
CS226 Practice Problem Set 3 (Spring 2016) Solutions

1. F = ite(x5, f
′
5, f5), where f5 = (x2 ⊕ x3).((x1 ⊕ x′3) + x4).

In turn, f5 = ite(x4, (x2 ⊕ x3), (x2 ⊕ x3).(x1 ⊕ x′3))

Furthermore, x2 ⊕ x3 = ite(x2, x
′
3, x3) and

(x2 ⊕ x3).(x1 ⊕ x′3) = ite(x2, x
′
3.(x1 ⊕ x′3), x3.(x1 ⊕ x′3)).

The latter can be re-written as: ite(x2, ite(x3, 0, x
′
1), ite(x3, x1, 0)).

To get the ite expression for f ′5, we simply use the recursive formulation used for complementing
an ROBDD. Thus, f ′5 = ite(x4, (x2 ⊕ x3)

′, ((x2 ⊕ x3).(x1 ⊕ x′3))
′). Applying this recursively, we get

(x2 ⊕ x3)
′ = ite(x2, x3, x

′
3) and

((x2 ⊕ x3).(x1 ⊕ x′3))
′ = ite(x2, ite(x3, 1, x1), ite(x3, x

′
1, 1)).

The ROBDD can now be constructed as shown in Fig. 1.

x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

0 1

x1 x1

x3x3

Figure 1: ROBDD for 1(a)

The following figures show how the variable ordering of x2 and x3 can be swapped in the ROBDD.
The red labels in Fig. 2 give the labels of the outgoing edges as values of x3x2. We need to make
sure that outgoing edges with these labels are also available after swapping the order of x2 and x3.
The blue shaded regions must stay unchanged. The result is shown in Fig. 3.

1



(a)

x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

0 1

x1 x1

x3x3

Label:
x3 x2

11

01

00

10 11 01
00

10 01
10 00

11

Figure 2: ROBDD from 1(a) with labels of outgoing edges (in red)

2



x5

x4 x4

x3 x3 x3 x3

x2 x2 x2 x2

0 1

x1 x1

x2x2

Label:
x3 x2

11

01

00

10

11

10
00

01 01

10

00

11

Figure 3: ROBDD solution for 1(b).

3



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 4: Inserting bubbles on edges to 0-leaf

(b) This requires a sequence of transformations.

i. Insert bubbles on all edges leading to the 0-leaf. This is shown in Fig. 4.

ii. Now shift bubbles out from solid edges, going from lower levels of the BDD upwards. You
should continue this until no solid edges are left with bubbles. Note that, in general, this can
result in an edge above the root node with a bubble on it (in this example, this doesn’t happen
though). This is shown in Fig. 5, Fig. 6, and Fig. 7.

iii. Next, cancel even numbers of bubbles on all dotted edges. This is shown in Fig. 8.

The end-result of the sequence of transformations is shown in Fig. 9.

4



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 5: Moving bubbles out of solid edges (step 1).

5



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 6: Moving bubbles out of solid edges (step 2).

6



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 7: Moving bubbles out of solid edges (step 3).

7



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 8: Cancelling even numbers of bubbles.

8



x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 9: The end result

9



(c) Fig. 10 shows nodes with the same functionality coloured with the same colour. On merging these
nodes, we get the ROBDD with complement edges shown in Fig. 11.

x5

x4 x4

x2 x2 x2 x2

x3 x3 x3 x3

x1 x1

x3x3

1

Figure 10: Identifying functionally equivalent nodes.

10



x5

x4

x2 x2

x3 x3 x3

x1

1

Figure 11: ROBDD with complement edges

11



2. Observe from the given ROBDD (shown in Fig. 12) that when a = 1, then regardless of the value of b,
if c = 0, the same node (coloured node labeled d) is reached in the ROBDD.

a

b b

c c c

d

0 1

d

Figure 12: Original ROBDD

This suggests that when a = 1, if we split on c first, then the 0-edge from the node labeled c can directly
reach the coloured node labeled d without splitting on b. On the other hand, when a = 1, and c = 0,
then depending on whether b = 0 or b = 1, the appropriate co-factors have to be chosen. This suggests
that instead of having one node to split on b, and two nodes to split on c (as in Fig. 12), we can have
only one node to split on c and one node to split on b. The resulting BDD is shown in Fig. 13.

12



a

b c

c b

d

0 1

d

Figure 13: BDD with different orders on different paths

13



3. Recall that we discussed in class how the ordering of variables affects the size of the ROBDD. In
particular, if the variable order is such that you can’t determine whether the function will evaluate to
1 or 0 even after knowing the values of the first few variables in the order, then the ROBDD must split
into sufficiently many parts after reading these variables, effectively remembering something about the
values of the variables read so far. This is then used to determine the value of the function after the
remaining variables’s values are read.

