
CS226 Mid-Semester Examination (Spring 2016)

Max marks: 60 Time: 120 mins

• The exam is open book and notes brought to the exam hall.

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Please start writing your answer to each sub-question on a fresh page. DO NOT write
answers to multiple sub-questions on the same page.

• The use of internet enabled devices is strictly prohibited. You will be debarred from taking
the examination if you are found accessing the internet during the examination. All IIT
Bombay rules apply in this respect.

• Please do not engage in unfair or dishonest practices during the examination. Anybody
found indulging in such practices will be referred to the D-ADAC.

1. (a) [3+3 marks] In Boolean algebra parlance, a literal is either a variable or its complement. For
example, if x1 and x3 are Boolean variables, then x1 and x′3 are literals. A minterm is either a
single literal or an AND of more literals. Similarly, a maxterm is either a single literal or an OR
of more literals. For example, x1.x

′
3 is a minterm, while x1 + x′3 is a maxterm. A sum-of-products

(SOP) representation of a Boolean function is the OR of one or more minterms. Similarly, a product-
of-sums (POS) representation is the AND of one or more maxterms. For example, x1.x

′
2 +x1.x

′
3 is

in SOP form, while x1.(x
′
3 + x′4) is in POS form.

Let G(x1, x2, x3, x4) and F (x1, x2, x3) be Boolean functions given by the K-maps shown below.
Give a minimal SOP representation of F and a minimal POS representation of G. A minimal
representation uses as few minterms/maxterms as possible, and each minterm/maxterm uses as
few literals as possible.

G:

x1,x2→
x3,x4↓ 00 01 11 10

00 1 0 1 1
01 0 1 1 1
11 0 1 0 1
10 1 1 0 1

F :

x1,x2→
x3↓ 00 01 11 10

0 1 1 0 0
1 0 1 1 1

Answer:
F = x′1.x

′
3 + x1.x3 + x3.x2 or F = x′1.x

′
3 + x1.x3 + x′1.x2

G = (x′4 + x1 + x2).(x
′
3 + x′1 + x′2).(x1 + x′2 + x3 + x4)

1



(b) [5 marks] Give a K-map of the function H(x1, x2, x3, x4) = F (x1, G(x1, x2, x3, x4), x3), where F
and G are as in sub-question (a) above.

Answer:
x1,x2→
x3,x4↓ 00 01 11 10

00 1 1 0 0
01 1 1 0 0
11 0 1 1 1
10 1 1 1 1

(c) [4 marks] The above operation is also called function composition and is usually denoted as
compose(F, x2, G), i.e. replace all occurrences of x2 in F by G. In general, function composi-
tions can be chained in a natural way, e.g. we can talk of compose(compose(F, x2, G), x1, F ) as
being the result of compose(H,x1, F ), where H = compose(F, x2, G).

Show by means of an example that if F , G and H are three Boolean functions (not necessarily
the ones in the previous subquestions) that depend on variables x1 and x2, then compose(compose
(F, x1, G), x2, H) is not necessarily the same (in terms of truth table or K-map) as compose(compose
(F, x2, H), x1, G). You are free to chooose functions F , G and H different from those in the previous
sub-questions.

Answer:
There are several possible examples that work. Here is a simple one:
F = x1 + x2, G = x′1 + x′2, H = x1.x2.
Then compose(compose (F, x1, G), x2, H) = compose(x1 +x′1 +x′2, x2, H) = compose(1, x2, H) = 1.
However, compose(compose (F, x2, H), x1, G) = compose(x1+x1.x2, x1, G) = compose(x1, x1, G) =
x′1 + x′2.

2. In environments where data is likely to be corrupted, dual-rail encoding is often used to represent binary
values. In dual-rail encoding, two Boolean variables, say v1v0, are used to encode a Boolean value v or
an invalid value, as shown in the table below.

v1 v0 Boolean value represented

1 0 1

0 1 0

0 0 None (invalid)

1 1 None (invalid)

As you can see, if any bit in a dual-rail encoded Boolean value is flipped (or corrupted), we can imme-
diately detect the corruption.

You are required to design the following datapath elements where the inputs and outputs are dual-rail
encoded.

(a) [3 × 4 marks] A full adder that takes six inputs, a1 a0 b1 b0 cin1 cin0 and generates four outputs
sum1 sum0 cout1 cout0. Note that it is not the case that one of the inputs being invalid renders
all outputs invalid. For example, if a1 a0 b1 b0 cin1 cin0 = 010111, then we have a case where the
inputs a and b are both 0 and the carry in (cin) is invalid. In this case, the sum is indeed invalid;

2



hence sum1 and sum0 should be either 11 or 00. However, carry out is certainly 0, and hence
cout1 cout0 should be 01. Your design must take all of these cases into account.

