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ABSTRACT
We present the design of a system for assembling a table
from a few example rows by harnessing the huge corpus
of information-rich but unstructured lists on the web. We
developed a totally unsupervised end to end approach which
given the sample query rows — (a) retrieves HTML lists
relevant to the query from a pre-indexed crawl of web lists,
(b) segments the list records and maps the segments to the
query schema using a statistical model, (c) consolidates the
results from multiple lists into a unified merged table, (d)
and presents to the user the consolidated records ranked by
their estimated membership in the target relation.

The key challenges in this task include construction of new
rows from very few examples, and an abundance of noisy and
irrelevant lists that swamp the consolidation and ranking of
rows. We propose modifications to statistical record segmen-
tation models, and present novel consolidation and ranking
techniques that can process input tables of arbitrary schema
without requiring any human supervision.

Experiments with Wikipedia target tables and 16 million
unstructured lists show that even with just three sample
rows, our system is very effective at recreating Wikipedia
tables, with a mean runtime of around 20s.

1. INTRODUCTION
Consider a user who wishes to assemble a table of com-

puter science concepts, their inventors and the year of inven-
tion. A keyword query ”computer science concepts inventor
year” retrieves mostly generic computer science pages. If
instead he queries using a few example rows, say ”turing
machine relational databases codd supercomputer cray”, he
mostly gets pages relevant only to the query tokens, which
do not contain new tuples, and any genuine new tuples are
still spread across multiple pages and need to be integrated.
However we know that numerous mini-compilations of tar-
get tuples do exist in tables and lists on the web, and an
ideal system would extract and integrate them in a tabular
format for the user. On the other hand a search engine only
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offers us whole documents.
Consider an alternate scenario where a site like Freebase1

or Wikipedia wishes to build a table of multi-attribute records
belonging to a new topic, say Oil spills, starting with a few
editor-picked seed records. An ideal answer can be manually
constructed by aggregating the oil-spill mentions present in
various relevant web-sites, but this is time consuming. In
fact, Freebase has several incomplete tables waiting to be
completed by human volunteers and an automated tool for
this task would be invaluable for them.

In both these scenarios, we begin with a ”Show me more
tuples like these” query and no other supervision, and our
aim is to build a target relation with ranked tuples extracted
from structured and unstructured relational data spread all
over the web in the form of tables and lists. We call this
problem the table augmentation task. We note that one
highly special instance of this task is Google Sets2, which
only supports single-attribute queries.

In this paper we present a system called WWT3 for tack-
ling the table augmentation task. We focus on constructing
the answer from one of the two major sources — HTML
lists on the web. This paper deals only with lists primarily
because list processing for our task is a more general and a
technically harder problem than processing tables. Any ta-
ble can be trivially reduced to a list, lists never have header
information, and extracting multi-attribute tuples from list
records is a significantly hard problem given that we only
have a handful of examples. Our final goal is to ex-
tend WWT to integrate list and table sources. At this point
we stress that this work is similar in spirit to the WebTa-
bles system [4], which uses an indexed corpus of 154 million
HTML tables for a variety of applications, including ranking
tables by relevance to a keyword query. However we go one
step ahead and use our list corpus to extract and integrate
tuples from general unstructured lists. We do this through
a multi-step approach of extracting candidate tuples from
individual lists, consolidating them across different lists and
ranking them by relevance to the query.

Table augmentation from lists at a web scale poses various
sets of challenges. First, it is difficult to determine the lists
which are relevant to the user. Even inside a relevant list,
not all records might be relevant. Not only do we need to
ensure that irrelevant records are identified and ranked low
in our final answer, we also need to minimize their effect on
the other steps, say while training a tuple extractor or ag-

1http://www.freebase.com
2http://labs.google.com/sets
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gregating with a genuine answer. Second, we do not assume
that our lists enjoy the kind of regularity that machine gen-
erated lists do. This potentially arbitrary unstructured na-
ture, coupled with the lack of nice column boundaries makes
the tuple extraction task difficult, given that we only have a
handful of examples in the query. In fact many a times some
relevant lists have no syntactic overlap with the query at all!
Consequently any noisy extractions will affect aggregation
of results across lists. So we need robust extraction and ag-
gregation mechanisms to minimize the loss in performance.
Third, even with perfect extraction, aggregation across lists
is riddled with problems like inexact duplicates and miss-
ing columns. In addition we have spurious matches where
a common phrase like ‘1000’ might match a desired query
column e.g. Year, which can mislead the aggregation and
ranking step. We need to ensure that such highly frequent
chance matches do not end up with high ranks.

We now state our contributions in this paper:

• We present an end-end system, called WWT, that re-
turns a table with ranked rows in response to a query.
We show that even with a stringent evaluation criteria,
WWT can construct more than half of the target in
less than half a minute with just three query rows, and
this increases to almost 70% with seven query rows.

• We show how to adapt existing statistical extraction
models to example-driven table extraction from mul-
tiple web lists. We design a matching-based algorithm
to create a training dataset from only a small set of
query records so as to maximize match with the query
records without introducing spurious matches. We
show how to exploit consistency of style within a list
using multiple sequence alignment features. Finally,
we exploit content overlap across lists to supplement
the limited information in the small query.

• We design a resolver that can handle arbitrary in-
put tables, while being robust to extraction errors and
missing data. The resolver uses a Bayesian network to
compose row-level resolvers out of type-specific cell-
level resolvers using intuitive parameters that can be
set purely from the table statistics, without requiring
any training data.

• We design a ranking strategy that can combine cor-
rectness scores from the extractors and support from
various sources into a single scoring function for plac-
ing relevant and correct rows higher.

We describe WWT with a summary of its components in
Section 2. In Section 3 we elaborate on the extraction prob-
lem of segmenting a list into columns of the target table, and
in Section 4 we detail how the extracted results are consol-
idated and ranked into a single answer table. In Section 5
we present empirical results on the performance of WWT
under real-life settings, and in Section 6 we discuss related
literature.

2. ARCHITECTURE
Figure 1 shows the architecture of WWT. Here we de-

scribe the process flow followed by a brief overview of the
various components. Individual components are described
in detail in later sections. The execution pipeline in WWT
can be split into the following steps:
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Figure 1: System architecture

1. WWT first builds an indexed repository of HTML lists
by crawling the web. A list selection module extracts
lists from web pages and throws away useless and nav-
igational lists. This is a one-time offline step.

2. A typical query execution on WWT is as follows. A
user first enters the query table of interest through
a web interface. Then the query is processed by the
resolver and list-index modules in parallel. The index
returns HTML lists potentially relevant to the query,
ordered by their relevance scores. These lists are called
source lists. The resolver extracts meta data from the
query, like inferring the type-system and constructing
cell and row resolver objects (defined in Section 2.3)
which are used to match an arbitrary string against
query rows/cells.

3. The source lists returned by the list-index are passed
to the extractor, which uses the constructed cell re-
solvers to learn statistical extraction models on the
lists. Using these models, the extractor extracts seg-
ments from each list record and assigns the segments
to query columns. Thus it transforms the lists into ta-
bles with the same schema as the query. The extractor
also attaches confidence scores with the cells and rows
in these tables.

