CS206 Tutorial No. \#4

Date: Feb 17, 2006

1. Consider the formula
$\forall(x)\left[P(x) \Leftrightarrow \forall(y)\left[Q(x, y) \Leftrightarrow\left(e q\left(y, f_{1}()\right) \vee e q(y, x)\right)\right]\right]$
Evaluate the formula in the following models: $Q(x, y) \equiv y$ divides $x, e q(x, y) \equiv x=y$ and $f_{1}()$ is a zero-ary function which evaluates to the constant value 1 and
(a) Domain $=\{1,2,4,8\}$, and $P(x) \equiv x$ is a composite number
(b) Domain $=\{1,2,4,8\}$, and $P(x) \equiv x$ is a prime number
(c) Domain $=\{1,2,3, \ldots\}$, and $P(x) \equiv x$ is a prime number
(d) Domain $=\{1,2,3, \ldots\}$, and $P(x) \equiv x$ is a composite number
2. In this question we wish to reason about lists using predicate logic. Note that a list is an ordered sequence (not a set) of elements. You are allowed to use the following function and predicate symbols in your formulae. The intent of each these functions and predicates is as indicated by their names.

- Predicate symbols: is_empty_list(x), is_list_with_one_element(x), and equal(x).
- Function symbols: reverse_list (x) and append_list_to_list (x, y).

Using only the above predicate and function symbols and predicate logic operators, express the following English language statements as predicate logic formulae. You can assume that the universe, S, of a model contains elements that are only lists.
(a) Every list can be obtained by appending a list to another list.
(b) For any list x, whenever it is possible to express it as the append of list y and list z, it can be reversed by appending the reverse of list z to reverse of list y.
(c) A list is empty iff it keeps every list unchanged after it is appended to the list.
(d) There are lists, not all of whose elements are identical.

