

Combinational Logic

Outline

- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers

Combinational v.s Sequential Circuits

- Logic circuits may be combinational or sequential
- Combinational circuits:
 - Consist of *logic gates* only
 - Outputs are determined from the present values of inputs
 - Operations can be specified by a set of Boolean functions
- Sequential circuits:
 - Consist of *logic gates* and *storage elements*
 - Outputs are a function of the inputs and the state of the storage elements
 - Depend not only on present inputs, but also on past values
 - Circuit behavior must be specified by a time sequence of inputs and internal states

Combinational Circuit (1/2)

- A combinational circuit consists of
 - Input variables
 - Logic gates
 - Output variables

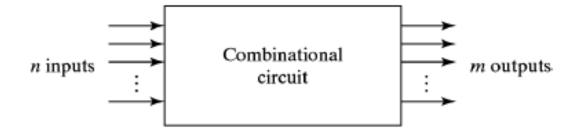


Fig. 4-1 Block Diagram of Combinational Circuit

Combinational Circuit (2/2)

- Each input and output variable is a binary signal
 - Represent logic 1 and logic 0
- There are 2ⁿ possible binary input combinations for n input variable
- Only one possible output value for each possible input combination
- Can be specified with a truth table
- Can also be described by m Boolean functions, one for each output variable
 - Each output function is expressed in terms of n input variables

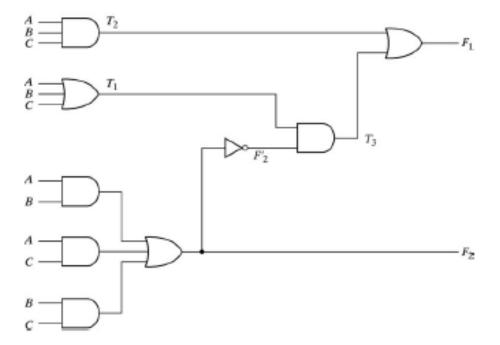
Outline

- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers

- Analysis: determine the function that the circuit implements
 - Often start with a given logic diagram
- The analysis can be performed by
 - Manually finding Boolean functions
 - Manually finding truth table
 - Using a computer simulation program
- First step: make sure that circuit is combinational
 - Without feedback paths or memory elements
- Second step: obtain the output Boolean functions or the truth table

Step 1:

- Label all gate outputs that are a function of input variables
- Determine Boolean functions for each gate output



$$F_2 = AB + AC + BC$$

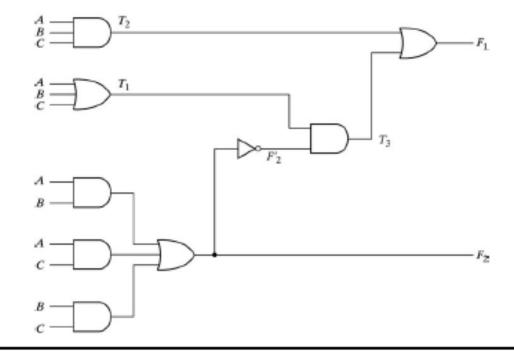
$$T_1 = A + B + C$$

$$T_2 = ABC$$

Output Boolean Functions (2/3)

Step 2:

- Label the gates that are a function of input variables and previously labeled gates
- Find the Boolean function for these gates



$$T_3 = F'_2 T_1$$

 $F_1 = T_3 + T_2$

Output Boolean Functions (3/3)

Step 3:

- Obtain the output Boolean function in term of input variables
 - By repeated substitution of previously defined functions

$$F_{1} = T_{3} + T_{2} = F'_{2} T_{1} + ABC$$

$$= (AB + AC + BC)' (A + B + C) + ABC$$

$$= (A' + B')(A' + C')(B' + C') (A + B + C) + ABC$$

$$= (A' + B' C')(AB' + AC' + BC' + B' C) + ABC$$

$$= A' BC' + A' B' C + AB' C' + ABC$$

Truth Table

- To obtain the truth table from the logic diagram:
 - Determine the number of input variables
 For n inputs:
 - 2ⁿ possible combinations
 - List the binary numbers from 0 to 2 ⁿ-1 in a table
 - 2. Label the outputs of selected gates
 - Obtain the truth table for the outputs of those gates that are a function of the input variables only
 - Obtain the truth table for those gates that are a function of previously defined variables at step 3
 - Repeatedly until all outputs are determined

Truth Table for Fig. 4-2

Α	В	С	F ₂	F_2	T ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	0 1 1 0 1 0	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Design Procedure

- Design procedure:
 - Input: the specification of the problem
 - Output: the logic circuit diagram (or Boolean functions)
- Step 1: determine the required number of inputs and outputs from the specification
- Step 2: derive the truth table that defines the required relationship between inputs and outputs
- Step 3: obtain the simplified Boolean function for each output as a function of the input variables
- Step 4: draw the logic diagram and verify the correctness of the design

