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State of a SystemState of a System

 System state
 Information about system sufficient to determine future 

behaviour
 Values of registers, controller flip-flops, memories, …

 Modern digital designs
 Finite but extremely large state spaces

 n two-state memory elements:  2n states
 k interacting components, with n1, … nk states

 n1 x n2 x… x  nk  states
 # states grows exponentially with # components
 10000 flip-flips:  approx 103000 states !!!

 A mind-boggling number from not-so-large design
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Why Do We Care About Reachability?Why Do We Care About Reachability?

 State space exploration
 Starting from given state, find all reachable states

 Also known as Reachability Analysis
 Crucial for several activities:

 Synthesis: Optimize from knowledge of unreachable 
states

 Unreachable states are external don't cares
 Verification: Are “bad” states reachable?
 Analysis: Improve accuracy from knowledge of 

reachable states

State space explosion: single largest hurdle 
Techniques to battle explosion crucial
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Illustration of ApplicabilityIllustration of Applicability

 PCI Bus
 3 peripherals, 1 arbiter
 Peripheral: Application controller +
                      Bus interface controller                     
 Arbiter: Fixed arbitration scheme
 Bus: Negligible delays

 Global behaviour
 Composition of component FSMs

 Properties verifiable using reachability analysis:
For arbitrary sequences of bus transactions
 Only one peripheral can be master at any time
 Peripheral requesting to be master becomes one in < 3 cycles ...
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OutlineOutline

 Basics of reachability analysis
 Explicit enumeration & symbolic approaches
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Example: Sequential CircuitExample: Sequential Circuit
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Model
State transition graph
defined by
X0 = NOT(x0)
X1 = XOR(x1, x0)
X2 = XOR(x2, x0. x1)

Property to check
  State x0, x1, x2 = 111
  is reached starting from 
  state 000
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Basic Reachability AnalysisBasic Reachability Analysis
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Reachable = {a}                   : Initial

Reachable = {a, b, d}           : upto 1 step

Reachable = {a, b, d, c, e}   : upto 2 steps

Reachable = {a, b, d, c, e}   : upto 3 steps

Reachable = {a, b, d, c, e}   : upto n steps

States unreachable from a: {f, g}
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/*  Also called Image of Reachable set under T */

Forward Reachability AlgorithmForward Reachability Algorithm

Given:  State transition system T,  Initial states  S

Find:     All states reachable from initial states

 Reachable  :=  InitialStates;
 LastReachable  :=   EmptySet;

 While (Reachable   LastReachable)
 Img := {s | In T, s reached from some s’  Reachable in 1 step};

      

 LastReachable := Reachable;
 Reachable := Reachable U Img;
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Reachability as Fix-point ComputationReachability as Fix-point Computation

Given
 S0 : set of states
 T   : state transition system

Let 
 Si+1   =   F(Si)  =  S0  U  Image(Si, T)
 Reachable states from S0 =  F r (),

                                                 where F r () = F r +1 ()

                  
Least fix-point of F
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Z0

Backward ReachabilityBackward Reachability

 Give a set Z0 of states
 Compute set of states from which some state in Z0 can 

be reached.
 Analogous to forward reachability with minor 

modifications
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Checking ReachabilityChecking Reachability

 Z = set of “bad” states,  S0 = set of “initial” states
 2 ways of checking if a state in Z is reachable from S0

S0

R

Z

S0

Z

B

Forward Reachability Backward Reachability
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Issues in Reachability AnalysisIssues in Reachability Analysis

 Representing sets of states and transitions
 Can get very large !

 Computing image, union, set operations 
 Can be tricky for large sets of states

 Checking whether two sets of states are equal or 
non-intersecting

 Decision procedures needed

Explicit enumeration techniques:
•Represent and manipulate sets of states explicitly

Symbolic reachability analysis
•Symbolic representation and manipulation of state sets



 13

OutlineOutline

 Basics of Reachability Analysis
 Explicit enumeration & symbolic approaches
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Explicit Enumeration ApproachesExplicit Enumeration Approaches

 Early reachability analyzers
 Some modern analyzers also use this approach

 SPIN, Mur, SMC, EMC …

 Explore image of each state starting from initial state
 As new states encountered, store  in table

 Interesting aside: “stateless search” (Verisoft)
 If a state already in table, it is not explored again
 Storage for each state:  a few bytes in practice
 Can store approx 109 states on modern machines