4. The consolidator takes these constructed tables, and
using the row resolvers, it clusters duplicate table rows
to form a single consolidated table.

5. The ranker reorders the rows of the consolidated table
so as to bring more relevant and highly supported rows
on top. The top few rows of the re-ranked consolidated
table are returned to the user.

We now give a brief overview of each component.

2.1 List Extractor and Selector
The list extractor applies a group of heuristics to every

HTML list in every page to prune away navigational lists
or lists which are too verbose or textual to contain multi-
attribute records. A list is discarded if either of these tests
holds: (a) it has less than 4 or more than 300 records, (b)
it has even one record more than 300 bytes long, (c) more



than 20% records do not have delimiters (d) more than 70%
of records are contained inside anchor tags. Using these
heuristics, we get around 16 million lists from a web-crawl
of 500 million pages.

2.2 List Index
We treat each list as a document and index it using Lucene4.

A more expensive alternative is to store each list record
as a separate Lucene document, which allows more precise
row-level query answering. However, we prefer the list-
as-document indexing model as it keeps the index more
compact. Later stages of the pipeline prune away spurious
matches.

In response to a table query, the index is probed by cre-
ating a bag of words query from the contents of the table.
The top-K matching lists based on Lucene’s inbuilt ranking
criteria are returned.

2.3 Resolver
The resolver takes a query table and first infers the type

of each column. For this it uses a user-configurable type
hierarchy . The type information along with the contents of
the table is then used to build two kinds of objects — row
and cell resolvers. A cell resolver is built for each column
in the query. Given a query row r, a column c, and a text
s , the cell resolver for c returns a score of how well does s
resolve to the cell c in r. The row resolver takes as input two
rows and returns a score of them resolving to each other. It
uses the cell resolvers as subroutines to resolve constituent
columns of the input rows.

2.4 Extractor
The extractor module takes the source lists retrieved by

the index, and trains extraction models on those lists. To
generate labeled training data, it uses the cell resolvers to
mark potential segments in the lists that match with some
of the query cells. The extractor then trains statistical text
segmentation models with this labeled data, and applies
them to the lists, thus obtaining a table from each list. The
extractor also attaches a confidence score with each row and
cell entry for later use by the ranker.

2.5 Consolidator and Ranker
Given a set of tables output by the extractor along with

row and cell confidence scores, the consolidator merges the
tables into one table. A cell in the consolidated table
contains a set of cell values that resolve to each other and,
one of these is picked as the canonical entry based on cell
probability scores output by the extractor.

The ranker combines the row and cell scores of a row into a
single sorting metric. Intuitively, a high scoring consolidated
cell/row is one which repeats in many lists, and which has
a high confidence score of extraction. The top few ranked
rows of the consolidated table are returned to the user as
the answer.

We now comprehensively discuss the individual compo-
nents of WWT.

3. EXTRACTOR
The input to the extractor module is a query table Q and

a set L = {L1, . . . , LK} of source lists potentially relevant

4http://lucene.apache.org

to Q. For every record r in every list in L, the extractor
outputs a valid segmentation i.e. a partitioning of r into
segments, with at most one segment mapped to each col-
umn in Q. Unmapped segments are assumed to map to the
fictitious column −1, and unmapped columns are mapped to
null segments. Thus a valid segmentation can be viewed as
a table row, and the process of extraction viewed as trans-
forming lists Li ∈ L into tables T i with the same schema as
the query Q, but with possibly NULL entries. Figure 2(c)
shows one possible set of tables obtained from the lists in
Figure 2(a).

Now this list to table transformation task is a classical text
segmentation problem. There are various possible segmenta-
tion schemes in the information extraction domain to choose
from — list-specific wrappers, rule-based segmenters, or sta-
tistical segmentation models. We choose the semi-markov
Conditional Random Field model (CRF) [19], which is a
statistical segmentation model. There are various reasons
for this choice. First, we do not assume that the list records
are machine-generated. Thus they can contain noisy tokens
and style variations. CRFs are more accurate and robust
for such records as they can exploit an arbitrary number
of rich and correlated segment-level properties. Second, a
CRF outputs a well calibrated confidence score along with
the best segmentation of a list record. Such scores are valu-
able during the later stages of WWT. Computing calibrated
scores is impossible or very difficult with other extraction
approaches.

We train separate CRF models for each source list to cap-
ture the specific regularities present within a source. The
first challenge in training a model is the absence of explic-
itly labeled records from the source list. All we have are
the handful of rows in Q. We present two different ways to
use Q to generated labeled records for a particular list L,
which lead to two different extraction mechanisms. The first
method, which we called the default extractor or Edefault,
computes labeled records for each L separately using only Q.
The second method , called Estaged, uses Q and the extracted
records of the other lists to compute the labeled records of
L. Thus Estaged exploits content overlap present across the
source lists.

However even in Edefault, generating labeled unstructured
records from a few structured rows is a non-trivial task be-
cause the consequences of wrongly or inadequately labeled
records are huge, as detailed in Section 3.1. So we di-
vide the functionality of the extractor into a non-trivial
labeler component, and a CRF trainer which uses the la-
beled records generated by the labeler to learn a model.
For ease of explanation, we first describe Edefault, whose la-
beler generates labeled records using only Q. The labeler
computes a matching between the rows of L and Q, with
the interpretation that a matched record in L is an occur-
rence of the corresponding row in Q. For each matched
record in L, the labeler also outputs a segmentation that
maps to the cells of its query row. For example in Fig-
ure 2(b), the first three records in the first list are matched
with corresponding rows of the query in Figure 2(a) (al-
though the last record is wrongly matched with the third
row). For the first record, the output segmentation is {Name
= ”Arthur Charles Clarke”, Place = ”Somerset”, Year =
”1917”}, which roughly matches with the cell contents of
the first query row.

Algorithm 1 formally describes Edefault. In Sections 3.1



Query Q:
Arthur C. Clarke 1917 Somerset, UK

David "Dave" Barry 1947 Armonk, New York

Isaac Asimov 1920 Petrovichi, Russia

Source list 1:

Arthur Charles Clarke, born in Somerset, 1917.
Dave Barry, born in Armonk, 1947.
Frank Herbert, born in 1920.
Dame Agatha Christie, born in Devon (UK), 1890.
Noam Chomsky, born in Philadelphia.

Source list 2:

Noam Chomsky -- 7 December 1928.
Agatha Christie -- 15 September 1890.
John R. R. Tolkien -- 3 January 1892.
Salman Rushdie -- 19 June 1947.

file:///home/rahul/pubs/wwt/figs/fig1.htm
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(a) A query with two result lists

List 1: Labeled records before pruning

Arthur Charles Clarke, born in Somerset in 1917.
Dave Barry, born in Armonk in 1947.
Frank Herbert, born in 1920.

After pruning (columns = {Name,Year,Place})

Arthur Charles Clarke, born in Somerset in 1917.
Dave Barry, born in Armonk in 1947.

List 2: Labeled records before pruning

Salman Rushdie -- 19 June 1947.