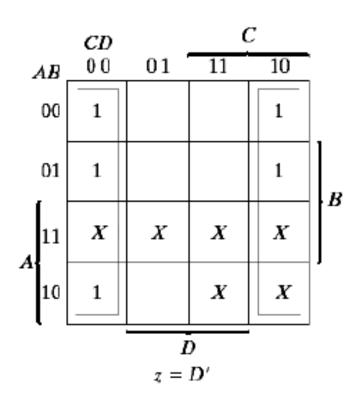
Code Conversion Example

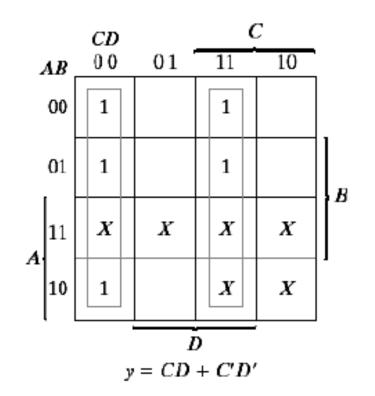
- Convert from BCD code to Excess-3 code
- The 6 input combinations not listed are don't cares
- These values have no meaning in BCD
- We can arbitrary assign them to 1 or 0

Input BCD				Out	tput Exc	ess-3 C	ode
Α	В	С	D	w	X	у	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

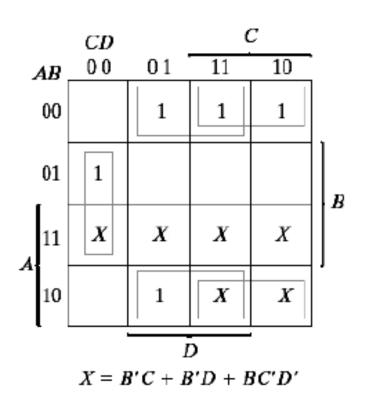
Maps for Code Converter (1/2)

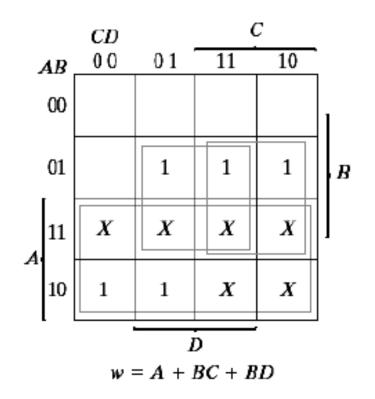
■ The six don't care minterms (10~15) are marked with X





Maps for Code Converter (2/2)





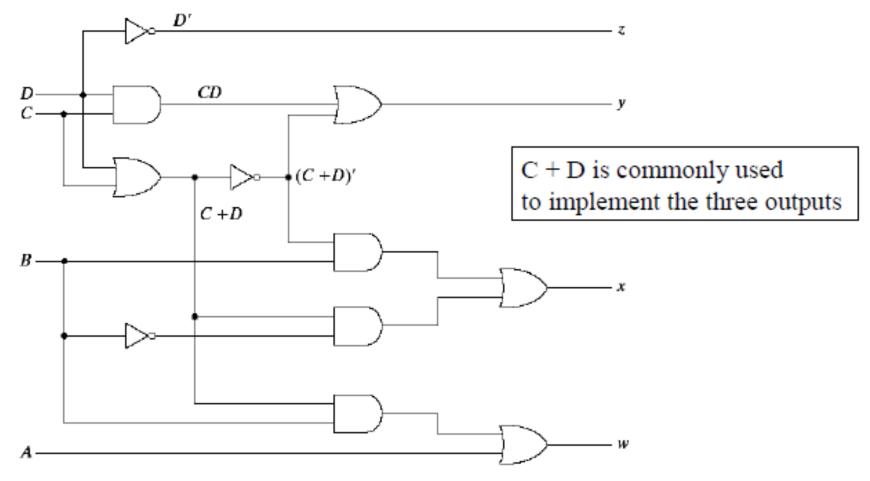
Logic Diagram for the Converter

- There are various possibilities for a logic diagram that implements a circuit
- A two-level logic diagram may be obtained directly from the Boolean expressions derived by the maps
- The expressions may be manipulated algebraically to use common gates for two or more outputs
 - Reduce the number of gates used

$$z = D'$$

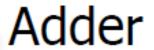
 $y = CD + C' D' = CD + (C + D) '$
 $x = B'C + B'D + BC' D' = B' (C + D) + BC' D'$
 $= B' (C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Logic Diagram for the Converter



Outline

- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers



- The most basic arithmetic operation is the addition of two binary digits
 - When both augend and addend bits are equal to 1, the binary sum consists of two digits (1 + 1 = 10)
 - The higher significant bit of this result is called a carry
- A combination circuit that performs the addition of two bits is half adder
- A adder performs the addition of 2 significant bits and a previous carry is called a *full adder*