Answer:
Let ⊕ denote the xnor function. Clearly, an input v is invalid if v1⊕v0 is 1.

In a normal (not dual-rail-encoded) full-adder, the sum and cout are given by:
sum = a⊕ (b⊕ cin), and cout = a.b + b.cin + a.cin.

If none of the inputs are invalid, then simply looking at the values of a1, b1 and cin1 gives us the
Boolean values of a, b and cin, respectively. Similarly, looking at the values of a′0, b

′
0 and cin′0 also

gives us the Boolean values of a, b and cin, respectively. Therefore, if none of the inputs are invalid,
we have:
sum1 = a1 ⊕ (b1 ⊕ cin1) and cout1 = a1.b1 + b1.cin1 + a1.cin1.
Similarly, sum′0 = a′0 ⊕ (b′0 ⊕ cin′0) and cout′0 = a′0.b

′
0 + b′0.cin

′
0 + a′0.cin

′
0.

Note that the above Boolean functions for sum1, sum0, cout1, cout0 also work correctly even if at
most one input is invalid. Can you convince yourself of this?

In fact, there is something more general that we can state. Let F (x, y, . . . z) be a Boolean function
(not using dual-rail encoding). Now, if we use dual-rail encoding of the inputs and output, then
f1 = F (x1, y1, . . . z1) and f ′0 = F (x′0, y

′
0, . . . z

′
0) works correctly (gives dual-rail encoded output of

the Boolean function) if at most one input is invalid. Try to convince yourself why. However, this
may not work correctly if two or more inputs are invalid. So in our case too, we’ll need to take
care of these cases separately.

Clearly, if two or more of a, b or cin are invalid, then sum must be invalid, since the output of an
xor gate depends on the values of all its inputs. Similarly, if two or more of a, b or cin are invalid,
then cout must also be invalid (easy to see from the expression a.b + a.cin + b.cin).

This suggests the following Boolean functions for sum1, sum0, cout1 and cout0.

ainvalid = (a1⊕a0)

binvalid = (b1⊕b0)

cininvalid = (cinv1⊕cinv0)

t = ainvalid.binvalid + ainvalid.cininvalid + binvalid.cininvalid (1)

sum1 = t′.(a1 ⊕ b1 ⊕ cin1)

sum0 = t′.(a′0 ⊕ b′0 ⊕ cin′0)
′

cout1 = t′.(a1.b1 + a1.cin1 + b1.cin1)

cout0 = t′.(a′0.b
′
0 + a′0.cin

′
0 + b′0.cin

′
0)
′

(2)

In the above, t becomes 1 iff two or more inputs are invalid. Note the way in which t is used
in the above expressions for sum1, sum0, cout1 and cout0. Effectively, whenever t is 0, we let the
expressions obtained earlier (that work correctly when 1 or fewer inputs are invalid) determine the
outputs. Otherwise, we set all the outputs to 0. We could use t in an alternative way too – where
whenever two or more inputs are invalid, we set all the outputs to 1. This gives.

sum1 = t + (a1 ⊕ b1 ⊕ cin1)

sum0 = t + (a′0 ⊕ b′0 ⊕ cin′0)
′

cout1 = t + (a1.b1 + a1.cin1 + b1.cin1)

cout0 = t + (a′0.b
′
0 + a′0.cin

′
0 + b′0.cin

′
0)
′

(3)

3



(b) [3 × 2 marks] A 2-to-1 multiplexer that takes six inputs d01 d00 d11 d10 c1 c0 and generates two
outputs m1 m0, where d0 represents the input that should normally be copied to the output if
the control c is 0, and d1 represents the input that should be normally be copied to the output if
the control c is 1. In this case too, you should be careful not to assume that any one input being
invalid renders the output invalid.

In each case, give Boolean functions for each of the dual-rail encoded outputs of the
datapath element in terms of the dual-rail encoded inputs. You can use the flexibility of
encoding an invalid value (there are two ways to encode an invalid value) to simplify your
functions.

Answer:

The logic to be followed in this sub-question is similar to that followed in the previous sub-question.
The normal (non dual-rail encoded) function for the output of a 2-to-1 multiplexer is:
m = c.d1 + c′.d0

Therefore, we can start with:
m1 = c1.d11 + c′1.d01 and m0 = (c′0.d1′0 + c0.d0′0)

′.

