Weak) Top-k 0.10 0.17 0.22 0.25
Cora Top-1 0.07 0.13 0.18 0.21

(Strong) Top-k 0.05 0.09 0.12 0.14

Table 1: Square errors on projection queries of vary-
ing size over the top-1 and top-k models.

terms of the quality of approximation and e�ciency of exe-
cution.

4.1 Datasets
We used the following two real-life datasets for our experi-
ments.

Cora: Cora is a popular citations benchmark [22] that con-
sists of 500 citations collected from the reference section of
several academic papers. The columns of the corresponding
citation table were paper title, author-list, booktitle, jour-
nal, page number, date, and volume. We use a subset of 125
citations as our test-set.

Address: The Address dataset consists of 770 home ad-
dresses of students in IIT Bombay India. The table columns
were Street names, area, city name, state name and zipcode.
Indian addresses are less regular than US addresses, and ex-
tracting even �elds like city names is challenging [4]. A
subset of 440 addresses was used as the test-set.

For each dataset, we train a strong and a weak CRF model
by varying the amount of training data. To train the strong
model, we use 30% of the data for Cora and 50% for Address.
To train both the weak models, we use 10% of the data. See
[25] for details of features used in training these models.

In each experiment, we retrieve enough segmentations to
cover a su�cient probability mass (0:92 in the case of Cora
and 0:96 for the Address dataset). This forms our test set
and the divergence of a model is computed over this test
set.

4.2 Error reduction with probabilistic data
We demonstrate the usefulness of capturing the uncertain-
ties of extraction by showing that even for an imperfect ex-
traction model, the current practice of storing the top-most
extraction result can incur higher error than a probabilistic
query processing system. Our queries project various sub-
sets of the column labels and we measure the error in the
query results with respect to the correct segmentation.

We report the square error, which is (1 � p�)2, where p� is
the probability of the correct answer according to the stored
model.

In Table 1 we show the errors for two cases: First, Top-1,
where we store the single best extraction. In this case if
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Figure 8: Comparing divergence of multi-row mod-
els with increasing m, against Segmentation-per-row
model with the same number of parameters.

the single stored segmentation is correct, we get an error
of 0, otherwise it is 1. Second, Top-k, where we store all
segmentations with their probabilities so as to capture the
Semi-CRF distribution exactly. This allows us to compare
the best possible imprecise model with the current practice
of storing extractions. We report errors for strongly as well
as weakly trained extraction models.

Table 1 shows a signi�cant drop in error from Top-1 to
Top-k. This establishes that representing uncertainty in the
database leads to more accurate query results and as we will
see, even a simple two row approximation can achieve the
same reduction in error as the ideal case of representing the
entire distribution.

4.3 Comparing models of imprecision
We study the quality of approximation with increasing amounts
of storage used for representing imprecision in the database.
In Figure 8 we compare the approximation quality of a
multi-row model over m rows with a segmentation-per-row
model where we store top-k segmentations with k chosen so
that both approaches store the same number of parameters.

We observe that the multi-row model has a signi�cantly
smaller divergence from the true model compared to the
segmentation-per-row model when both are constrained to
use the same number of parameters. For example for the Ad-
dress dataset, with 2 rows the multi-row model can achieve
a close to 0 divergence with the true model whereas the
Segmentation-per-row approach using equivalent number of
parameters (which amounts to roughly 4 rows) has a diver-
gence of around 2.5.

The case of m = 1 corresponds to the one-row model and
we observe that going from one to two rows results in more
than a factor of two reduction in divergence and increasing
m further does not cause as dramatic a decrease.

These experiments show that the multi-row model that com-
bines both row-level and column-level uncertainty provides
an e�ective mechanism of capturing the uncertainty of an
otherwise complex extraction model.

4.4 Evaluating the multi-row algorithm
In this section, we compare our multi-row algorithm (struc-
tural+merging) with the enumeration-based approach and
the simpler structural-only approach. Figure 9 plots the
KL distances obtained by the structural approach, struc-
tural+merging approach (with a gain cuto� of 0.5) and the
enumeration approach all for m = 2. For reference we also
show the one-row model. For the structural+merging ap-
proach, as well as the enumeration approach, the EM output
was chosen by executing �ve di�erent randomly seeded runs
and selecting the one with the least KL distance over the
test-set. The �gures are plotted by sorting the data in in-
creasing order of KL distances obtained by the enumeration
algorithm.

We observe from the graphs that the structural+merging
approach is better than the structural approach and very
close to the ideal enumeration approach.

The enumeration approach however runs EM over signi�-
cantly more segmentations than the compound segmenta-
tions m0 generated in the structural+merging approach as
we show in the next experiment.

For each multi-row model generated by the structural+merging
approach, we record the number m0 of initial partitions and
then �nd the smallest k for which the enumeration approach
using top-k segmentations would have smaller KL distance.
Figure 10 displays the variation of k withm0 for the Address
dataset. We also display the y = x line to point out that
k is always more than m0 and sometimes the gap is very
large. This means that the structural+merging approach
achieves almost the same approximation quality as the enu-
meration approach while computing a much fewer number
of parameters.

