CS206 Tutorial No. \#3

Date: Feb 10, 2006

1. Consider following CNF formula.

$$
\begin{aligned}
\left(\neg A_{1} \vee A_{2} \vee A_{3}\right) & \wedge\left(\neg A_{1} \vee A_{3} \vee A_{9}\right) \\
& \wedge\left(\neg A_{2} \vee \neg A_{3} \vee A_{4}\right) \\
& \wedge\left(\neg A_{4} \vee A_{5}\right) \\
& \wedge\left(\neg A_{4} \vee A_{6} \vee \neg A_{8}\right) \\
& \wedge\left(\neg A_{5} \vee \neg A_{6}\right) \\
& \wedge\left(A_{7} \vee A_{1} \vee \neg A_{10}\right) \\
& \wedge\left(A_{1} \vee A_{8}\right) \\
& \wedge\left(\neg A_{7} \vee \neg A_{8}\right)
\end{aligned}
$$

(a) Check if this CNF formula is satisfiable using DPLL method.
(b) Assume $A_{9}=\perp$ and $A_{10}=T$. Now, check if we can find a solution for above formula using DPLL. What is your observation about 'Pure Literals' in DPLL from this exercise?
2. A directed graph on n vertices is given such that every vertex has atleast one incoming edge. Assume an adjacency matrix representation of the graph A. Two vertices are given special names, namely the start vertex and the target vertex. The goal is to determine if the target vertex is reachable from the start vertex using a SAT based formulation.