After pruning (columns = {Year})

Salman Rushdie -- 19 June 1947.
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(b) Edefault: Labeled data

Tables output by Edefault

Table T1 (= Estaged : Table T1)

Arthur Charles Clarke 1917Somerset
Dave Barry 1947Armonk
Frank Herbert 1920---
Dame Agatha Christie 1890Devon (UK)
Noam Chomsky --- Philadelphia

Table T2

--- 1928 ---
--- 1890 ---
--- 1892 ---
--- 1947 ---

(c) Tables output by Edefault

Estaged: CT2 = Consolidate(Q, T1)

Arthur C. Clarke
Arthur Charles Clarke

1917
Somerset
Somerset, UK

Dave Barry
David "Dave" Barry

1947
Armonk
Armonk, New York

Frank Herbert 1920---
Dame Agatha Christie 1890Devon (UK)
Noam Chomsky --- Philadelphia
Isaac Asimov 1920Petrovichi, Russia

(d) Estaged: Consolidated table af-
ter first stage

Labeled records of list 2 before pruning

Noam Chomsky -- 7 December 1928.
Agatha Christie -- 15 September 1890.

After pruning (columns = {Name,Year})

Agatha Christie -- 15 September 1890.

Estaged's output: Table T2

Noam Chomsky 1928
Agatha Christie 1890 ---
John R. R. Tolkien 1892 ---
Salman Rushdie 1947 ---

(e) Estaged: Using CT2 to label
data in L2, and its output table

Estaged: Consolidation of T1 and T2

Arthur Charles Clarke 1917Somerset
Dave Barry 1947Armonk
Frank Herbert 1920---
Dame Agatha Christie
Agatha Christie

1890Devon (UK)

Noam Chomsky 1928Philadelphia
John R. R. Tolkien 1892---
Salman Rushdie 1947---

(f) Consolidator’s output on ta-
bles T 1 and T 2 built by Estaged

Figure 2: Execution of Edefault and Estaged for a sample query.

and 3.2 we describe the labeler and the CRF model in detail.

Algorithm 1: Default Extractor (Edefault)

Input: Set of lists L = {L1, . . . , LK}, Query table Q
Output: Tables T 1, . . . , TK

for i = 1 . . .K do
(D, ŝ)← Labeler(Q,Li); /* Sec 3.1 */

Train a CRF with labeled data (D, ŝ);
Initialize T i to an empty table;
foreach record r ∈ Li do

Find the best segmentation s∗(r) from the CRF;
Append s∗(r) to T i;

end

end

return T 1, . . . , TK

3.1 Labeled Data Generation
The labeler takes as input a query table Q and a list L,

and its task is to output a matching of the records of L
with the rows of Q. Denote this matching by φ. If a labeler
deems that record r ∈ L is an occurrence of a query row q,
then as evidence it also outputs a segmentation ŝ(r) such
that segments in ŝ(r) resolve to the columns of q to which
they are assigned. All matched records are output as the set
D, i.e. D , {r ∈ L|φ(r) is defined}. The complete output
of the labeler is (D, {ŝ(r)}r∈D) .

Observe that a matching-based approach is needed be-
cause we cannot just independently mark the occurrences of
individual query cells in list records. This is mainly because
we need to preserve the row structure of query rows when

we look for segments inside list records.
Now if we enforce a exact string matching criteria to iden-

tify crisp occurrences of query cells in L, then we might get
too few matches and hence too few labeled records in L.
On the other hand, if we soften the criteria and generate
a few wrongly labeled records, we will severely impact the
accuracy of the CRF trained on these records. Besides this
choice of criteria, our task is further complicated by the fol-
lowing observations: First, a query cell might be present in
a noisy form in a list record. This is usually true for cell val-
ues containing dates, names and places. Second, list records
may possess only a few columns of Q. Then the resulting
ambiguity can make it difficult to map a list record to a
unique query row. Third, some query cells might occur
multiple times across list records, e.g. cells containing only
state names or only the year part of a date. Only one of
these occurrences is relevant for the query cell, when seen in
the context of the entire query row. Last, a list record might
contain disjoint segments that match with cells belonging to
different query rows. We need to ensure that only one query
row is matched with the record.

To tackle these issues, we model the labeling task as a
maximum weight matching problem in a bipartite graph
with the two sides representing rows of Q and L. There
is a node in the graph for every row of Q and L, and the
weight of an edge (q, r) is the score of the segmentation ŝ(r)
assuming that r is matched with q. If r is matched with
q, then the output segmentation ŝ(r) will align as much as
possible with the cells of q. For now assume that a sub-
routine SegmentAndMatch(r, q) produces such a segmen-
tation along with its score. Later we will present two options
for SegmentAndMatch that lead to two different labelers.



For the sake of performance, we do not construct a com-
plete bipartite graph but use a simple heuristic to limit the
number of edges. We demand that if for the vertex pair
(q, r), no cell of q approximately matches any substring of r,
then the edge (q, r) be absent. An approximate match, im-
plemented by an ApproxMatch(q, r) subroutine, permits a
limited amount of token padding/deletion/permutation. In
practice, this heuristic reduces the number of edges in the
graph from O(|Q||L|) to O(min(|Q|, |L|)), where |.| denotes
the number of rows.

The row map φ and hence D are trivially obtained from
the maximum matching. The output segmentation set is
simply {ŝ(r) , SegmentAndMatch(r, φ(r))|r ∈ D}. How-
ever, this is not the final output. The segmentations in
{ŝ(r)} will in general not agree on the set of query columns
present in them. For example, in Figure 2(b), segmenta-
tions for the second and third records have column sets
{Name,Place,Year} and {Year}. Using all such segmenta-
tions for training a CRF often leads to an inferior model
because the model does not learn the presence of a column
even though it might exist in a record. For example, in
the third record, the model will wrongly learn that ”Frank
Herbert” is not a name. So to keep our model clean, we
prune the labeled set by first computing the biggest col-
umn set present in any ŝ(r). In Figure 2(b), this will be
{Name,Place,Year}. Then we conservatively throw out ev-
ery r from D whose column set in ŝ(r) does not match this
maximum column set. For any r omitted thus, we also re-
move the corresponding segmentation ŝ(r). These pruned
values of D and ŝ are returned as the labeler’s output.

The full labeling algorithm is described in Algorithm 2.

Algorithm 2: Labeler

Input: List L, Query table Q
Output: Labeled set D, Segmentations {ŝ(r)}r∈D
G← edge-less bipartite graph with nodes from Q ∪ L;
foreach record r ∈ L, row q ∈ Q do

if ApproxMatch(q, r) then
(ŝ(r), score)← SegmentAndMatch(r, q);
Add edge (q, r) with weight=score to G;

end

end
φ← MaxWeightMatching(G);
D ← {r ∈ L|φ(r) is defined};
foreach record r ∈ D do

(ŝ(r), .)← SegmentAndMatch(r, φ(r));
end
Y ← MaximumColumnSet({ŝ(r)}r∈D);
foreach record r ∈ D s.t. ColumnSet(ŝ(r)) 6= Y do

Remove r from D;
end
return D, {ŝ(r)}r∈D

We now discuss two possibilities for SegmentAndMatch,
which leads to two different kinds of edge weights, and hence
two different labeler implementations.

3.1.1 Hard Labeler
A natural way for segmenting a record r so as to match

the cells of a query row q is to look for an approximate
occurrence of every cell of q in r and declare those occur-
rences as segments with appropriate column assignments.