The above works fine even if one of the inputs is invalid (recall the discussion in the solution to the
previous sub-question). To take care of the case where more than one input is invalid, note that if c
is invalid, the only case where the output should be valid is when both d1 and d0 are valid and equal.
Also, if c is invalid, then c1 and c0 have the same value. Depending on whether (c1, c0) = 11 or 00, the
above expressions for m1 and m0 give either (m1,m0) = (d11, d00) or (m1,m0) = (d01, d10). Therefore,
the output can (erroneously) have a valid value when c is invalid in some cases when one of d1 and d0 is
also invalid: e.g. if (c1, c0) = 11, (d11, d10) = 10 and (d01, d00) = 00. To prevent such cases, we wish to
detect if c is invalid, and if one of d1 and d0 is also invalid, and set the output to invalid in such cases.

This gives rise to the following equations:

d1invalid = d11⊕d10

d0invalid = d01⊕d00

cinvalid = c1⊕c0

t = cinvalid.(d1invalid + d0invalid)

m1 = t′.(c1.d11 + c′1.d01)

m0 = t′.(c′0.d1′0 + c0.d0′0)
′

(4)

Like in the previous subquestion, we could also write the last two equations above as:

m1 = t + (c1.d11 + c′1.d01)

m0 = t + (c′0.d1′0 + c0.d0′0)
′

(5)

4



3. [10 marks] Consider the datapath shown in Fig. 1. For those of you who have tried to solve the practice
questions, this is exactly the same datapath as in Practice Problem Set 3.

00 11 10

00 01 11110100

0 1

010001 11

Adder/Subtractor 
+ Comparator

A B

U V W

P

Q

Mw

Mu

Mv

Ma

Mb

doAdd

A_lt_B

Mq

Reset

Input X Input Y

Output Result

Figure 1: Datapath from Practice Problem Set 3

The datapath has the following components: five registers named U, V,W,P,Q of appropriate bit-widths,
six multiplexors with control signals Mw,Mu,Mv.Ma,Mb,Mq, an adder/subtractor block that takes two
inputs A and B and computes either A+B or A−B depending on the value of doAdd (adds if doAdd = 1,
subtracts otherwise). The adder/subtractor also always gives a one-bit output A lt B that is set to 1
iff A < B (treated as signed integers). The datapath has an input Reset that is used to reset all the
registers, i.e when Reset = 1, the values stored in each of U, V,W,P,Q becomes 0. It is also assumed
that all registers in the datapath are clocked by the same clock signal as the controller. There are two
inputs X and Y to the datapath, and the output of register Q is assumed to be the result.

We wish to implement a variant of Euclid’s greatest common divisor algorithm (shown below) using this
datapath and a controller that you must design.

read X and Y; // signed integers

if ((X <= 0) OR (Y <= 0)) { return 0; }

else { while (X != Y) {

if (X > Y) {X = X - Y;}

else {Y = Y - X;}

}

return X;

}

Please indicate clearly the registers where you are storing the values of X, Y and any
intermediate results in your computation. You are free to add intermediate steps of computation

5



in the algorithm above, if it helps you solve the problem. However, all such steps must be clearly
indicated.

For the controller, you must give the state transition table in the format given below. Note that the
controller also generates an output signal named Done that becomes 1 only when the entire computation
is over. You may assume that the values of X and Y do not change until the entire computation is over
(i.e. until Done becomes 1).

You MUST indicate through brief comments what each row of the controller table achieves,
e.g. resets registers, or adds U and V , etc. Answers without comments will get 0.

Answer:

We will store X in register U , Y in register W and 0 (a constant) in register V . Note that (X <= 0) OR

(Y <= 0) can be written as NOT ((X > 0) AND (Y > 0)). Similarly, (X != Y) can be written as (X >

Y) OR (Y > X). These observations are useful since the datapath only provides a signal that allows us
to determine if A < B, wher A and B are the inputs of the adder/subtractor/comparator. Thus, we have
the following table.

6



CurSt A lt B NxtSt Mu Mv Mw Ma Mb Mq Reset doAdd Done Comment

S0 - S1 01 0 01 - - 0 1 - 0 Reset regs (0 in U, V,W, P,Q)
Feed X to U ; Y to W ;

S1 1 S2 00 0 00 11 11 0 0 - 0 X in U ; Y in W ; 0 in V,Q
Feed V (= 0), U to comparator

Note: A lt B is 0 < U
If (0 < U) go to S2

S1 0 S3 00 0 00 11 11 0 0 - 0 X in U ; Y in W ; 0 in V,Q
Feed V (= 0), U to comparator

Note: A lt B is 0 < U
If (U ≤ 0) return 0 (from S3)