The example we saw in class (and given on the slides on the course webpage) is one such function:
x1.x2 + x3.x4 + x5.x6 + · · ·x2n−1.x2n, where the variable order x1 < x3 < · · ·x2n−1 < x2 < x4 < · · ·x2n
requires that you remember the 2n combinations of values of x1, x3, . . . x2n−1, before you can decide the
value of the function on reading the values of x2, x4, . . ..

XOR functions are notoriously good (or bad, as you see it) in this respect: you cannot determine the
value of the function until you have read in all the variables. However, XORs are not the only functions
with such a property. In this problem, however, using an XOR function is sufficient. In particular,
(x1 ⊕ x4).(x2 ⊕ x3) requires 11 nodes (including the leaves) with the order x1 < x2 < x3 < x4, while
each of (x1 ⊕ x4) and (x2 ⊕ x3) requires 5 nodes (including the leaves).

Draw the ROBDDs yourself to convince yourself of the above.

4. For algorithm 1, we can follow the sequence of steps given below. Here, we have chosen to store X in
register U , Z in register V and Y in register W .

CurrSt A lt B NextSt Mu Mv Mw Ma Mb Mq Reset doAdd Comment

S1 - S2 01 0 01 - - - 1 - Reset regs (0 in all regs),
feed X,Y to regs U ,W

S2 - S3 00 0 00 00 01 0 0 1 X in U ; Y in W ; 0 in V and P
feed U ,W to adder

S3 1 S4 00 1 00 00 01 0 0 0 U +W in P ; U, V,W unchanged
U < W : entering while loop

feed P to V ,
feed U ,W to subtractor

S3 0 S7 00 0 00 11 00 0 0 1 U +W in P ; U, V,W unchanged
U ≥W : exiting while loop

feed V ,V to adder
S4 - S5 11 0 00 01 01 0 0 1 U +W in V ; V,W unchanged; U −W in P

Inside while loop
feed P to U

feed W ,W to adder
S5 - S6 00 0 11 - - 0 0 - 2W in P ; Uprev −W in U ; V,W unchanged

Inside while loop
feed P to W

S6 - S3 00 0 00 00 01 0 0 1 2W in W ; U, V unchanged; garbage in PP
Inside while loop

feed U , W to adder (like S2)
S7 - S8 00 0 00 11 00 1 0 1 2V in P ; U, V,W unchanged

Out of while loop:
feed P to Q, and V, V to adder

S8 - S8 00 0 00 11 00 1 0 1 2V in P and in Q; U, V,W unchanged
Keep looping:

feed P to Q, and V, V to adder

Given that there are 8 states, three state bits should suffice. You could encode S1 as 000, S2 as 001
or use your favourite encoding. By replacing each state Si with its encoding in the above table, and
by removing the “Comment” column, we get the state transition table of the controller required to
implement algorithm 1 with the given datapath.

14



To implement algorithm 2, we can use the following sequence of steps. Once again, we have chosen to
store X in register U , Z in register V and Y in register W .

CurrSt A lt B NextSt Mu Mv Mw Ma Mb Mq Reset doAdd Comment

S1 - S2 01 0 01 - - - 1 - Reset regs (0 in all regs),
feed X,Y to regs U ,W

S2 - S3 00 0 00 00 11 0 0 1 X in U ; Y in W ; 0 in V and P
In do-while loop
feed U ,U to adder

S3 - S4 11 0 00 - - 0 0 - 2U in P ; U, V,W unchanged
In do-while loop

feed P to U
S4 - S5 00 0 00 00 01 0 0 0 2Uprev in U ; V,W unchanged; garbage in P

In do-while loop
feed U ,W to subtractor

S5 - S6 00 1 00 - - 0 0 - U −W in P ; U, V,W unchanged
Inside do-while loop

feed P to V
S6 - S7 00 0 00 11 00 0 0 1 U −W in V ; U,W unchanged; garbage in P

Inside do-while loop
feed V, V to adder

S7 - S8 00 0 11 11 11 0 0 - 2V in P ; U, V,W unchanged
Inside do-while loop

feed P to W , and V, U to adder/sub
S8 1 S3 00 0 00 00 11 0 0 1 2V in W ; U, V unchanged; garbage in P

Inside do-while loop:
feed U,U to adder (as in S2)

S8 0 S9 00 0 00 11 00 0 0 1 2V in W ; U, V unchanged; garbage in P
Out of do-while loop:
feed V, V to adder

S9 - S10 00 0 00 11 00 1 0 1 2V in P ; U, V,W unchanged
Out of do-while loop:

feed P to Q, and V, V to adder
S10 - S10 00 0 00 11 00 1 0 1 2V (= W ) in P and Q; U, V,W unchanged

Keep looping:
feed P to Q, and V, V to adder

There are 10 states now and four state bits should suffice. You can choose your encoding of states to
complete the controller’s state transition table.

15