This version of SegmentAndMatch does precisely this
with a small but essential modification. It checks for ap-
proximate matches of bigger query cells first. This ensures
that matches for bigger cells are available and not eaten up
by smaller cells which might have overlapping content. For
example, for the two column query row ”New York City |
New York”, matches for ”New York City” are searched first.

This implementation of SegmentAndMatch reuses Ap-
proxMatch to figure out if there are matches for a cell or
not. Approximate match queries can be easily answered by
constructing an in-memory index on the tokens of r. The
score of the output segmentation ŝ(r) is simply the number
of cells of q which had an approximate match in r.

3.1.2 Soft Labeler
The ApproxMatch algorithm used by the hard labeler

is based on hard thresholds on the leeway allowed for ap-
proximate matches, e.g. maximum number of token inser-
tions/deletions allowed. Also, the notion of a match is still
based on string exactness — some query cell tokens have to
occur in the segment.

For this reason, the hard labeler usually outputs high pre-
cision labelings, but might miss out on close matches, such
as ”Arthur Charles Clarke” and ”Arthur C. Clarke” (Fig-
ure 2(b)). If ApproxMatch demands the presence of all
segment tokens among the query cell tokens, then it might
match only ‘Arthur’ or ‘Clarke’ with ”Arthur C. Clarke”.
However if we know that this query cell has a type ‘Person-
Name’, then we can expand the match to include the entire
name correctly.

Keeping this intuition in mind, we define a soft scoring
function SoftScore(s, q, c) → [−1, 1], which given a can-
didate record segment s, a query row q and a particular
column c, outputs a normalized similarity score of the query
cell qc matching s. SoftScore takes into account the type
of the column c. Recall that column type inference is done
by the resolver when the query is posed. The functionality
of SoftScore is provided by the cell-resolver object of the
resolver module, which is discussed in detail in Section 4.1.

For the purposes of our labeler it suffices to assume that
a score of −1 denotes extreme dissimilarity between s and
qc, and a score of 1 denotes exact string match, and inex-
act matches take intermediate values. Now if we assume
that row q is indeed matched with record r, then the best
segmentation ŝ(r) and its score are given by:

ŝ(r) = arg max
s:s valid for r

X
(s,c)∈s

SoftScore(s, q, c) (1)

where we trivially extend SoftScore to output zero for un-
mapped segments s, i.e. SoftScore(s, q,−1) = 0. Observe
that this objective is decomposable over individual segments
of s, so it can be easily computed using dynamic program-
ming by recursing over the length of r. Thus the soft la-
beler’s implementation of SegmentAndMatch returns a
segmentation and score after maximizing Equation 1.

3.2 CRF-based extraction models
The extractor uses CRFs to segment list records, so we

provide a concise overview of CRFs here. Let r be a list
record r and s(r) = {(si, ci)}i be a candidate segmentation
where si is the ith segment in s(r) and ci is the query column
it maps to (-1 if unmapped). Then the CRF models the



likelihood of s(r) as:

P (s(r)|r, λ) =
expλT ·

P
i f(si, ci, ci−1)

Zλ(r)
(2)

where f(si, ci, ci−1) is a vector of features of the labeled seg-
ment (si, ci) and the previous segment’s label ci−1 (which
leads to the model being Markovian). λ is a weight vector
that establishes the relative importance of each feature in
f , and Zλ is a normalizing factor. The weight vector λ is
learnt during the training phase.

Feature Set
The CRF allows arbitrary and correlated segment-level fea-
tures in the feature vector f . So traditional deployments
of CRFs use many feature templates like word occurrences,
dictionary matches, regex patterns etc. These are usually
boolean features e.g. ci is a name column and si is short seg-
ment or not. However with only a few labeled records avail-
able, we cannot use too many features for the risk of over-
fitting. So we use only one feature template, derived from
delimiters and HTML tokens (called separator tokens):

fj,j′,t,t′,c(si, ci, ci−1) = (c = ci)

∧ (si is j′ tokens to the right of t′)

∧ (si is j tokens to the left of t)(3)

where j, j′ ∈ {1, 2, 3}, t, t′ vary over the separators seen in
the list containing this row, and c varies over the columns
of Q. For example, if in a source, the column ‘Name’ is fre-
quently surrounded by an anchor tag, then for any segment
s surrounded by anchor tags, we will have:

f1,1,</a>,<a>,Name(s, ci, .) = 1 if (ci = Name) else 0

So any such s will be biased towards the column Name,
which is also the desired output.

Training the CRF
Given a feature template f and labeled records (D, ŝ) , we
learn the weight vector λ that maximizes the log-likelihood
of the labeled data:

max
λ

X
r∈D

logP (ŝ(r)|r, λ)− λ2

2σ2
(4)

where the second term regularizes λ and prevents over-fitting.
This objective is concave in λ and can be optimized using
standard gradient-based methods [17].

Computing the Best Segmentation
Once the weight vector λ has been trained, computing the
best segmentation for a list record r means solving:

s∗(r) = arg max
s: s valid for r

P (s|r, λ)

= arg max
s: s valid for r

λT ·
X

(si,ci)∈s

f(si, ci, ci−1) (5)

Equation 5 can be solved recursively using the Viterbi al-
gorithm [19] with some restrictions to allow only valid seg-
mentations.

3.3 Improving the Default Extractor
We now present two modifications to Edefault: one that

exploits the consistency of records inside a list, and another

which uses any content overlap across different lists. These
modifications are orthogonal to the labeler implementation
used for generating the labeled data.

3.3.1 Alignment Features based Extractor
The default feature template in Equation 3 works well in

practice as long as we have a good set of separators in the
list. To handle lists which do not have such separators, we
propose an additional feature template that captures the
consistency of the authoring style generally seen in lists. To
compute these features, we first perform a multiple sequence
alignment of all the records in the list. We use the standard
center-star approximation algorithm of [12] for minimizing
the pairwise distances of the record alignments. Note that
here the alignment is purely syntactic, query oblivious and
unsupervised. Our pairwise distance metric rewards match-
ing delimiters with each other, exact HTML token matches,
and similarly-typed substrings with each other.

The multiple sequence alignment outputs an alignment
column id for each token of each record. Then given a seg-
ment s we can get its starting and ending alignment column
ids from the first and last tokens of s. Using these ids, we
define an additional feature template:

falignc,α,β (si, ci, ci−1) = (c = ci)

∧ (StartAlignId(si) = α)

∧ (EndAlignId(si) = β) (6)

In Section 5, we shall see the empirical benefit of using these
extra features.

3.3.2 Multi-stage Extractor
As stated before, Edefault independently transforms each

list in L to the corresponding table, without exploiting the
valuable overlap that is present among lists. For example,
in Figure 2(a) the two source lists have two records in com-
mon but L2 has only one cell in common with the query
(”1947”). So Edefault can extract at most one column from
L2 (Figure 2(c)).

