CS206 Homework #2

Max marks: 60 Due April 1, 2005

1.

Be brief, complete and stick to what has been asked.
If needed, you may cite results/proofs covered in class without reproducing them.

In this homework, problems 1 and 2 will be graded, while problems 3 and 4 will not be graded.
Please DO NOT turn in solutions of problems 3 and 4. They are meant for your own
practice.

Do not copy solutions from others or indulge in unfair means.

[30 marks] In a sleepy little town, there is an old postman who must visit each morning all
houses/offices that have letter(s) to be delivered that day. There are N houses/offices in the
town, and each house/office has a distinct address that is a natural number in the range [1, N].
The post office itself has the address P.

The postman, being old, must figure out the “best” sequence of addresses for delivering letters
each morning, so that the total distance travelled by him from the post-office to the last address
where a letter is delivered and back to the post-office is minimized. It is assumed that if the
postman is currently at address z; and the next address in the sequence is x;, then he always
takes the shortest path from z; to z;. Note that the “best” sequence for delivering letters
need not be unique, and there may be letter(s) addressed to the post-office itself.

Interestingly, this is no ordinary post-office! It has recently acquired a software that can
analyze certain classes of predicate logic sentences (formulae without free variables) and can
compute models of satisfiable sentences using natural numbers (i.e., the domain of elements
is the set of natural numbers). Our old postman, having realized the fun of playing with
predicate logic, now wishes to use this software for finding the best sequence of delivery
addresses each morning. We must help him in this noble endeavour. In particular, we must
formulate a satisfiable predicate-logic sentence ¢ (containing no free variables), such that the
“best” sequence of addresses can be “extracted” from a model of ¢ using natural numbers.
In constructing ¢, we are allowed to use the following predefined predicates and functions:

e L(x;): This predicate takes a natural number z; as argument, and if z; lies in the range
[1, N], then it evaluates to True iff there is a letter for address ;. If x; lies outside the
range [1, N], the predicate evaluates to False. Clearly, the definition of L(z;) potentially
changes every morning (depending on which addresses have letters to be delivered that
day). Our postman, in his enthusiasm to use the software, has agreed to look at the
pile of letters each morning and update the definition of this predicate on the post-office
computer before running the software on ¢.

e D(z;, x;) : This function takes two natural numbers and returns a natural number giving
the shortest distance between addresses x; and x; in the town, for all z;,z; € {1...N}.
If either argument is outside the range [1, N], the function returns (rather arbitrarily
chosen) 13. The town is seismologically stable, and there are no new constructions or
demolitions. So the definition of this function is assumed to be time invariant, and does
not change from one day to another



e +(z;,z;) : This function takes two natural numbers and returns their sum.

*(x;, ;) : This function takes two natural numbers and returns their product.
e z; = x; : This is the equality predicate for natural numbers.

e z; > x; : This is the greater-than-or-equal-to predicate for natural numbers.

In addition to the above predefined predicates and functions, you are allowed to use the
function symbol Seq of arity 1 (from natural numbers to natural numbers) in formulating ¢.
No other function or predicate symbols may be used in ¢.

Recall that our noble goal was to to help the old postman “extract” the “best” sequence of
addresses every morning. So, we must use the function symbol Seq in ¢ in such a way that
if the post-office’s software returns a model M = (N, Seq™) for ¢ (where N is the set of
natural numbers and Seq™ : N — N is a concrete function definition), then Seq™ can be
used to obtain a “best” sequence of addresses for delivering letters. In particular, if there are
K addresses that have letters to be delivered on a particular day, then Seq™ (7) must give
the j* address in a “best” sequence for that day, for all j € [1, K]. For j ¢ [1, K], Seq™(j)
must be 0. You may assume that there is at least one letter to be delivered each day, i.e.
1 < K < N for each day, although K may vary from day to day.

Note that ¢ must not involve K, since this may indeed differ from day to day, and our old
postman cannot enter a new formula to the software each day. N is assumed to be fixed, so
you may use N and functions of N in formulating ¢, but once formulated, our postman must
be able to use the same formula ¢ every day, simply by changing the definition of L(z;) each
morning as described above.