Dependence on input parameters
The two input parameters to the structural+merging ap-
proach are the number of rows m, and the gain cuto� �. We
already studied the e�ect of m on the quality of approxi-
mation in Section 4.3. In general, m is easy to determine
based on the quality of approximation achieved for each m.
The choice of the gain cuto� is less direct but as we show
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Figure 11: Dependence of the KL distance obtained via the struc-
tural+merging approach on gain cuto�. m is set to 2.

in Figure 11 the gain cuto� is easy to determine for two
reasons: �rst, there is a wide range of values where the ap-
proximation quality does not change much and second, the
gain cuto� is an absolute quantity that measures properties
of distributions and is not dependent on particular datasets,
as we also observe in Figures 11(a) and 11(b).

Impact on query results
So far we have seen that a low KL divergence is good from
the perspective of approximating the extraction model. How-
ever from a practitioner's point of view, a model is good i�
it impacts his query results. Here, we demonstrate that
the structural+merging approach is much better than the
one-row approach in terms of preserving the (probability
sorted) rank order of query results. For this purpose, we
constructed projection queries over four randomly chosen
columns of the Address dataset. We then compared the
'golden' order obtained by sorting on the exact probabili-
ties of the segmentation-per-row approach with the approx-
imate probabilities of the one-row approach and the struc-
tural+merging approach. We retrieved top-10 results for
each string and for each pair in this 'golden' ordering, we
checked whether the order between the two result rows was
preserved in the one-row and structural+merging models.
In Figure 12(a), we report the fraction of pairs whose rank-
ing was inverted. Figure 12(a) shows that the one-row model
keeps the ordering unchanged for only 8% of the cases whereas
the structural+merging approach keeps the ordering un-
changed for about 25% of the cases.

While we have established the practical advantage of using
the structural+merging approach, it is necessary that our
original objective of minimizing KL divergence also trans-
late to minimizing ranking inversions. Figures 12(b) and
12(c) illustrate that this is indeed the case for one-row as
well as structural+merging. The scatter plots show a strong
correlation between KL divergence and the inversion scores.
Moreover, the scatter plot of the structural+merging ap-
proach is concentrated in the bottom-left corner, thus reaf-
�rming that this approach is highly suitable for both the
criteria.

5. RELATED WORK

The work presented in this paper is related to work in two
disconnected communities; management of imprecise infor-
mation from databases and approximation of statistical mod-
els from machine learning.

While the topic of imprecise databases has been of constant
interest to database researchers [15, 3], a recent revival [27,
17, 12, 11, 24, 8, 6] has lead to better consolidation and
more insights on the representation and processing of uncer-
tain data. The focus mostly has been on designing generic
models of imprecision and processing queries over them ef-
�ciently. There has been little thought on how to populate
imprecise data with sound probabilistic quanti�cation in the
�rst place. Admittedly, much of this is application-speci�c.
However, even for popular applications of imprecise data,
like sensor data, there is surprisingly little work on match-
ing an external, more powerful probability distribution to
database models of imprecision. Existing work on approxi-
mate representation in the imprecise database literature [12]
focus primarily on converting from one database model of
uncertainty to another without any probabilistic underpin-
ning, whereas our focus is on converting an external,complex
probability distribution to a probabilistic database model.
The latter presents a very di�erent set of challenges than
the former. To the best of our knowledge, ours is the �rst
paper on transforming the uncertainty of complicated, yet
high performing statistical models of extraction to tractable
models of imprecision that can be easily stored and queried
in a database.

The CRF model for information extraction is a special case
of probabilistic graphical models. The problem of approxi-
mating a complex graphical model P (x) to a simpler model
Q(x) for faster inference is an actively researched problem
in machine learning [9, 30, 19, 18]. However, the tech-
niques there are not directly applicable to our case because
of two reasons. First, most work there assumes that the
original P (x) distribution is too complicated even for com-
puting marginal distributions. They address this problem
by changing their objective to minimize KL(QjjP ) instead
of the desired objective of minimizing KL(P jjQ). Note that
KL is an asymmetric measure of divergence and when P
is the starting distribution it is more meaningful to min-
imize divergence with P than with Q. The segmentation
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Figure 12: Figure 12(a) plots the inversion scores of the one-row and structural+merging models on the
Address (Weak) dataset. Figures 12(b) and 12(c) plot the correlation between KL divergence and inversion
scores. For the structural+merging approach, m = 2 and � = 0:005.

model used in this paper is more tractable and thus we can
solve the original objective e�ciently. Second, approximat-
ing using mixture model Q(x) raises peculiar optimization
challenges not present in the more extensively studied case
of Q(x) having a subset of the dependencies in P (x). There
is surprisingly little work on approximating to a mixture
model and what exists solves the less direct objective of
minimizing KL(QjjP ) [18].

6. CONCLUSIONS
In this paper we presented a method of curating imprecise
databases from statistical models of structure extraction.
We investigated three models of representing imprecision in
a database: a segmentation-per-row approach that only al-
lows row-level uncertainty, a one-row model that allows only
column-level uncertainty and a multi-row model that allows
both row and column-level uncertainty. We showed that
the multi-row model provides signi�cantly better approxi-
mation for the number of parameters it uses. We designed
algorithms for �nding such parameters e�ciently without
requiring an enumeration of all possible segmentations from
the source model. Empirical results on real-life datasets
show that our algorithm achieves very close to the ideal
KL distance and does so with much fewer partitions than
segmentations needed by direct enumeration.

There is much scope for future work in this topic, including
handling of multi-table imprecision, extending imprecision
to not just extraction but also integration, and designing
fast algorithms in each case.
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