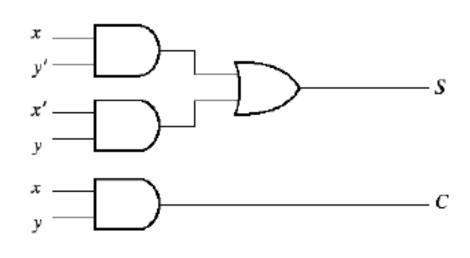
Half Adder

Half adder

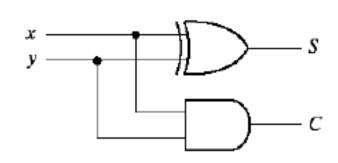
- Inputs: x and y
- Outputs: S (for sum) and C (for carry)

				1
Х	у	С	S	S = * /* ± ** /
0	0	0	0	S = x 'y + xy ' $C = xy$
0	1	0	1	C - xy
1	0	0	1	
1	1	1	0	

Implementation of a Half Adder



$$(a) S = xy' + x'y$$
$$C = xy$$



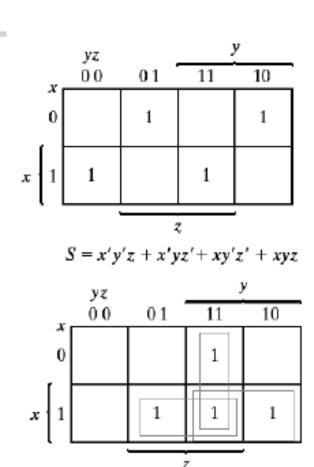
(b)
$$S = x \oplus y$$

 $C = xy$

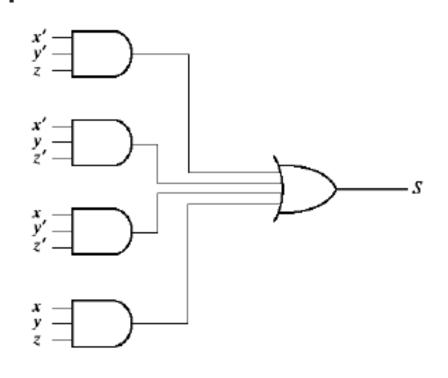
Full Adder

X	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

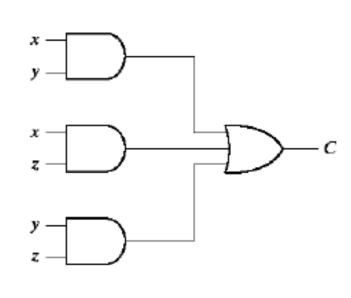
x, y: the two significant bits to be added z: the carry from the previous position



Implementation of a Full Adder



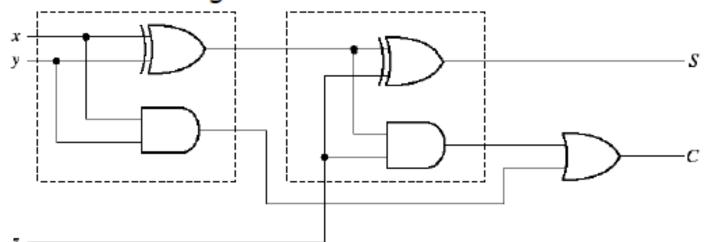
$$S = x'y'z + x'yz' + xy'z' + xyz$$



$$C = xy + xz + yz$$

Implementation of a Full Adder

 A full adder can be implemented with two half adders and an OR gate



$$S = z \oplus (x \oplus y)$$
= $z'(xy' + x'y) + z(xy' + x'y)'$
= $z'(xy' + x'y) + z(xy + x'y')$
= $xy'z' + x'yz' + xyz + x'y'z$

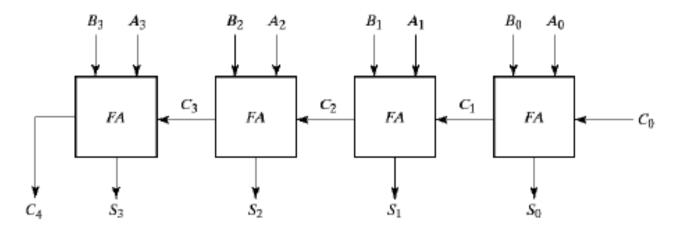
$$C = z (xy' + x'y) + xy$$

$$= xy'z + x'yz + xy$$

$$= xy'z + x'yz + xyz + xyz'$$

$$= xz + yz + xy$$

- A binary adder produces the arithmetic sum of two binary numbers
- Can be constructed with full adders connected in cascade
 - The output carry from each full adder is connected to input carry of the next full adder in the chain
 - n-bit binary ripple carry adder is connected by n FAs



