- The exam is open book and notes.
- Results/proofs covered in class/problem sessions/assignments may simply be cited, unless specifically asked for.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others or indulge in unfair means.
- 1. [10 marks] Use natural deduction to prove the following sequent, popularly known in logic as the Resolution Rule: $\phi \lor \psi$, $\neg \phi \lor \psi \vdash \psi$.

To score marks, your proof must have no more than 15 steps, and **must not** use *Law of the Excluded Middle (LEM)*.

- 2. *[10 marks]* Consider the following set of atomic propositions, representing English language sentences:
 - (a) Proposition p_0 : Shyam is a liar.
 - (b) Proposition p_1 : The universe started with a soft meow.

In addition, consider the set of atomic propositions $\{q_0, q_1\}$, where q_i represents the sentence "Shyam said that the sentence corresponding to proposition p_i is true".

For purposes of this question, we will assume a simple binary world, where a person either always speaks the truth or always lies. It then follows that $p_0 \wedge q_i \rightarrow \neg p_i$ and $\neg p_0 \wedge q_i \rightarrow p_i$ for all $i \in \{0, 1\}$. These four formulae can therefore be used as premises for purposes of this question.

Show using natural deduction that "If Shyam said that the sentence corresponding to p_0 is true, then the universe started with a soft meow".

To score marks, you may use LEM **at most once** in your proof, and your proof must have no more than 20 steps.

- 3. [5+5 marks] Consider the formula $\phi = \neg((x \land \neg(y \land z)) \lor (x \land y \land z))$, where x, y, z are atomic propositions.
 - (a) Convert ϕ to negation-normal form (NNF).
 - (b) Convert φ to conjunctive normal form (CNF) with the minimum number of clauses. You may use commonly ised propositional logic identities (e.g., distributive laws, ⊤ ∨ ψ = ⊤, ψ ∧ ¬ψ = ⊥, etc.) to minimize the number of clauses. To score marks, you **must mention** the identities you are using.