To rectify this, we propose the following multi-stage ap-
proach: First, we run the labeler independently on each list
and obtain (# columns in the labeled records, # labeled
records) for every list. This metric is used to sort the lists
in descending order. Then we learn the CRF for the list on
top of this sorted order . Such a list will yield a more robust
model than the others. Now using Q and the confident seg-
mentations of this list, we compute the labeled records in
the next best list, learn its model and segment its records,
and move on. At stage i, we use Q and the confident rows of
tables T 1, . . . , T i−1 extracted upto stage i−1 to compute the
labeled records for the ith best list in our sort order. Besides
generating robust models, our sorting criteria also helps in
creating a bigger and fuller set of tables {Q,T 1, . . . , T i−1}
to label the records in the ith stage. Algorithm 3 formally
describes this approach. We use a probability threshold of
0.8 to denote confident segmentations.

The key step in this approach is the computation of la-
beled records for Li using {Q,T 1, . . . , T i−1}. For this we
keep a running consolidated table CTi, which contains an
amalgamation of Q with the confident rows of T 1, . . . , T i−1.
Figure 2(d) illustrates a consolidated table CT2 obtained
from merging Q with T 1. A cell in CTi generally contains
multiple values, each of which denotes a variant of the cell’s
canonical value.



Now recall that the sub-routine SegmentAndMatch(q, r)
was responsible for labeling a record r assuming it was matched
to the query row q. Here q is a consolidated row from CTi,
so we make a minor modification to SegmentAndMatch:
for a column c of q and a segment s of r, SegmentAnd-
Match will look at all the variants in the cell qc and pick the
variant which is best suited for s. With this modification
the labeler can use Algorithm 2 as is to compute labeled
records at any given stage.

Figure 2(e) illustrates that the multi-stage extractor is
able to label and extract more columns, including the im-
portant ‘Name’ column, thus boosting the accuracy of the
system. We perform an empirical study of this extractor,
called Estaged, along with other extractors in Section 5.

Algorithm 3: Multi-stage Extractor (Estaged)

Input: Set of lists L = {L1, . . . , LK}, Query table Q
foreach i = 1 . . .K do

(Di, ŝi)← Labeler(Q,Li);
end

{L1, . . . , LK} ← Sort L by the criteria in Section 3.3.2;
CT1 ← Q;
foreach i = 1 . . .K do

(Di, ŝi)← Labeler(CTi, L
i);

Train a CRF with (Di, ŝi);
Apply the CRF to Li to get T i as in Edefault;
CTi+1 ← Consolidate(CTi, confident rows of Ti);

end

Output: Tables T 1, . . . , TK

To summarize, we presented the following orthogonal op-
tions for extractor design: (a) Edefault vs Estaged, depending
on whether content overlap is to be exploited while gen-
erating labeled records, (b) Soft vs hard implementations
of SegmentAndMatch, depending on whether we want
more but possibly slightly noisy cell matches or less but crisp
matches, (c) Additional alignment based features, which are
useful if there is consistency across records inside a source.

4. CONSOLIDATION AND RANKING
The output of extraction is a set of tables T 1, . . . , TK ,

which we consolidate into a single table R such that all du-
plicate rows across the tables are merged into a single row.
Figure 2(f) shows the consolidation of two tables output by
Estaged. The rows are then ranked so that correct, useful,
and relevant rows appear earlier in R. There are several
advantages to presenting a single consolidated table to the
user instead of individual tables. Consolidation allows us to
create more complete rows by merging cells from different
sources, hide mistakes in individual extractions, and make
sound row-level relevance judgments.

A key building block of the consolidator is a resolver that
given two rows, outputs a score indicating if they are dupli-
cates of each other. We discuss the design of the resolver in
Section 4.1. Next in Section 4.2 we present how the consol-
idator works on the K input tables to produce the consoli-
dated table. Finally, in Section 4.3 we discuss strategies for
ranking rows in the result.

4.1 Resolver
We attach two kinds of resolvers with any table T :

All

Text   Null   Number

ShortText Currency Phone

Date   Word   Name

Char2   Char

(a) Type Hierarchy

q(1); Tr(1)

y

y1

q(2); Tr(2)
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q(m); Tr(m)

ym

(b) Bayesian network

Figure 3: The type hierarchy and the Bayesian net-
work used by the resolver.

1. A row-resolver that given an arbitrary tuple q, and
a row Tr of the table, outputs a real score such that
when the score is positive the row pairs are considered
duplicates, with the magnitude of the score indicating
the confidence in the decision.

2. A cell-resolver is attached to each column c, such that
given an arbitrary string x and a cell Tr(c), it outputs
a real score whose sign and magnitude are interpreted
the same way as above. The cell-resolver, in addition
to forming the building block of the row-resolver, is
used during extraction to create labeled data as dis-
cussed in Section 3.1.2.

In spite of the extensive research on entity resolution, de-
signing such resolvers turned out to be a surprisingly com-
plex task for several reasons: First, the sheer diversity of
types and data formats on the web makes it hard to hand
tune any specific rule-based system, or find a representa-
tive dataset to train a statistical model. Second, the reso-
lution tasks have to be performed on possibly erroneously
extracted entities. For example, it is unclear how many extra
tokens before or after a cell should be allowed before a string
stops being a duplicate of that cell. Third, a row-resolver
will have to work on row pairs with arbitrary combination of
cells missing in the two rows. Many of the earlier methods
of finding a row-level score by taking a weighted sum of the
scores of the cells and thresholding fail on incomplete data.

We followed a three layered strategy to tackle the above
challenges. Instead of attempting to design resolvers for
generic string types, we incorporate a configurable type hi-
erarchy in WWT. For each column we infer its most specific
type node in the hierarchy. Each type comes with a de-
fault resolver for columns of that type. We elaborate on
this in Section 4.1.1. Given a column of a table, we derive
its cell resolver by adapting the type-specific resolver based
on the contents of the table as described in Section 4.1.2.
Finally, we create the row-level resolvers out of the cell-level
resolvers and a Bayesian network to intuitively parameterize
the interaction among the various cell resolvers. We describe
row-resolvers in Section 4.1.3.

4.1.1 Type hierarchy
Our system can take as input any hierarchy of column

types provided each type is associated with the following
methods: (a) A recognizer for whether a cell is of that type,
(b) An indexer that can support exact and top-k searches
on a column of values of the type. (c) A default cell-resolver
for pairs of cells of the type.

An example default hierarchy of our system is shown in
Figure 3(a). To infer the type of a table column we first



find for each of its cell the most specific node from the type
hierarchy that recognizes it to be of that type, then in a
single bottom-up sweep, we find the most specific type that
covers almost all of its cells, barring a few outliers.

Once we have associated a type with a column, we can
use the default resolver of that type to answer cell-resolution
queries on that column. For example, in the type hierarchy
of Figure 3(a), all different text types define the resolver
score between two cells c1, c2 as 2(similarity(c1, c2) − 0.5)
where similarity(c1, c2) returns a value between 0 and 1 cho-
sen appropriately from the extensive set of options in the
literature [3]. In our case, Text types use Cosine similarity
with TF-IDF weights on words, ShortText types use Soft-
cosine with an error tolerant similarity function like Jaro-
Winkler to match any token left unmatched based on exact
string equality, Name types use a custom similarity function
that can handle typical name variants in initials and last
names, and Word types use Jaccard on character 3-grams.