4-bit Adder Example

■ Consider two binary number A = 1011 and B = 0011

Subscript i :	3	2	1	0	
Input carry	0	1	1)•	0	C _i
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	(0)	1	-(1)	C_{i+1}

RTL for full adder

```
library isee;
use isee.std_logic_1164.all;
architecture func of andGate is
begin
F <= A and B;
end func;
 -- Here we define the XDR gate that we need for

-- the Half Adder

library isee;

use ieee.std_logic_1164.alt
  architecture func of xorGate is
 begin

F <= A xor B;
end func;
---
 -- At this point we construct the half adder

-- using the AND and XOR gates

library line;

use ieee.std_logic_1164.alt
entity halfAdder is
port( A, B : in std_logic;
sum, Cout : out std_logic);
end halfAdder;
 architecture halfAdder of halfAdder is
  component xorGate is -- import XOR Gate
port( A, B : in std logic;
F : out std_logic);
end component;
     Now we define the OR gate that we need for the Full Adder
library ieee;
use ieee.std_logic_1164.alt
entity orGate is

port( A, B : in std_logic;

F : out std_logic);

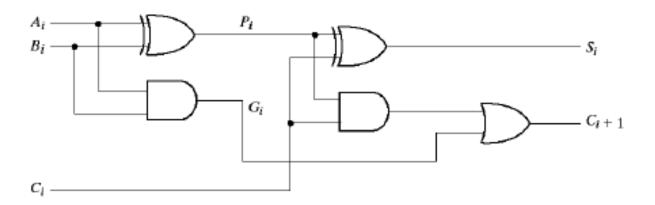
end orGate;
-- We are finally ready to build the full Adder
  library ieee;
use ieee.std_logic_1164.alt
entity fullAdder is
port( A, B, Cin: in std_logic;
sum, Cout: out std_logic);
end fullAdder;
   component halfAdder is --import Half Adder entity
port( A, B : in std_logic;
sum, Cout : out std_logic);
end component;
   signal halffohalf, halffoOr1, halffoOr2; std_logic;
begin
G1: halfAdder port map(A, B, halfSohalf, halfBoY1);
G2: halfAdder port map(halfSohalf, Cin, sum, halfBoY2);
G3: orGahe port map(halfSoY1, halfBoY2, Cout);
end fullAdder;
——END
```

Carry Propagation

- As in a combinational circuit, the signal must propagate through the gates before the correct output sum is available in the output terminals
- The total propagation time is equal to the propagation delay of a typical gate times the number of levels in the circuit
- The longest propagation delay in a adder is the time that carry propagate through the full adders
- Each bit of the sum output depends on the value of the input carry
 - The value of S_i will be in final value only after the input carry C_i has been propagated

Full Adder with P and G

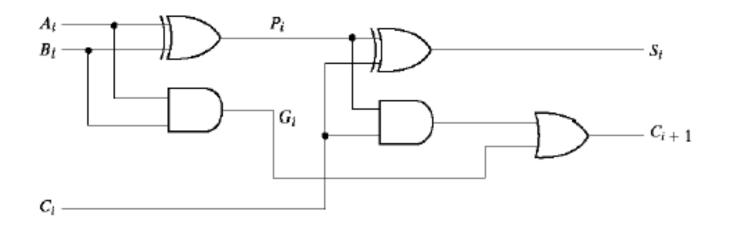
- The full adder can be redrawn with two internal signals
 P (propagation) and G (generation)
- The signal from input carry C_i to output carry C_{i+1} propagates through an AND and a OR gate (2 gate levels)
 - For n-bit adder, there are 2n gate levels for the carry to propagate from input to output



Carry Propagation

- The carry propagation time is a limiting factor on the speed with which two numbers are added
- All other arithmetic operations are implemented by successive additions
 - The time consumed during the addition is very critical
- To reduce the carry propagation delay
 - Employ faster gates with reduced delays
 - Increase the equipment complexity
- Several techniques for reducing the carry propagation time in a parallel adder
 - The most widely used technique employs the principle of carry lookahead

