
CS226 Quiz 1 (Spring 2017)

Max marks: 40 Time: 90 mins

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Please start writing your answer to each sub-question on a fresh page. DO NOT write answers to
multiple sub-questions on the same page.

• IIT Bombay prohibits the use of communication devices and internet enabled devices during exam-
inations. You will be debarred from taking the examination if you are found accessing the internet
during the examination.

• Please do not engage in unfair or dishonest practices during the examination. Anybody found
indulging in such practices will be referred to the D-ADAC.

1. [5 + 5 marks] Consider the K-maps shown below. A “-” in a K-map square means that the value in the square is
a don’t-care, i.e. you are free to choose 0 or 1.

(a)

X,Y→
Z,W↓ 00 01 11 10

00 1 0 1 1
01 0 1 0 1
11 0 1 0 0
10 1 0 1 1

(b)

X,Y→
Z,W↓ 00 01 11 10

00 1 0 0 0
01 0 - - 0
11 0 0 - 1
10 0 - 1 1

(a) You are required to implement the function represented by K-map (a) as a sum-of-products using as few
gates as possible, where the only gates available to you are 2-input AND gates, 2-input OR gates and NOT
gates. Each gate counts as 1 regardless of the type of gate.

(b) You are required to implement the function represented by K-map (b) using only 2-to-1 multiplexors, using
as few multiplexors as possible. A 2-to-1 multiplexor has 3 Boolean inputs, say i0, i1 and c, and one Boolean
output, say fmux. It implements the function fmux(c, i0, i1) = c.i1 + c.i0.

2. [10 marks] In this question, we want to use multiplexors, as defined above, in a different way to design digital
circuits. Specifically, we want to implement the Boolean function g(x1, x2, x3, x4) shown in the K-map below
as fmux (g0(x1, x2, x3), g1(x2, x3, x4), g2(x1, x3, x4)), where fmux(c, i0, i1) = c.i1 + c.i0. You are required to give
K-maps of g0(x1, x2, x3), g1(x2, x3, x4) and g2(x1, x3, x4) that achieves the above purpose. Please note that there
is no unique solution to this question.

x1,x2→
x3,x4↓ 00 01 11 10

00 1 1 1 1
01 0 1 1 0
11 1 1 0 0
10 0 1 1 1

3. [10 marks] We want to implement the following algorithm, written in a C-like language (not VHDL) using the
datapath shown below (Fig. 1). Note that this is the same datapath we used to implement integer division using
FindSmallestIndex in class. Specifically, the clock inputs of registers are not controlled by the controller. Instead,
the controller only controls what inputs appear at the data inputs of various registers. Also, aLTb evaluates to 1 if
a < b and to 0 otherwise. You need not worry about what the algorithm below is implementing – simply consider
it as some data processing algorithm.

1

T = 0; Q = 0; R = 0; A = 0; B = 0;

read A and B;

if (A < B) { R = A; Q = T; output Q and R;}

else { while (A >= B) {

temp = FindSmallestIndex(A, B);

A = A - B * 2^temp;

temp = FindSmallestIndex(A, B);

T = T + 2^temp;

T = T + 2^temp;

}

}

FindSmallestI

a b

i

b << i

Subtractor

t + 2^i

t

<

q r

C
O
N
T
R
O
L
L
E
R

clk

Mb

Ma

Mt

Mr

Mq

aLTb

 00 01 11 0 1

00 01 11

 0 1 0 1

Figure 1: Datapath studied in class

You are free to add or combine intermediate steps of computation in the algorithm above, if it helps you solve the
problem. However, all such steps must be clearly indicated.

For the controller, you must give the state transition table in the format given below. You may assume that the
values of A and B do not change until the entire computation is over.

You MUST indicate through brief comments what each row of the controller table achieves, e.g.
resets registers, or updates T with such and such expression, etc.

CurrState aLTB NextState Ma Mb Mt Mq Mr Reset Comment
· ·

...

4. [5 + 5 marks] Give ROBDDs for the following Boolean functions using the variable order a < b < c < d < e, i.e.
a appears higher up (closer to the root) in the ROBDD than b and so on,

(a) f = (a + b).(c + d).(a + e)

(b) g = (a⊕ b).(c⊕ d).e

2

