Reachability Analysis for Sequential Circuits

Supratik Chakraborty

IIT Bombay

State of a System

- System state
 - Information about system sufficient to determine future behaviour
 - Values of registers, controller flip-flops, memories, …
- Modern digital designs
 - Finite but extremely large state spaces
 - n two-state memory elements: 2ⁿ states
 - k interacting components, with $n_1, \ldots n_k$ states
 - n₁ x n₂ x... x n_k states
 - # states grows exponentially with # components
 - 10000 flip-flips: approx 10³⁰⁰⁰ states !!!
 - A mind-boggling number from not-so-large design

Why Do We Care About Reachability?

- State space exploration
 - Starting from given state, find all reachable states
 - Also known as Reachability Analysis
 - Crucial for several activities:
 - Synthesis: Optimize from knowledge of unreachable states
 - Unreachable states are external don't cares
 - Verification: Are "bad" states reachable?
 - Analysis: Improve accuracy from knowledge of reachable states

State space explosion: single largest hurdle Techniques to battle explosion crucial

Illustration of Applicability

- PCI Bus
 - 3 peripherals, 1 arbiter
 - Peripheral: Application controller + Bus interface controller
 - Arbiter: Fixed arbitration scheme
 - Bus: Negligible delays
- Global behaviour
 - Composition of component FSMs
- Properties verifiable using reachability analysis:
 For arbitrary sequences of bus transactions
 - Only one peripheral can be master at any time
 - Peripheral requesting to be master becomes one in < 3 cycles ...</p>

Peripheral

Peripheral

Peripheral

Arbiter

Outline

- Basics of reachability analysis
- Explicit enumeration & symbolic approaches

Example: Sequential Circuit

<u>Model</u>

State transition graph defined by X0 = NOT(x0)X1 = XOR(x1, x0)X2 = XOR(x2, x0, x1)

Property to check State x0, x1, x2 = 111is reached starting from state 000

Basic Reachability Analysis

Reachable = $\{a\}$: Initial Reachable = $\{a, b, d\}$: upto 1 step Reachable = $\{a, b, d, c, e\}$: upto 2 steps Reachable = $\{a, b, d, c, e\}$: upto 3 steps Reachable = $\{a, b, d, c, e\}$: upto n steps States unreachable from a: {f, g}

Forward Reachability Algorithm

- Given: State transition system T, Initial states S
- Find: All states reachable from initial states
- Reachable := InitialStates;
- LastReachable := EmptySet;
- While (Reachable \neq LastReachable)
 - Img := {s | In T, s reached from some s' ∈ Reachable in 1 step}; *I** Also called Image of Reachable set under T */
 - LastReachable := Reachable;
 - Reachable := Reachable U Img;

Reachability as Fix-point Computation

Given

- S₀ : set of states
- T : state transition system

Let

- $S_{i+1} = F(S_i) = S_0 \cup Image(S_i, T)$
- Reachable states from $S_0 = F r(\phi)$,

where $F r(\phi) = F r^{+1}(\phi)$

Least fix-point of F

Backward Reachability

- Give a set Z0 of states
 - Compute set of states from which some state in Z0 can be reached.
 - Analogous to forward reachability with minor modifications

Checking Reachability

- Z = set of "bad" states, S0 = set of "initial" states
- 2 ways of checking if a state in Z is reachable from S0

Forward Reachability

Backward Reachability

Issues in Reachability Analysis

- Representing sets of states and transitions
 - Can get very large !
- Computing image, union, set operations
 - Can be tricky for large sets of states
- Checking whether two sets of states are equal or non-intersecting
 - Decision procedures needed

Explicit enumeration techniques: •Represent and manipulate sets of states explicitly Symbolic reachability analysis

•Symbolic representation and manipulation of state sets

Outline

- Basics of Reachability Analysis
- Explicit enumeration & symbolic approaches

Explicit Enumeration Approaches

- Early reachability analyzers
- Some modern analyzers also use this approach
 - SPIN, Mur**ø,** SMC, EMC ...
- Explore image of each state starting from initial state
- As new states encountered, store in table
 - Interesting aside: "stateless search" (Verisoft)
- If a state already in table, it is not explored again
- Storage for each state: a few bytes in practice
- Can store approx 10⁹ states on modern machines
 - Use sophisticated techniques to store selected states