4.1.2 Creating a cell resolver for a column
We adapt a default resolver to a given column of values

by exploiting the observation that typically two cells of a
table column from a given source either are exact duplicates
detectable by string equality, or are non-duplicates. Given a
column, we first collapse these obvious duplicates and gener-
ate training pairs of top-k most similar non-duplicates from
the rest. This set along with a perfect duplicate pair is used
to train a binary classifier where the features are one or more
similarity functions attached with that column type. Dur-
ing training, we make suitable adjustments to handle class
skew, and safeguard against over-fitting. We skip the details
here due to lack of space. This training is very fast because
the number of training records is typically below 10.

4.1.3 Creating a row resolver for a table
A row-level resolver can be composed out of cell resolvers

in many different ways. A standard method is to use the
weighted sum of cell similarities as the row similarity score
[7, 18]. However, this scheme does not easily adapt to our
scenario because we have to handle tables with widely vary-
ing number of column types and arbitrary number of nulls.

We use a Bayesian network to capture how the row-level
duplicate decision interacts with cell-level decisions. We de-
signed the network so that its parameters can be easily set
from either the cell-level resolvers, or observed statistics of
a table T . Let y denote the row-level decision variable of
whether rows q and Tr are duplicates. Variable y directly
influences whether the cell pairs in each column c are du-
plicates of each other. We denote these decision variables
as y1, . . . ym. When yc = 1, the cells Tr(c), q(c) are resolved
to be duplicates of each other, which induces a certain joint
distribution on their values. The final Bayesian network is
shown in Figure 3(b). It has two kinds of parameters:

The Pr(yc|y) distribution. This distribution denotes the
probability that the cell pairs in column c are duplicates con-
ditioned on whether the row pairs are duplicates. Consider
first the case when y = 1, that is, the rows are duplicates.
Normally, we expect that when two rows are duplicates, the
cell pairs in all columns should also be duplicate, that is,
Pr(yc = 1|y = 1) should be 1. However, in real-life it is
possible for duplicate rows to disagree on a column due to
either random errors, or phenomenal reasons (change of jobs

can cause duplicate person rows to disagree on affiliation).
We capture this possibility by assigning a small probability
of ε to cell pairs disagreeing even when overall rows agree.
Thus Pr(yc = 1|y = 1) = 1− ε. (We use ε = 0.02).

Next consider the case when y = 0. Pr(yc = 1|y = 0)
denotes the probability that two non-duplicate rows have
duplicate cell values on column c. Row q could be a non-
duplicate of Tr in two cases: either q is a valid row of T or
q is an arbitrary row irrelevant to T . In the former case, we
can interpret probability Pr(yc = 1|y = 0) as the probability
that an arbitrary other row of T will repeat a value in column
c. This is easy to estimate based on the observed count of
distinct values D(c) over the N rows of T as p1 = 1 −
D(c)+1
N+2

where the constants 1 and 2 are used for Laplace
smoothing of the estimates due to the possibly small value of
N . In the latter case, where q can be an arbitrary irrelevant
row, we need to depend on corpus-level statistics, or some
type-derived biases to estimate the probability p2 that an
irrelevant row will repeat value Tr(c). We currently depend
on the type of the column to set p2 to a high value for number
columns and very small value for text columns (these are set
to 0.5 and 0.002 in our case). Finally, we combine these two
cases to estimate Pr(yc = 1|y = 0) = 1− (1− p1)(1− p2).

The Pr(Tr(c), q(c)|yc) distribution. The scores of the cell
resolvers can be easily converted to obtain Pr(yc|Tr(c), q(c))
the probability that two given cells are duplicates of each
other. We calculate Pr(Tr(c), q(c)|yc) from Pr(yc|Tr(c), q(c))
by applying Bayes rule and imposing equal priors on the two
value of yc to get: Pr(Tr(c), q(c)|yc) ∝ Pr(yc|Tr(c), q(c)).
When any of the two cells are null, Pr(yc|Tr(c), q(c)) returns
0.5, the state of zero knowledge.

Using the above parameters and an equal prior on y, it
can be derived that the Bayesian network of Figure 3(b) will
give rise to:

Pr(y|Tr, q) = κ
Y
c

X
yc=0,1

Pr(yc|Tr(c), q(c)) Pr(yc|y) (7)

κ is a normalization constant. Using the above conditional
distribution on y, we return the score that Tr is a duplicate of
q as Pr(y = 1|Tr, q)−Pr(y = 0|Tr, q). This score is negative
when the probability of the rows being non-duplicates is
higher than the probability of their being duplicates.

4.2 Consolidator
We now discuss how we use the row-resolver scores to

consolidate the K extracted tables. A straightforward al-
gorithm is to consolidate tables iteratively as follows: Start
with an empty consolidated table. Go over each table T in
turn and merge it intoR. In the merge step, go over each row
Tr of T , use an index-based filter to pick candidate matches,
invoke the resolver on each to find the highest scoring row
Rs of R. If this score is positive merge Rs and Tr, else create
a new row in R using Tr.

We improve upon this method by exploiting an observa-
tion on the form of duplicates in real data. Intra-source du-
plicates exhibit significantly lower variance than inter-source
duplicates. Within a source, duplicates are either not present
or are trivial to detect based on exact string similarity. Once
the obvious duplicates are removed, the rows within a source
should be treated as distinct and in the consolidated table
they should not be merged in the same row. We exploit this
observation to consolidate tables as follows:



An optimal consolidated table would maximize the sum
of positive resolver scores of row pairs merged together while
ensuring that non-duplicate rows of the same list are kept
in separate rows. When K = 2 and there are no duplicates
within a table, we can find the optimal solution by finding
the maximal matching between the two row sets. When
either of the two conditions are violated, it is easy to verify
the NP-hardness of optimizing this objective by reduction
from tripartite matching and graph partitioning.

We outline the approximate algorithm used in our consol-
idator in Algorithm 4. The consolidator merges each table
T i in turn with an intermediate result table R such that each
distinct row of T i is in a different entry as follows: First, it
builds a new table T̄ i by merging obvious duplicates in T i.
Most sources do not contain duplicate rows, so this step has
no effect in most cases. Next, to merge T̄ i into R it uses an
index on R to find close matches for each row T̄ ir , invokes the
resolver on the close matches and retains those rows pairs
where the similarity is greater than a threshold δ. Threshold
δ is chosen so that unsure duplicates are not merged until
all tables have had a chance to find a good match. The can-
didate pairs are used to define edges of a weighted bipartite
graph and the maximal matching in the graph provides an
optimal solution to the best way to merge two tables with
distinct rows. The mapped row pairs in the maximal match-
ing are merged and unmapped rows define new entries in R.
The index on R and resolver parameters are updated before
moving on to the next table. After all tables are merged
using the bipartite criteria, it makes a final pass to merge
rows in R with positive resolver scores while ensuring that
rows from the same source are kept separate.

Algorithm 4: : Consolidating tables T 1, . . . , TK , query
table: q, result table R

Initial consolidated table R = φ
Initialize resolver parameters based on query table q
for i = 1 . . .K do
T̄ i ← T i with obvious duplicates merged.
Form a bipartite graph G with left nodes as rows of R,
right nodes as rows of T̄ i and weighted edges on row
pairs with resolver score > δ.
Find the maximal matching M in G.
Merge into R, those rows of T̄ i that are matched in M
and create new rows in R for the rest.
Update index on R and resolver parameters.

end for
Merge row pairs (ri, rj) of R with positive resolver score
so that no member of ri belongs to the same source
table as rj .