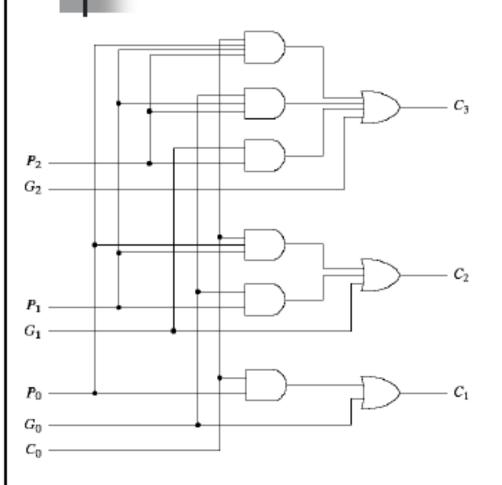
Carry Propagation & Generation



carry propagate : $P_i = A_i \oplus B_i$ $S_i = P_i \oplus C_i$

carry generate : $G_i = A_iB_i$ $C_{i+1} = G_i + P_iC_i$

Carry Lookahead Generator



```
C_0 = input carry

C_1 = G_0 + P_0C_0

C_2 = G_1 + P_1C_1

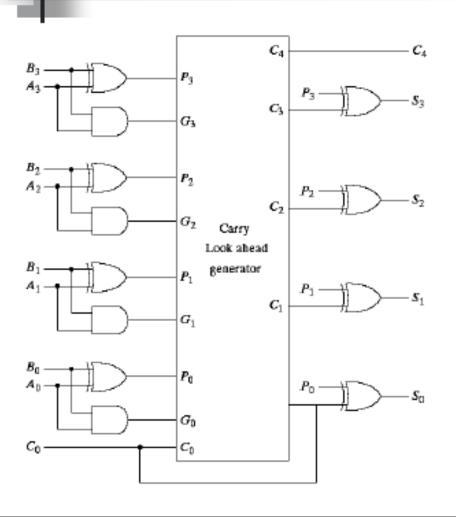
= G_1 + P_1(G_0 + P_0C_0)

= G_1 + P_1G_0 + P_1P_0C_0

C_3 = G_2 + P_2C_2

= G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0
```

Carry Lookahead Adder



- All output carries are generated after a delay through two levels of gates
- Output S1 to S3 can have equal propagation delay times

Outline

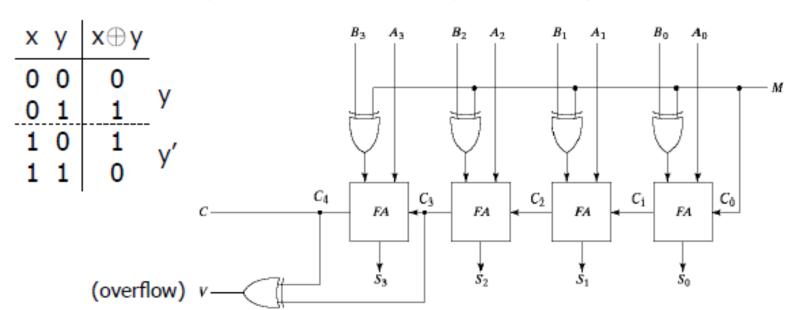
- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers

Binary Subtractor

- A B can be done by taking the 2's complement of B and adding it to A ---> A B = A + (-B)
 - 2'complement can be obtained by taking the 1'complement and adding on to the least significant pair of bits
 - A B = A + (B' + 1)
- The circuit for subtraction A B consists of an adder with inverter placed between each data input B and the corresponding input of the full adder
- The input carry C₀ must be equal to 1

4-bit Adder-Subtractor

- M=0 (Adder)
 - Input of FA is A and B (B ⊕ 0 = B), and C₀ is 0
- M=1 (Subtractor)
 - Input of FA is A and B' (B ⊕ 1 = B'), and C₀ is 1

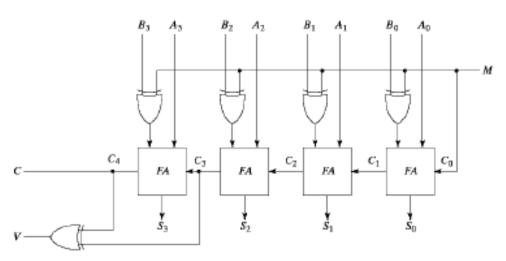


Overflow

- An overflow occurs when two number of n digits each are added and the sum occupies n+1 digits
- When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position
- When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow
 - Extra overflow detection circuits are required
- An overflow can only occur when two numbers added are both positive or both negative

Adder-Subtractor Circuit

- Unsigned
 - C bit detects a carry after addition or a borrow after subtraction
- Signed
 - V bit detects an overflow
 - 0: no overflow; 1: overflow



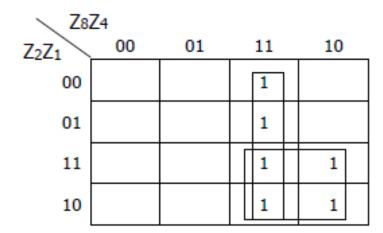
Decimal Adder

- A decimal adder requires a minimum of 9 inputs and 5 outputs
 - 1 digit requires 4-bit
 - Input: 2 digits + 1-bit carry
 - Output: 1 digit + 1-bit carry
- BCD adder
 - Perform the addition of two decimal digits in BCD, together with an input carry from a previous stage
 - The output sum cannot be greater than 19 (9+9+1)