S2 1 S4 00 0 00 11 01 0 0 - 0 X in U ; Y in W ; 0 in V,Q
Feed V (= 0),W to comparator

Note: A lt B is 0 < W
If (0 < W ) try to enter loop (at S4)

S2 0 S3 00 0 00 11 01 0 0 - 0 X in U ; Y in W ; 0 in V,Q
Feed V (= 0),W to comparator

Note: A lt B is 0 < W
If (W ≤ 0) return 0 (from S3)

S3 - S3 - - - - - - 1 - 1 Reset all regs (in particular Q)
(return 0) Set Done to 1 and loop

S4 1 S5 00 0 00 01 11 0 0 - 0 U, V,W,Q contain X, 0, Y , 0
(loop Feed W,U to comparator
head) Note: A lt B is W < U

If (W < U) go to S5 (for X = X-Y)
S4 0 S6 00 0 00 01 11 0 0 - 0 U, V,W,Q contain X, 0, Y , 0

Feed W,U to comparator
Note: A lt B is W < U

If (W ≥ U) go to S6 (to check if U ≥W )
S6 1 S7 00 0 00 00 01 0 0 - 0 U, V,W,Q contain X, 0, Y , 0

Feed U,W to comparator
Note: A lt B is U < W

If (U < W ) go to S7 (for Y = Y-X)
S6 0 S8 00 0 00 00 00 0 0 0 0 U, V,W,Q contain X, 0, Y , 0

(U ≥W ) and (W ≥ U), i.e. U = W
Come out of while loop

Feed U, V (= 0) to subtractor, U − 0 to P
S8 - S9 00 0 00 00 00 1 0 0 0 U, V,W,Q unchanged, U in P

Out of while loop
Feed U, V (= 0) to subtractor, U − 0 to P

Feed P to Q
S9 - S9 00 0 00 00 00 1 0 0 1 U, V,W unchanged, U in P,Q

(return X) Out of while loop
Feed U, V (= 0) to subtractor, U − 0 to P

Feed P to Q and loop
S5 - S10 00 0 00 00 01 0 0 0 0 U, V,W,Q contain X, 0, Y , 0

Feed U,W to subtractor, U −W to P
S10 - S4 11 0 00 - - 0 0 - 0 U, V,W,Q unchanged, U −W in P

Feed P to U
Go back to loop head (S4)

S7 - S11 00 0 00 01 11 0 0 0 0 U, V,W,Q contain X, 0, Y , 0
Feed W,U to subtractor, W − U to P

S11 - S4 00 0 11 - - 0 0 - 0 U, V,W,Q unchanged, W − U in P
Feed P to W

Go back to loop head (S4)

4. Consider the Boolean function F (x1, x2, x3, x4, x5) = ((x1 + x′2).(x3 + x′4)) ⊕ (x1 ⊕ x5)

(a) [5 marks] Construct an ROBDD for F using the variable order x1 < x2 < x3 < x4 < x5.
No partial marks will be given for incorrect ROBDDs or for graphs that are not ROBDDs.

Answer:

We use the fact that 1⊕v = v′ and 0⊕v = v for any Boolean variable v. Therefore, using Shannon
decomposition, we get F = ite(x1, F1, F0), where
F1 = (x3 + x′4) ⊕ x′5 and F0 = (x′2.(x3 + x′4)) ⊕ x5.

7



In turn, F1 = ite(x3, x5, x
′
4 ⊕ x′5), and F0 = ite(x2, x5, F00), where F00 = (x3 + x′4) ⊕ x5.

Continuing Shannon decomposition, F00 = ite(x3, x
′
5, x
′
4 ⊕ x5).

Finally, x′4 ⊕ x′5 = ite(x4, x
′
5, x5) and x′4 ⊕ x5 = ite(x4, x5, x

′
5).

This gives the ROBDD shown in Fig. 2.

x1

x2

x5 x5

1 0

x3 x3

x4x4

Figure 2: ROBDD for 4(a)

(b) [5 marks] Determine if it is possible to reduce the number of nodes in the ROBDD obtained above
using complement edges such that

• there is no 1-leaf in the BDD (note that this is different from examples seen in class and
in the practice questions), and

• no solid edge (or 1-edge) is complemented.

“Yes/No” answers without adequate justification will fetch 0 marks.

Answer:

We start by replacing the 1-leaf with a 0-leaf and inserting bubbles on edges that originally led to
the 1-leaf. This is shown in Fig. 3.

8



x1

x2

x5 x5

1 0

x3 x3

x4x4

0

Figure 3: Initial complement bubbles for 4(b)

Next, we successively remove bubbles from the solid edges, as shown in Figs. 4, 5, 6.