Storing States in Explicit Approaches

- State hashing:
 - Table stores hash values of states
 - On encountering a state, hash and check if in table
 - Incompleteness: Two states may hash to same value
 Only one of them explored
 - Subset of reachable states explored
 - Every state explored is reachable, but not every reachable state may be explored
 - Very sophisticated state hashing schemes exist
- Other state table compaction schemes:
 - Partition states into equivalence classes
 - Store at most 1 representative from each class

Symbolic Reachability Analysis

Symbolic States and Transitions

- Encode states using Boolean variables
 - 3-bit counter: x0, x1, x2: 000, 001, ... 111
- Encode sets of states using Boolean predicates
 - {000, 010, 011, 001} represented by

S(x0, x1, x2) = S(x) = x0.

- Encode state transitions using Boolean predicates N (x0, x1, x2, X0', X1', X2') = N (x, X') = $(X0' \Leftrightarrow \neg x0) \land (X1' \Leftrightarrow x1 \oplus x0)) \land (X2' \Leftrightarrow x2 \oplus (x1 \land x0))$
- Check reachability by manipulation of Boolean expressions
 - States NEVER explicitly represented

Symbolic Image Computation

Given set S_0 of states, can we reach a state in set Z_0 ?

- N(x, X') : Transition relation predicate
- States reachable in at most 1 step:
 S₁ = S₀ U { X' | ∃ x in S₀ and N(x, X') = true}
 - Expressed as Boolean predicates:

 $S_1 (X0', X1', X2') = S_0 (X0', X1', X2') \lor$ $\exists x0 \exists x1 \exists x2 (S_0 (x0, x1, x2) \land$ N(x0,x1,x2,X0',X1,'X2'))

Symbolic Forward Reachability

- Compute S_1 from S_0 , S_2 from S_1 , ...
 - $S_{i+1} = F(S_i)$
- Continue until $S_{k+1} = F(S_k) = S_k$
 - Least fix-point of F
 - S_k = Set of all states reachable from S₀
 - Computed as a Boolean predicate

• Check if $S_k \wedge Z_0$ is a satisfiable predicate

Symbolic Backward Reachability

Give a set Z₀ of states

- Compute states from which some state in Z0 is reachable
- $Z_{i+1}(\mathbf{x}) = F(Z_i(\mathbf{x})) = Z_0(\mathbf{x}) \lor \exists \mathbf{X}' (N(\mathbf{x}, \mathbf{X}') \land Z_i(\mathbf{X}'))$

Desired set: least fixed point

Fairly mature symbolic reachability analyzers exist: NuSMV, VIS, FormalCheck, Bingo, ...

Symbolic Reachability: Issues

- Need good representation of Boolean functions
 - Canonicity
 - Compactness
 - Efficient application of \land , \lor , \neg , \forall , \exists
- Efficient decision procedures for propositional logic
- Compact representations of Boolean functions can allow compact representations of large sets of states
- Two mainstream approaches
 - Reduced Ordered Binary Decision Diagrams (ROBDD)
 - Bounded reachability analysis using SAT solvers

Binary Decision Diagrams

- DAG representation of Boolean functions
- Example: $f = (X_1 \land X_2) \lor \neg X_3$
 - Evaluating f:
 - Start from root
 - For each vertex xi
 - blue branch if xi = 0
 - else black branch
- Ordering of variables
 - In all paths, node labels in specified order
- Reduced graphs
 - No two vertices represent same function

REDUCED ORDERED BDD (ROBDD)

Operations on BDDs

 Given ROBDDs for f1 and f2, algorithms exist for computing ROBDD for f1 op f2 ...

$$op \in \{ \land, \lor, \neg, \Leftrightarrow \}$$

- Complexity polynomial in BDD sizes
 - If size can be kept under control, we are in business!
 - Works well for circuits with upto a few 100 flip-flops
 - BDD size limiting factor in larger applications
- Quantification:
 - **a** x1. $f(x1, x2, x3) = f(0, x2, x3) \land f(1, x2, x3)$
 - $\forall x1. f(x1, x2, x3) = f(0, x2, x3) \lor f(1, x2, x3)$