Derivation of BCD Adder

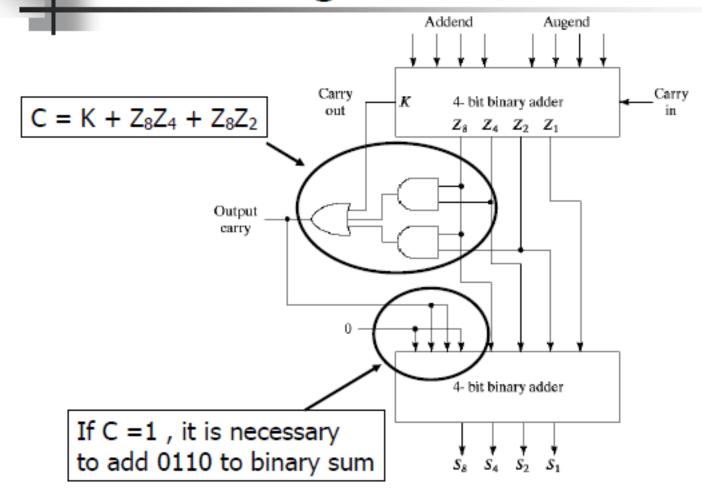
•	Bir	nary S	um			В	CD Su	m		Decimal
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S ₈	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

- When the binary sum is equal to or less than 1001_b
 - BCD Sum = Binary Sum
 - C = 0
- When the binary sum is greater than 1001_b
 - BCD Sum = Binary Sum + 0110_b
 - C = 1



$$C = K + Z_8Z_4 + Z_8Z_2$$

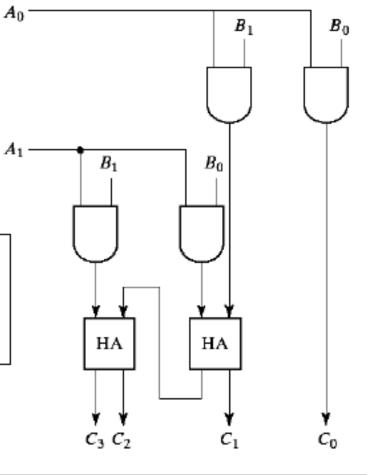
Block Diagram of a BCD Adder



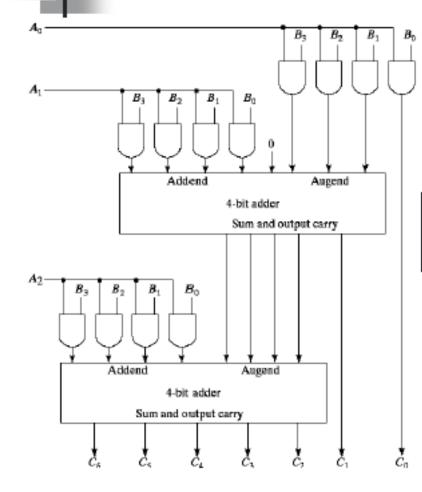
Binary Multiplier

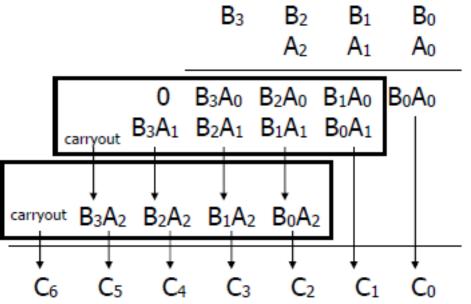
For a J*K bits multiplier , we need: (J * K) AND gates (J – 1) K-bit adders

to produce a product of J+K bits



4-Bit By 3-Bit Binary Multiplier





We need 12 AND gates and two 4-bit adders to produce a product of 7 bits

Magnitude Comparator

- Equal (A = B)
 - $A_3=B_3$ and $A_2=B_2$ and $A_1=B_1$ and $A_0=B_0$ $X_i = A_iB_i + A_i'B_i'$ for i = 0,1,2,3

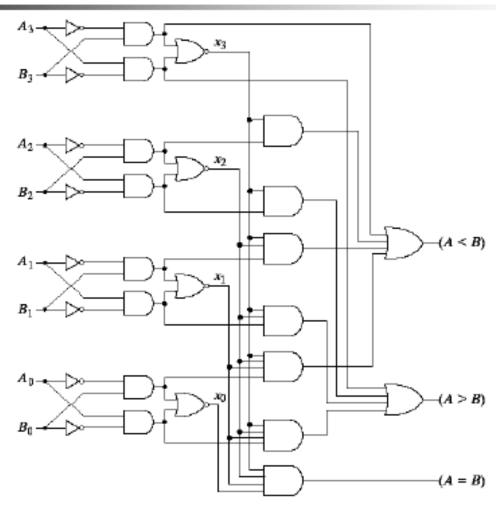
Xi = 1 means Ai and Bi are equal !!