4.3 Row Ranker
Since the only form of input in the user-query is a set of

example rows of the target table, it is impossible to make
hard judgments on the relevance of a row. We therefore
follow the standard IR practice of ranking rows in the answer
table so that the user finds high-quality entries at the top.

A natural sort order is based on the number of sources
that support a row. A row that is contained in many lists is
likely to be more relevant since each list was selected based
on overlap with the query table, This scheme, that we call
Additive performs poorly mainly because it does nothing

about errors in the extraction process. Since we use a prob-
abilistic model to extract rows from unstructured lists, it
is possible to get well-calibrated confidence scores indicat-
ing the probability of correctness of that extraction. These
can be combined to get a probability of the correctness of a
consolidated row as follows:

Let Ri be row i of R and let Mi denote the set of (list
`, record r) pairs that have been merged to form Ri. Let
Pr(T `r |L`r) indicate the probability of the correctness of ex-
traction of the rth record of the `th list. We calculate the
probability that Ri is correct by assuming independence of
the correctness probability of its members, and thus

Pr(Ri|Mi) = 1−
Y

(`,r)∈Mi

(1− Pr(T `r |L`r))

We call this the Softmax scheme. It rewards correctness
and mildly favors redundancy.

A second problem in both this and the earlier scheme
is that they ignore the number of useful non-empty cells
in a row. Different lists might provide different number of
columns of the query table, so it is quite possible that com-
mon columns like year and state names match many lists
and their support overwhelms the support of rows which
provide a larger set of columns. In fact, the Softmax ap-
proach favors rows with fewer columns because such rows
tend to have higher correctness probability.

One way to tackle this is to attach a notion of importance
I(c) to each column c of a query. The importance score of
a column should ideally be given by the user. In the ab-
sence of such an input, we depend on type-specific scores —
e.g. number columns are considered one-fifth as important
as text columns.

Column importance along with the row correctness prob-
ability, can be combined to associate a score that indicates
the amount of useful and correct information that a row
provides. One intuitive scoring function is this:

S(Ri|Mi) = Pr(Ri|Mi)
X

c:Ri(c)6=null

I(c)

We call this the Softmax ColImp scheme.
Even this scoring function has a bias toward rows with

fewer columns that are supported by many lists. Consider a
query table to collect mottos of universities. The columns of
the query are “University name”, “Location” and “Motto”.
In the absence of any other information, assume that all
columns have equal importance. It is easy to find many lists
on the web containing the first two columns, and assuming
that the extraction task is also easy, rows which contain the
first two fields will easily get a score of 2. A row that ex-
tracts all three fields needs to have a correctness probability
of at least 2/3 to out-rank the two-column rows. This is
less likely to happen because extracting mottos is harder,
and there are not many lists to soft-max over. We solve
this by associating correctness probability with each cell of
the consolidated row instead of a single row-level probabil-
ity. We exploit the power of the full-fledged probability dis-
tribution available with each list record, to calculate the
marginal probability of the correctness of each column of
the extracted record. These probabilities can be calculated
using a straightforward extension of the message passing al-
gorithm used during training [11]. We obtain a correctness
probability of a cell in the consolidated row by combining
the cell-level correctness probability from member lists using



the same soft-max function as follows:

Pr(Ri(c)|Mi) = 1−
Y

(`,r)∈Mi T `
r (c)6=null

(1− Pr(T `r (c)|L`r))

Now we define the score of a consolidated row as the sum of
the correctness probability of its cells weighted by the cell’s
importance:

S(Ri) =
X

c:Ri(c)6=null

I(c) Pr(Ri(c)|Mi)

We call this the Cell Softmax scheme. This scheme does
not impose any penalty on larger rows. For example, in
the previous example it is likely that the marginal prob-
ability of the extraction of University name and Location
is close 1 even if the joint probability of the full (Univer-
sity,Location,Motto) combination is smaller. This will cause
the total score to be greater than 2.

5. EXPERIMENTAL EVALUATION
We first demonstrate that WWT is more accurate than

simpler approaches, especially for ‘difficult’ queries (defined
later). This justifies the use of advanced statistical tech-
niques for extraction, consolidation and ranking. Second,
we show via timing results that WWT takes only a few sec-
onds to answer a typical user query. Third, we study the
impact of the various extractors discussed in Section 3, and
show that exploiting content overlap across lists has a signif-
icant payoff, again more so for difficult queries. We also es-
tablish the importance of going beyond pure support-based
methods for ranking rows in the final result.

Source Lists
We use a web crawl of almost 500 million webpages, from
which the list extractor found around 16 million HTML lists
after applying the selection heuristics. These were indexed
into nine Lucene index shards, with a total size of roughly
10GB, which were probed in parallel for every query.

Query tables
We created a query benchmark by simulating the kind of
queries that would be posed by someone trying to automat-
ically compile the wealth of tables in Wikipedia. The tables
cover a wide variety of topics ranging from Danny DeVito’s
filmography, Newbery Medal winners, US university mot-
tos, Kings of Thailand, and so on. Since we were limited by
the need to collect ground truth for our queries, we selected
a set of 65 Wikipedia tables as our hidden target tables.
The number of columns in a target table ranged from three
to six. Then we constructed query tables by sampling rows
from the target tables. In our experiments, we consider sam-
ples with 3, 4, 5, 7, 10 rows, with five samples taken per size.
We use ‘query size’ to denote the number of rows in a query.

Ground truth and evaluation
We created ground truth for each of the 65 target tables
as follows. We used the entire Wikipedia table to find the
top-20 lists from the list-index. On each returned list we
collected human input on: (a) whether the list is relevant to
the query or not, (b) for every list record, the target table
row it maps to or if it is a new record or irrelevant record,
and (c) the correct segmentation of every relevant record.

We create a ground truth consolidated table by merging to-
gether rows mapped to the same Wikipedia target row. We
call this the true consolidated table (CT*). Overall this re-
covered roughly 75% of the Wikipedia rows and there were
25% new rows that were judged as relevant but did not ap-
pear in Wikipedia. This is interesting because our input
sources were lists and exact mirroring of content between
the Wikipedia tables and our lists was not possible.

Here we stress that even though the index reports the lists
as relevant, on an average 45% of the lists turn out to be
irrelevant to the target on manual inspection. This brings in
many consolidation and ranking challenges for WWT. Also,
we categorize a query as difficult if each of its relevant lists
in the ground truth has less than 60% of the target rows.
To answer such queries it is essential to integrate the results
from multiple lists through robust consolidation. Roughly
27% of our queries are difficult.

Using the true consolidated table (CT*), we evaluate our
system via recall, i.e. the number of correct rows found in
the top-M rows of the result table R where M is the number
of rows in CT*. This is a very stringent metric because we
demand the full construction of CT* in spite of the inherent
inadequacy of the small query.

