CS206 Tutorial No. #4

Date: Feb 17, 2006

1. Consider the formula

 $\forall (x)[P(x) \Leftrightarrow \forall (y)[Q(x, y) \Leftrightarrow (eq(y, f_1()) \lor eq(y, x))]]$ Evaluate the formula in the following models: $Q(x, y) \equiv y$ divides $x, eq(x, y) \equiv x = y$ and $f_1()$ is a zero-ary function which evaluates to the constant value 1 and

- (a) Domain= $\{1, 2, 4, 8\}$, and $P(x) \equiv x$ is a composite number
- (b) Domain= $\{1, 2, 4, 8\}$, and $P(x) \equiv x$ is a prime number
- (c) Domain= $\{1, 2, 3, ...\}$, and $P(x) \equiv x$ is a prime number
- (d) Domain= $\{1, 2, 3, ...\}$, and $P(x) \equiv x$ is a composite number
- 2. In this question we wish to reason about lists using predicate logic. Note that a list is an ordered sequence (not a set) of elements. You are allowed to use the following function and predicate symbols in your formulae. The intent of each these functions and predicates is as indicated by their names.
 - Predicate symbols: $is_empty_list(x)$, $is_list_with_one_element(x)$, and equal(x).
 - Function symbols: $reverse_list(x)$ and $append_list_to_list(x, y)$.

Using only the above predicate and function symbols and predicate logic operators, express the following English language statements as predicate logic formulae. You can assume that the universe, S, of a model contains elements that are only lists.

- (a) Every list can be obtained by appending a list to another list.
- (b) For any list x, whenever it is possible to express it as the append of list y and list z, it can be reversed by appending the reverse of list z to reverse of list y.
- (c) A list is empty iff it keeps every list unchanged after it is appended to the list.
- (d) There are lists, not all of whose elements are identical.