- \blacksquare (A=B) = $X_3X_2X_1X_0$
- Greater (A > B) or Less (A < B)</p>
 - Comparison start from the MSB
 - If the two digits are equal, compare the next lower digits
 - Continues until a pair of unequal digits is reached
 - A is 1 and B is 0 => A > B
 - A is 0 and B is 1 => A < B</p>

$$(A > B) = A_3B_3' + X_3A_2B_2' + X_3X_2A_1B_1' + X_3X_2X_1A_0B_0'$$

 $(A < B) = A_3'B_3 + X_3A_2'B_2 + X_3X_2A_1'B_1 + X_3X_2X_1A_0'B_0$

4-Bit Magnitude Comparator



Outline

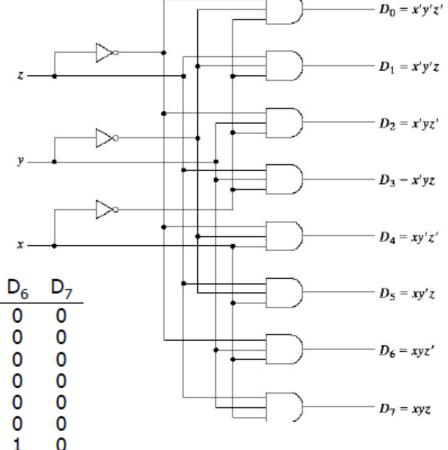
- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers

Decoder

- A circuit that coverts binary information from n input lines to a maximum of 2ⁿ unique output lines
 - May have fewer than 2ⁿ outputs
- A n-to-m-line decoder (m \leq 2ⁿ):
 - Generate the m minterns of n input variables
- For each possible input combination, there is only one output that is equal to 1
 - The output whose value is equal to 1 represents the minterm equivalent of the binary number presently available in the input lines

3-to-8-Line Decoder

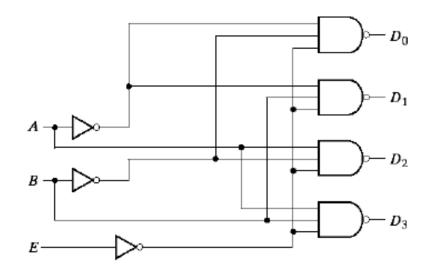
- The 3 inputs are decoded into 8 outputs
- Each represent one of the minterms of the inputs variables



I	nput	s				Out	puts		*-	
X	У	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

2-to-4-Line Decoder with Enable

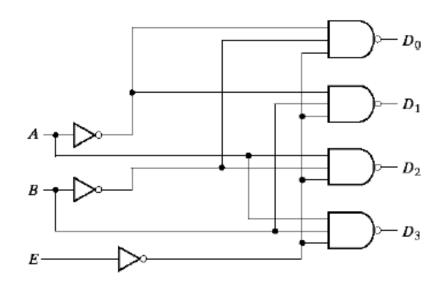
- Some decoders are constructed with NAND gates
 - Generate minterms in their complement form
- An enable input can be added to control the operation
 - E=1: disabled
 - None of the outputs are equal to 0



E	\boldsymbol{A}	\boldsymbol{B}	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Demultiplexer

- A circuit that receives information from a single line and directs it to one of 2ⁿ possible output lines
- A decoder with enable input can function as a demultiplexer
 - Often referred to as a decoder/demultiplexer



		—	da	ta i	npu				
selection									
_	$\overline{}$								
\boldsymbol{A}	B	D_0	D_1	D_2	D_3				
X	X	1	1	1	1				
0	0	0	1	1	1				
0	1	1	0	1	1				
1	0	1	1	0	1				
1	1	1	1	1	0				
	<i>X</i> 0	A B X X 0 0 0 1	X X 1 0 0 0 0 1 1	X X 1 1 0 0 1 0 1 1 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

RTL for decoder (3:8)

```
-- Title
       : decoder3 8
-- Design : vhdl test
-- File : 3 : 8 Decoder using when else.vhd
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity decoder3 8 is
  port(
     din: in STD LOGIC VECTOR(2 downto 0);
     dout : out STD LOGIC VECTOR(7 downto 0)
     ):
end decoder3 8;
architecture decoder3 8 arc of decoder3 8 is
begin
  dout \le ("10000000") when (din="000") else
       ("01000000") when (din="001") else
       ("00100000") when (din="010") else
       ("00010000") when (din="011") else
       ("00001000") when (din="100") else
       ("00000100") when (din="101") else
       ("00000010") when (din="110") else
       ("00000001");
end decoder3 8 arc;
```

Construct Larger Decoders

- Decoders with enable inputs can be connected together to form a larger decoder
- The enable input is used as the most significant bit of the selection signal
 - w=0: the top decoder is enabled
 - w=1: the bottom one is enabled
- In general, enable inputs are a convenient feature for standard components to expand their numbers of inputs and outputs