5.1 Overall Performance
Our first set of experiments looks at the end to end per-

formance of WWT — in terms of the recall over all queries
and over the difficult queries, and the total time required for
computing the answer. We fix WWT to use the following:
alignment-based features (Section 3.3.1), Soft Labeler, the
default extractor, and the Cell Softmax ranker. This setup
is compared against two baselines: (a) SingleBest, which
magically picks the source list with the highest recall and
ignores the others, and (b) SimpleCons, which is the same
as WWT but uses a näıve consolidator — it only merges
exact duplicate rows together with allowance for null cells.

These baselines are interesting because first, they will tell
us the importance of correctly integrating multiple lists to-
gether for our task. If a single list is enough to answer
a query, then WWT can gain little by integrating various
lists, and effort is better spent in identifying those single
lists. Second, the baselines will reveal the need for complex
but accurate consolidation techniques.

Figure 4(a) shows the effect of increasing the query size
on the overall recall of WWT and the two baselines. We
first observe that WWT has a recall of 55% even for a query
size of three, in spite of our stringent evaluation criteria.
This is significant, as recall on web-scale retrieval tasks are
usually poor. As expected, recall increases when more rows
are included in the query. WWT is significantly better than
SimpleCons, illustrating the need for a good consolidator
and ranker. However the gap is not too big with SingleBest,
because many of the queries were answerable with a single
list, and we post facto selected the single best list. So in
Figure 4(b) we perform the comparison on only the difficult
queries. Here all the recalls are lower, but WWT outper-
forms the rest, and SingleBest is the worst.

To demonstrate the usability of WWT, in Figure 4(c) we
plot its running time (in seconds) as a function of the query
size. Although the average running time increases linearly,
we observe a huge variance. This is so because queries of
same size may fetch source lists with a widely varying num-
ber of rows. Other factors like the number of irrelevant
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Figure 4: Overall performance of WWT vs Query size.

records and number of columns also have a significant effect
on the runtime. However for all practical purposes, a small
query is typically answered in around 20-30 seconds.

5.2 Extraction
We now establish that the default extractor Edefault can

be improved by using the modifications discussed in Sec-
tion 3.3. For this we report the extractor’s accuracy, which
is represented by its F1 score. F1 is the harmonic mean of
the cell precision and recall, defined as — the fraction of
segments output by the extractor that are correct, and the
fraction of true segments output respectively.

We use Edefault as a baseline, and make the following cu-
mulative modifications: (a) soft labeler instead of hard la-
beler (b) using the multi-staged extractor Estaged (c) adding
alignment features. Figure 5(a) plots the F1 vs query size
for all the variants. As the query size increases, the F1 of
all the variants increase and converge as the benefits of the
modifications diminish. But for small query sizes like three,
the modifications boost the F1 from 76.8% to 80.8%. Sur-
prisingly, the benefit from using Estaged is not huge. The
reason is that first, a significant fraction of the queries have
only one or two relevant source lists so we can execute only
very few stages of Estaged. Second, any errors during the
initial stages of Estaged are compounded in the later stages
hurting its performance. However for difficult queries, say
of size three, Estaged posts an F1 of 76.8% vis-a-vis an F1 of
73.5% of its nearest competitor (plot omitted).

5.3 Ranking
Our last experiment studies the effect of different ranking

methods on the overall recall. Figure 5(b) and 5(c) present
the ROC curves for query sizes three and ten for four ranking
methods discussed in Section 4.3: Additive, Softmax, Soft-
max ColImp and Cell Softmax. The ROC curve is drawn by
picking increasing values of n and for each n we pick the first
n rows in the result table R and find the number of matched
rows p(n) in CT ∗. Let P be the total number of matched
rows in the entire table R and N be the total size of R. Us-
ing these, we calculate for each n the true positive rate p(n)

P

which forms the y-coordinate and false positive rate n−p(n)
N−P

which forms the x-coordinate. An ideal ranking strategy
would place all matched rows before any unmatched row as
shown by the dotted lines in the figure. The better a ranking
strategy, the closer it is to the ideal curve. From figures 5(b)
and 5(c) we observe that the Additive and Softmax meth-
ods are inferior to Cell Softmax and Softmax ColImp and

the gap is as big as 20 points for small values of n.

6. RELATED WORK
We are not aware of any prior work on answering ad

hoc table completion queries over open-domain and unstruc-
tured list sources such as on the web. Our table completion
queries is a generalization of set completion queries such as
Google Sets which take as input a set of examples such as
city names and expand the set to more members of that
type. The key challenge here is establishing relevance of a
list based on co-occurrence of instances across sources. Sev-
eral approaches have been used including the Bayesian sets
approach of [10], page rank approach of [22], and graph la-
beling approach of [21]. Extending these to creating multi-
column instances from unstructured lists raises new chal-
lenges of extraction, consolidation, and relevance not en-
countered in the single column setting.

The extraction of records from unstructured lists is an ex-
tensively researched topic spanning many communities, di-
verse input types, and usage scenarios [17]. A vast majority
of these methods assume the presence of labeled unstruc-
tured records and treat structured records as extra informa-
tion beyond labeled unstructured data [14, 5, 19]. Even
among methods [16, 1, 9] that do not require labeled data,
the success of the proposed methods depend on the presence
of a large database of structured records. In our case, the
query gives us only a few seed structured records. There-
fore, it becomes essential to match the unstructured data
with the seeds as carefully as possible for creating reliable
training data. We are not aware of any work that addresses
this problem.

Another related area is extracting records by exploiting
regularities of web pages. We classify the extensive litera-
ture on this topic into two kinds: the first kind extracts reg-
ular lists,e.g. [2, 6], and the second extract multi-attribute
records from lists e.g. [23, 13, 8, 9]. Our focus in this paper is
the second problem. Most approaches for that problem as-
sume machine generated lists and learn the template behind
them before extracting data. We make no such assumptions
as our lists are predominantly human generated. When reg-
ularities do hold, we exploit them in a more error tolerant
way through alignment features in the statistical model.

Our approach of creating row-resolvers from cell-resolvers
using a Bayesian network is similar to the approaches used in
[15] and [20] of using a graphical model to express the inter-
action between attribute-level and record-level de-duplication
decisions. One crucial difference in our case is that we can-
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(b) ROC Curve: Query size = 3
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Figure 5: Accuracies of different variants of the extractor (5(a)) and ranker (5(b) and 5(c)).

not learn the parameters of the network from any labeled
training data. Hence, we presented a design which allows
us to interpret these parameters intuitively and determine
their values from the input table statistics.

7. CONCLUSION AND FUTURE WORK
We introduced the task of augmenting a table with very

few example rows by constructing new rows from unstruc-
tured lists on the web. Our key contribution was the WWT
system, which extracts rows from lists using statistical mod-
els, consolidates and ranks them in the face of huge noise and
irrelevance present in the data. We showed that WWT can
compute large portions of Wikipedia tables with very few
examples in a matter of seconds.

As future work, we plan to extend WWT to incorporate
other structured web sources such as HTML tables and log-
ical lists such as web-based catalogs, in a unified way.

Acknowledgments. The work reported here was supported
by a research grant from Yahoo! Research and an IBM Fac-
ulty award. We thank Soumen Chakrabarti and Webaroo
for the Web corpus.

8. REFERENCES
[1] E. Agichtein and V. Ganti. Mining reference tables for

automatic text segmentation. In SIGKDD, 2004.
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