As an example, suppose there are 20 houses/offices in the town, and on a particular day, there
are letters for addresses 1,2 and 12. Suppose also that the unique best sequence of addresses
(for minimizing the total distance travelled) is (12,2,1). To find this sequence, the postman
goes and updates the definiton of L so that L(1) = L(2) = L(12) = True and L(x;) = False
for all other x;. Our formula ¢ should be such that with the above definiton of L, a model
M = (N,Seq™) of ¢ has Seq™(1) = 12,Seq™(2) = 2,Seq™(3) = 1 and Seq™ (i) = 0 for all
other 7.

Give a predicate logic sentence ¢ for the above purpose, and explain briefly the justification
behind the construction of your formula. In your justification, you must argue why any model
(N, Seq™) of ¢ must contain a function Seq™ that gives a “best” sequence of addresses.

Important: Your justification must not exceed 500 words, and your formula must have
size linear in N. In other words, the total no. of symbols (variables, predicate-logic operators,
function and predicate symbols, parentheses) in your formula must be O(N).

. [10+10+10 marks] Prove the following sequents using natural deduction for predicate logic:
(a) 3z 3y (H(z,y) vV H(y,x)), ~Fz H(z,2) = JzIy-(z=y).

(b) Va Pla,,x), Ve VyVz (P(,y,2) — P(f(x),y, f(2)) & 32 P(f(a), 2 f(f(a))).
(¢) Yz Iy P(z,y),VaeVy P(x,y) — —P(y,z) = —32VuP(u,2).

Important: None of your proofs should exceed twenty-five steps of application of basic
introduction and elimination rules.



3. [Ungraded problem. Do not turn in solutions to this problem.] Let X = {x1,2s,...}
be a countably infinite set of variables, P = { Py, P, ...} be a countably infinite set of predicate
symbols, and F = {f1, f2, ...} be a countably infinite set of function symbols. We consider the
set of all predicate logic sentences that can be constructed using the above symbols, parenthe-
ses, commas, and standard predicate logic operators, i.e., {—, VvV, A, 3,V}. Thus, our sentences
of interest are simply finite strings of symbols from the set Y UP UF U{(,),,V,A,3,V,,},
with appropriate syntactical structure. Note that the arities of predicate and function symbols
have not been pre-defined. Instead, these are defined by the way in which these symbols are
used in constructing a predicate logic sentence. Thus, the same symbol can be used in two
different sentences with two different arities.

As an example, ¢; = Jx; Pi(fi(x1)) and ¢g = Vi Vs Pi(xy,20) —  Jxy Voo Pi(x1, x9) are
two sentences constructed from the above symbols. Here, we have used P, with arity 1 in ¢,
but with arity 2 in ¢9; nevertheless both of them are predicate logic sentences using symbols
from the above sets. We will assume that in constructing a sentence, if we need k distinct
variables, [ distinct predicate symbols and m distinct function symbols, then we will use the
variables {z1,...x}, predicate symbols {Py,... P} and function symbols { fi,... fin}. Note
that this doesn’t reduce the generality of of predicate logic sentences that can be constructed.

Our goal in this question is to reason about the existence or non-existence of a computer
program that

e Prints every valid predicate logic sentence that can be constructed using the above rules,
and

e Prints nothing else.

Clearly the set of valid predicate logic sentences that can be constructed using the above rules
is countably infinite. Thus, our program must be a non-terminating program. Nevertheless,
we wish to guarantee that every valid predicate logic sentence constructed using the above
rules is generated by our program after a finite number of steps. In particular, we wish to give
an upper bound on the number of steps within which a given valid predicate logic formula
will be generated by our program.

(a) Show that such a program indeed exists. You must give a constructive argument, indi-
cating the sequence of steps that the program iterates through in order to achieve its
intended purpose. You may assume that integers of unbounded size can be represented
on the computer in which this program runs.

(b) Given a valid predicate logic sentence ¢, describe how you would obtain an upper bound
on the number of steps required by your program to print this sentence.

4. [Umgraded problem. Do not turn in solutions to this problem.] Use natural
deduction to prove the following sequents:

(a) Vo (P(z) — (x=0)),Vz(z =b) — P(z) b P(b) AVaxVy (P(x) AN P(y) — (z=1y)).

(b) Va (P(z) vV Q(f(x))), V& (R(f(x)) — —P(z)), 3z R(f(x)) = JzQ(f(x)).
(¢) VeVy P(z,y) A P(y,x) — (v =y), Yx P(x, f(x)), IzVe P(z,2) + Ju(u= f(u)).