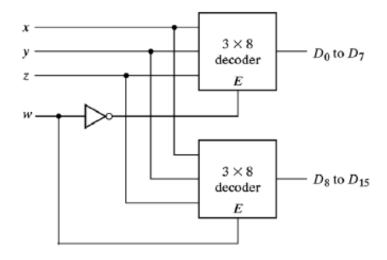


Fig. 4-20 4 × 16 Decoder Constructed with Two 3 × 8 Decoders

Encoder

- A circuit that performs the inverse operation of a decoder
 - Have 2ⁿ (or fewer) input lines and n output lines
 - The output lines generate the binary code of the input positions
- Only one input can be active at any given time
- An extra output may be required to distinguish the cases that $D_0 = 1$ and all inputs are 0

Inputs									utpu	ts
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	X	У	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$z = D_1 + D_3 + D_5 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $x = D_4 + D_5 + D_6 + D_7$

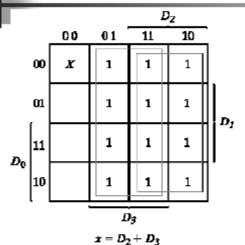
Priority Encoder

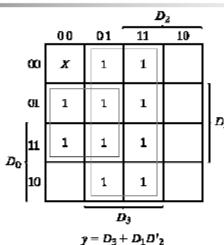
- An encoder circuit that includes the priority function
- If two or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence
- In the following truth table:
 - $D_3 > D_2 > D_1 > D_0$
 - The X's in output columns represent don't-care conditions
 - The X's in input columns are useful for representing a truth table in condensed form

	Inp	outs			Outputs		
D_0	D_1	D_2	D_3	X	У	V	
0	0	0	0	X	Χ	0	\/ -
1	0	0	0	0	0	1	V -
X	1	0	0	0	1	1	no
X	Χ	1	0	1	0	1	
X	Χ	X	1	1	1	1	

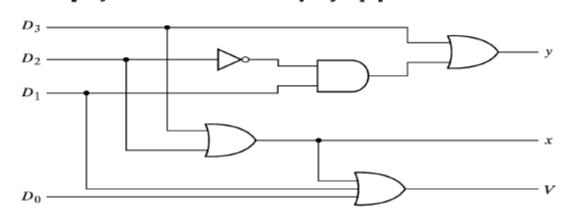
V = 0 : no valid inputs

Implement a Priority Encoder





>	$c = D_2 + D_3$
)	$y = D_3 + D_1 D_2'$
١	$V = D_0 + D_1 + D_2 + D_3$



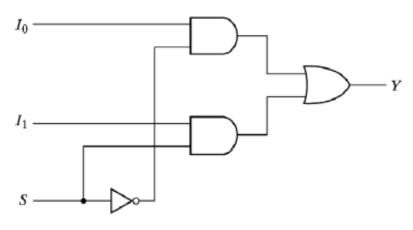
4-58

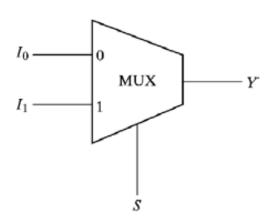
- Combinational Circuits
- Analysis and Design Procedures
- Binary Adders
- Other Arithmetic Circuits
- Decoders and Encoders
- Multiplexers

Multiplexer

- A circuit that selects binary information from one of many input lines and directs it to a single output lines
 - Have 2ⁿ input lines and n selection lines
 - Act like an electronic switch (also called a data selector)
- For the following 2-to-1-line multiplexer:

$$\blacksquare S=0 \rightarrow Y = I_0; S=1 \rightarrow Y = I_1$$



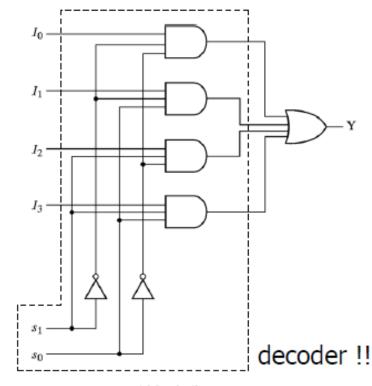


(a) Logic diagram

(b) Block diagram

4-to-1-Line Multiplexer

- The combinations of S0 and S1 control each AND gates
- Part of the multiplexer resembles a decoder
- To construct a multiplexer:
 - Start with an n-to-2n decoder
 - Add 2ⁿ input lines, one to each AND gate
 - The outputs of the AND gates are applied to a single OR gate



	s_1	s_0	Y
_	0	0	I_0
	0	1	I_1
	1	0	I_2
	1	1	I_3

(b) Function table

Quadruple 2-to-1-Line Multiplexer

- Multiplexers can be combined with common selection inputs to provide multiple-bit selection logic
- Quadruple 2-to-1-line multiplexer:
 - Four 2-to-1-line multiplexers
 - Each capable of selecting one bit of the 2 4-bit inputs
 - E: enable input
 E=1: disable the circuit
 (all outputs are 0)

