CS206 Tutorial No. \#7

Date: Mar 17, 2006

1. Express the following mathematical sentences using first order predicates. Only natural numbers are considered.
(a) x divides y.
(b) x is a prime.
(c) $x \equiv y \quad(\bmod n)$.
(d) Twin Prime Conjecture

There are an infinite number of pairs of primes that differ by the number 2 .
(e) There are infinitely many primes.
(f) If $a \equiv b(\bmod p)$, then $(a+c) \equiv(b+c) \quad(\bmod p)$
2. Let

$$
\begin{aligned}
\phi_{1} & =\exists(x)[P(x, G(x))] \\
\phi_{2} & =\forall(y)[P(y, F(y))] \\
\phi_{3} & =\forall(u)[\forall(v)[\forall(w)[P(u, v)) \wedge P(v, w) \rightarrow P(u, w)]]] \\
\phi_{4} & =\exists(z)[P(z, F(G(z))]
\end{aligned}
$$

$\phi=\left(\left(\phi_{1} \wedge \phi_{2} \wedge \phi_{3}\right) \rightarrow \phi_{4}\right)$
Also, ϕ is valid iff ψ is unsatisfiable.
Use Herbrand Theorem, to prove that ψ is unsatisfiable.
3. Skolemize the formula $\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))$
4. Skolemize the formula $\exists x \forall y \exists z(x \rightarrow y \wedge z) \wedge \exists x \forall y \exists z \neg(x \rightarrow y \wedge z)$
5. Write a formula using the binary predicate R , and equality predicate and whose only model is an infinite linear chain with one start node.