 Use sophisticated techniques to store selected states
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Storing States in Explicit ApproachesStoring States in Explicit Approaches

 State hashing:
 Table stores hash values of states
 On encountering a state, hash and check if in table
 Incompleteness:  Two states may hash to same value

                          Only one of them explored
 Subset of reachable states explored
 Every state explored is reachable, but not every 

reachable state may be explored
 Very sophisticated state hashing schemes exist

 Other state table compaction schemes:
 Partition states into equivalence classes
 Store at most 1 representative from each class
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Symbolic Reachability AnalysisSymbolic Reachability Analysis

 

x2

x1

x0X0

X1

X2

Clk

X0 = NOT(x0)
X1 = XOR(x1, x0)
X2 = XOR(x2, x0. x1)

Recall 3-bit counter
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Symbolic States and TransitionsSymbolic States and Transitions

 Encode states using Boolean variables
 3-bit counter:  x0, x1, x2:  000, 001, … 111

 Encode sets of states using Boolean predicates
 {000, 010, 011, 001}  represented by

                                      S (x0, x1, x2) = S(x) = x0. 
 Encode state transitions using Boolean predicates 

N (x0, x1, x2, X0’, X1’, X2’)  =  N (x, X’) = 

(X0’   x0)  (X1’  x1  x0))  (X2’  x2  (x1  x0))

 Check reachability by manipulation of Boolean 

expressions
 States NEVER explicitly represented
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Symbolic Image ComputationSymbolic Image Computation

Given set S0 of states, can we reach a state in set Z0?

 N(x, X’) :  Transition relation predicate
 States reachable in at most 1 step:

    S1 = S0  U  { X’ |  x  in S0 and N(x, X’) = true}

 Expressed as Boolean predicates:

     S1 (X0’, X1’, X2’) = S0 (X0’, X1’, X2’) 
                                  x0  x1  x2  (S0 (x0, x1, x2) 

            N(x0,x1,x2,X0’,X1,’X2’))

 Given predicates S0 and N,  S1 can be obtained

x

X’

S0

S1
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Symbolic Forward ReachabilitySymbolic Forward Reachability
 Compute S1 from S0, S2 from S1, …

 Si+1 = F (Si)
 Continue until  Sk+1 = F (Sk) = Sk 

 Least fix-point of F
 Sk = Set of all states reachable from S0 

 Computed as a Boolean predicate

 Check if Sk  Z0 is a satisfiable predicate

S0

Z0

Sk
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Symbolic Backward ReachabilitySymbolic Backward Reachability

 Give a set Z0 of states
 Compute states from which some state in Z0 is 

reachable
 Z i+1(x)  =  F(Z i (x)) =  Z 0 (x)    X’ ( N(x, X’)  Z i (X’) )

 Desired set:  least fixed point

Fairly mature symbolic reachability analyzers exist:
NuSMV, VIS, FormalCheck, Bingo, …
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Symbolic Reachability: IssuesSymbolic Reachability: Issues

 Need good representation of Boolean functions
 Canonicity
 Compactness 

 Efficient application of   ,  ,  ,  , 
 Efficient decision procedures for propositional logic
 Compact representations of Boolean functions can 

allow compact representations of large sets of states
 Two mainstream approaches

 Reduced Ordered Binary Decision Diagrams (ROBDD)
 Bounded reachability analysis using SAT solvers
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Binary Decision DiagramsBinary Decision Diagrams
 DAG representation of Boolean functions 
 Example:  f = (x1  x2)   x3

 Evaluating f:
 Start from root
 For each vertex xi

 blue branch if xi = 0
 else black branch

 Ordering of variables
 In all paths, node labels in specified order

 Reduced graphs
 No two vertices represent same function

REDUCED ORDERED BDD (ROBDD)
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Operations on BDDsOperations on BDDs

 Given ROBDDs for f1 and f2, algorithms exist for 
computing ROBDD for f1 op  f2     … 

                                                op  {, , , }
 Complexity polynomial in BDD sizes

 If size can be kept under control, we are in business!
 Works well for circuits with upto a few 100 flip-flops
 BDD size limiting factor in larger applications

 Quantification:
   x1. f(x1, x2, x3)  =  f(0, x2, x3)  f(1, x2, x3)

   x1. f(x1, x2, x3)  =  f(0, x2, x3)  f(1, x2, x3)
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