Notice that the above transformations result in an ROBDD with a bubble on the root edge. The
question did not state anything about whether a bubble is allowed on the root edge. So there are
two possible answers to this question. In each case, you should specify whether you are assuming
bubbles on root edge are allowed or not.

• Assuming the root edge is treated like a solid edge, and hence bubbles are disallowed on it,
the above transformations cannot be done, and hence no reduction in the number of nodes is
allowed.

• Assuming bubbles are allowed on the root edge, which is treated differently from a solid edge,
the above transformations are allowed, and we get the diagram in Fig. 6. By merging nodes
with the same functionality (only such nodes can be merged in an ROBDD) in this figure, we
finally get the ROBDD in Fig. 7. Clearly, this has fewer nodes than the original ROBDD in
Fig. 3.

9



x1

x2

x5 x5

1 0

x3 x3

x4x4

0

Figure 4: Moving bubbles out of solid edges (step 1)

x1

x2

x5 x5

1 0

x3 x3

x4x4

0

Figure 5: Moving bubbles out of solid edges (step 2)

10



x1

x2

x5 x5

1 0

x3 x3

x4x4

0

Figure 6: Moving bubbles out of solid edges (step 3)

x1

x2

x5

0

x3

x4

Figure 7: ROBDD with complement edges and complement root edge

11



(c) [7 marks] Now consider the Boolean function G(x1, x5) = (x1 ⊕ x5). Suppose we are interested in
the values of F (x1, x2, x3, x4, x5) only when G(x1, x5) evaluates to 1. In other words, the values of
F when G evaluates to 0 may be treated as don’t care. Simplify the ROBDD for F obtained in
part (a) considering these don’t cares.

You must use Shannon decomposition and suitable termination cases, and systemati-
cally show how you obtain the simplification. Simplify producing a simplified ROBDD
without any steps will fetch 0 marks.

[Hint: Think about how we recursively applied different operations on ROBDDs using the ite

formulation]

Answer:

Note that this problem is related to but slightly different from what was discussed in class just
prior to mid-sem. In the problem discussed in class prior to mid-sem, we were given a function
f and a function g, and we wanted to simplify f by treating the value of the simplified function
as don’t-care when g evaluated to 1 and f evaluated to 0. In contrast, in the current problem,
we want to simplify f by treating the value of the simplified function as don’t care whenever g
evaluates to 0.

The recursive formulation is as follows (similar to that discussed in class prior to mid-sem):
Suppose f = ite(v, f1, f0) and g = ite(v, g1, g0).
Then MySimplify(f, g) = ite(v,MySimplify(f1, g1),MySimplify(f0, g0)).

The termination cases (not the same as that discussed in class prior to mid-sem) are:

• MySimplify(f, f) = 1

• MySimplify(f, f ′) = 0

• MySimplify(f, 1) = f

• MySimplify(f, 0) = don’t care — this case shouldn’t arise if you have simplified properly.

• MySimplify(1, f) = 1

• MySimplify(0, f) = 1.

Using the above, and using the notation used in the solution for 4(a), we get:
MySimplify(F, x1 ⊕ x5) = ite(x1,MySimplify(F1, x

′
5),MySimplify(F0, x5)).

Using the expression for F1 from the solution for 4(a), we get
MySimplify(F1, x

′
5) = ite(x3,MySimplify(x5, x

′
5),MySimplify(x′4 ⊕ x′5, x

′
5))

= ite(x3, 0, ite(x4,MySimplify(x′5, x
′
5),MySimplify(x5, x

′
5)) = ite(x3, 0, ite(x4, 1, 0)) = ite(x3, 0, x4).

Similarly, using the expression for F0 and F00 from the solution for 4(a), we get
MySimplify(F0, x5) = ite(x2,MySimplify(x5, x5),MySimplify(F00, x5))
= ite(x2, 1, ite(x3,MySimplify(x′5, x5),MySimplify(x′4 ⊕ x5, x5)))
= ite(x2, 1, ite(x3, 0, ite(x4,MySimplify(x5, x5),MySimplify(x′5, x5))))
= ite(x2, 1, ite(x3, 0, ite(x4, 1, 0))) = ite(x2, 1, ite(x3, 0, x4).

Using the above Shannon decomposition for MySimplify(F,G), we get the ROBDD as shown in
Fig. 8. Note that we MUST use the same variable order as in part (a) in order to simplify the
ROBDD in part (a).

12



x1

x2

0

x3

x4

1

Figure 8: ROBDD for MySimplify(F,G)

13


