
CS226 Practice Problem Set 4 (Spring 2016)

Date posted: Mar 6, 2016 Expected Solving Time: 45 mins

• If you need to make any assumptions, state them clearly.

• These are ungraded practice questions. You are strongly encouraged to solve these on your
own to ensure you understand the material being taught in class.

• Mutual discussion is allowed, but copying is not. Please read the guidelines on the course
webpage if you don’t understand the distinction between the two.

1. Consider the and-inverter graph in Fig. 1 in which nodes have not necessarily been structurally hashed.

Figure 1: And-inverter graph (not strash-ed)

(a) Identify all pairs of nodes in the above AIG that can be merged by structural hashing (strash-ing).

(b) Identify all pairs of nodes in the above AIG that can be merged by fraig-ing.

(c) Construct an AIG in which all pairs of nodes identified in the previous two sub-questions are
merged.

(d) Use the technique discussed in class (Tseitin encoding) to give a CNF (or product-of-sums) formula
that is equisatisfiable to f from the simplified AIG obtained above.

(e) Give a satisfying assignment of the CNF formula obtained in the previous sub-question.

2. We have seen how the ROBDD for a function F may be simplified using a set of don’t-cares specified by
a (possibly different) function G (recall the mid-sem question, where you can think of G′ as specifying
the set of don’t cares). In this question, we wish to try something similar with AIGs.

(a) Give a recursive formulation for simplifying F using a set of don’t cares specified by G′, where both
F and G are given as FRAIGs. Clearly indicate the termination cases.

(b) Let F be the function represented by the FRAIG obtained in sub-question 1(c) above. Let G be
the function a.b + b.c′.

i. Construct a FRAIG for G.

1



ii. Use the recursive formulation of sub-question 2(a) to simplify the FRAIG for F using G′ (note:
not G) as a specification of don’t cares. Your representation for the simplified function need
not be a FRAIG, but it should be structurally hashed.

(c) Suppose F is represented by two structurally different AIGs (this is possible, since AIGs are not
canonical). Similarly, suppose G is represented by two structurally different AIGs. Is it possible
that the result of simplifying F using G′ as don’t cares, and using your recursive formulation of
sub-question 2(a), be different depending on which AIG for F or G you choose to start with?

Either provide a counter-example, or argue why the result is independent of your choice of AIGs
for F and G.

2


