
CS226 Practice Problem Set 2 (Spring 2016)

Date posted: Feb 8, 2017 Expected Solving Time: 2 hours

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• These are ungraded practice questions. You are strongly encouraged to solve these on your
own to ensure you understand the material being taught in class.

• Mutual discussion is allowed, but copying is not. Please read the guidelines on the course
webpage if you don’t understand the distinction between the two.

1. (a) Write a boolean formula that corresponds to the ROBDD shown in Fig. 1. Note that it has few
extra boxes fro the “0” terminal. This is to keep the diagram from getting cluttered by lots of
edges to 0. To be fully reduced, there is only one “0” in the real graph.

Figure 1: ROBDD example

(b) State a variable ordering for which the function from questions 1.b can be represented with fewer
nodes. Draw the ROBDD for the function using your proposed ordering.

2. Consider the function f = x1’x2x4’ + x1x2’x3x4 + x1x2’x3’x4 + x1x2x3’

(a) Construct the ROBDD for f using the variable ordering x1 < x4 < x3 < x1.

(b) From the above ROBDD, use graph operations to get the ROBDDs for restrict(x4, 0, f) and
restrict(x4, 1, f). You must indicate the graph transformations (which node/edges are deleted,
re-directed etc.) that are used to construct ROBDDs for the restrict(...) operations. You must
NOT construct ROBDDs for restrict(...) afresh after computing the function restrict(...) first.
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3. Draw ROBDDs for (x1 ↔ y1) ∧ (x2 ↔ y2) with orderings x1 < x2 < y1 < y2 and x1 < y1 < x2 < y2.
What variable ordering would you recommend for constructing the general case of : (x1 ↔ y1) ∧ (x2 ↔
y2) ∧ (x3 ↔ y3) ∧ (x4 ↔ y4)...... ∧ (xn ↔ yn)? Give justification for your answer.

4. [Adapted from Spring 2016 endsem] Usually, when we draw Karnaugh maps (henceforth called K-maps),
we fill in the entries with 1, 0 or − (for don’t care). In this question, we want to consider symbolic
Karnaugh maps, where we can fill in the entries with symbolic variables or even with other Boolean
functions, in addition to using 1, 0 and −.

Consider the symbolic K-map shown below, where F and G are Boolean variables, and F ′ and G′

represent their respecctive Boolean complements.
x1,x2→
x3,x4↓ 00 01 11 10

00 F G F ′ 1
01 1 G 1 G′

11 F ′ F G F ′

10 G F ′ 0 F

Clearly, the above K-map gives rise to different Boolean functions of x1, x2, x3 and x4 for different
combinations of Boolean values of F and G. In other words, the K-map represents a Boolean function
of x1, x2, x3, x4, F and G. Let us call this function ϕ(x1, x2, x3, x4, F,G).

(a) Give a combination of Boolean values of F and G, such that ϕ with F and G set to these values can
be implemented by the circuit shown below (Figure 2). Note that you are not allowed to change the
interconnection between the AND and OR gates. You are not allowed to use any additional gates
either. However, you are free to label the inputs of the AND gates with x1, x

′
1, x2, x

′
2, x3, x

′
3, x4 or

x′4, as you consider appropriate. You must indicate the values of F and G in the space given below,
and label the inputs of the AND gates directly in the circuit diagram (Figure 2) shown below.

Boolean value of F: , Boolean value of G:

Figure 2: Circuit 1

(b) Now suppose F and G are not Boolean variables, but Boolean functions of {x1, x2, x3, x4, x5, x6} (or
a subset thereof). Therefore, ϕ(x1, x2, x3, x4, F,G) is now a Boolean function of {x1, x2, x3, x4, x5, x6}
(or a subset thereof). Give symbolic K-maps for F and G with as many don’t cares entries as pos-
sible, in the spaces shown below, such that all of the following three conditions hold:

• (ϕ |x5 ⊕ ϕ |x5) is x1.x2 + x′2.x
′
3

• (ϕ |x6 ⊕ ϕ |x6) is x′3.x4 + x1.x
′
4.
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• If the values of x5 and x6 are different, then the Boolean functions F and G evaluate to different
values (for any combination of values of x1, x2, x3, x4). Note that this is an if-then statement,
and not an if-and-only-if statement.

The entries in your K-maps should either be 0, 1, − or functions of {x5, x6} (or subsets thereof).

Symbolic K-map for F:
x1,x2→
x3,x4↓ 00 01 11 10

00
01
11
10

Symbolic K-map for G:
x1,x2→
x3,x4↓ 00 01 11 10

00
01
11
10

5. [Adapted from Spring 2016 endsem] Consider the Boolean function F = (a ⊕ b) · (b ⊕ c) · (d ⊕ e) · (e ⊕
f) · (a + f), where ⊕ denotes EXOR.

(a) [10 marks] Construct an ROBDD with complement edges for F using the variable ordering a < b <
c < d < e < f . You must use only a single 1-leaf (no 0-leaf), and you must not have complementing
bubbles on solid edges (or 1-labeled edges) in your final answer. If needed, you can use a root edge
with a complemening bubble. You must present only your final ROBDD with complement edges
in the space below.

(b) [10 marks] You are required to implement the function F by interconnecting 2-to-1 multiplexors and
a 2-to-4 decoder. You are given three working 2-to-1 multiplexors, four defective 2-to-1 multiplexors
and a single defective 2-to-4 decoder, for this purpose. You are not allowed to use any other gate (not
even an inverter) in your implementation. Assume that you have access to a, a′, b, b′, c, c′, d, d′, e, e′, f
and f ′, so you can feed any of the literals directly to an input of the multiplexors or the decoder.

Figure 3 shows a working 2-to-1 multiplexor, a defective 2-to-1 multiplexor and a defective 2-to-4
decoder, along with the functions they implement. Indicate in the space below how you would
connect the (working and/or defective) multiplexors and decoder to implement F correctly. You
must label each working multiplexor by “WM”, and each defective multiplexor by “DM”. You must
also label the defective decoder by “DD”.
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Out = (C AND i1)  + (NOT(C) AND  i0)

0 1

i0 i1

C

Out

DM

Out = (C AND NOT(i1))  + (NOT(C) AND  i0)

00
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F0 = NOT(A) AND NOT(B)
F1 = 0
F2 = 1
F3 = A   AND   B

DD

Figure 3: Circuit 1
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